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Abstract: In this paper, a new modified Runge-Kutta-Nyström method of third algebraic order is developed. The new modified RKN
method has phase-lag and amplification error of order infinity, also the first derivative of the phase lag is of order infinity. Numerical
results indicate that the new method presented in this paper, is much more efficient than other methods of the same algebraic order, for
the numerical integration of orbital problems.
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1. Introduction

Much research has been done on the second order peri-
odic initial and boundary value problems with oscillating
and/or periodic solutions the recent years (see [13] - [28]
and references therein).

Last decades many researchers developed optimized
methods based on the phase lag properties ([1] - [10]).
Moreover, the very last years a new methodology has been
developed which is basing the optimization of a method to
the nullification of the phase lag and its derivative ([4],[6],
[7],[8],[9],[10]). This new methodology was applied on
the multistep methods [4].

In the present paper, an effort is being made to com-
bine for first time in literature the nullification of phase
lag, amplification error and phase lag’s derivative. The new
modified Runge-Kutta-Nyström that is being constructed,
contains three additional variable coefficients (in compar-
ison with the classical RKN method), which depend on
z = wh, where w is the dominant frequency of the prob-
lem and h is the step length of integration. In order to eval-
uate the above coefficients,the new method combines the

nullification of phase-lag, amplification factor and phase-
lag’s derivative.

The new modified RKN method that obtained, will be
used for the numerical solution of some well-known or-
bital problems.

2. The modified Runge-Kutta-Nyström
method

In this section we present the general form of the new mod-
ified method,which can be used for the numerical integra-
tion of second order ordinary differential equations with
the following form

d2y(t)

dt2
= f(t, y(t)) (1)

The general form of the new modified RKN method is
given below

yn = yn−1 + hy′n−1 + h2
m∑
i=1

bif(tn−1 + cih, fi),
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yn = y′n−1G+ h
m∑
i=1

b′if(tn−1 + cih, fi), (2)

where

fi = yn−1 + hciy
′
n−1 + h2

i−1∑
j=1

αijf(tn−1 + cjh, fj) (3)

i = 1, . . . ,m

As it is obvious, for G = 1, the classical Runge Kutta
Nyström method is obtained. In the present paper and based
on the requirement of the development of the new method,
value G is a variable and depends on z (which is the prod-
uct of the frequency w and the step-size h). In section (4)
we will present a development of a three-stage modified
Runge-Kutta-Nyström method of third algebraic order.

3. Phase-lag analysis of the modified
Runge-Kutta-Nyström method

For the development of the new modified method we com-
pare the exact and the numerical solution of the following
test equation
d2y(t)

dt2
= (iw)2y(t) =⇒ y′′(t) = −w2y(t), w ∈ R (4)

In the test equation (4) we apply the modified RKN
method (2) and we are led to the numerical solution[
yn
hy′n

]
= Dn

[
y0
hy′0

]
, D =

[
A(z2) B(z2)

Ȧ(z2) Ḃ(z2)

]
, (5)

where z = wh and A,B, Ȧ, Ḃ are polynomials in z2,
completely determined by the parameters of the method
(2).

The eigenvalues of the amplification matrix D(z2) are
the roots of the characteristic equation
r2 − tr(D(z2))r + det(D(z2)) = 0 (6)

In phase analysis one compares the phases of exp(iz)
with the phases of the roots of the characteristic equation
(6). The following definition is originally formulated by
van der Houwen and Sommeijer [1].

Definition 1(Phase-lag). Apply the RKN method (2) to the
general method (4). Then we define the phase-lag Φ(z) =
z − arccos(tr(D)/2

√
det(D)). If Φ(z) = O(zq+1), then

the RKN method is said to have phase-lag order q. In ad-
dition, the quantity a(z) = 1−

√
det(D) is called ampli-

fication error.

where z = wh. From definition 1 it follows that

Φ(z) = z − arccos

(
R(z2)

2
√
Q(z2)

)
,

a(z) = 1−
√
Q(z2). (7)

If at a point z, a(z) = 0, then the Runge Kutta Nyström
method has zero dissipation at this point.

According to the definition 1 we have the following
theorem.

0
1/2 1/8
1 0 1/2

1/6 2/6 0
1/6 b′2 b′3

Table 1 third-stage explicit Runge-Kutta-Nystöm method

Theorem 1If we have phase-lag of order infinity and at a
point z, α(z) = 0 then,

z − arccos

(
R(z2)

2
√

Q(z2)

)
= 0

1−
√
Q(z2) = 0

}
⇒ R(z2) = 2cos(z)

Q(z2) = 1

for more details see ([5])

Lemma 1For the derivation of a RKN method with nulli-
fication of phase lag, amplification error and phase lag’s
derivative, we must satisfy the conditions:

R(z2) = 2cos(z),

Q(z2) = 1, (8)
R′(z2) = −2sin(z)

4. Construction of the new modified RKN
method

In this section we demonstrate the procedure for the deriva-
tion of the new modified RKN method, which is a three-
stage explicit Runge-Kutta-Nyström method of third alge-
braic order. From equations 2 and 4, the three-stage ex-
plicit modified RKN method can be written in the follow-
ing form:

yn = yn−1 + hy′n−1 + h2(b1f1 + b2f2 + b3f3,

y′n = y′n−1G+ h(b′1f1 + b′2f2 + b′3f3), (9)

where

f1 = f(tn−1, yn−1),

f2 = f(tn−1 + c2h, yn−1 + c2hy
′
n−1 + h2a21f1),

f3 = f(tn−1 + c3h, yn−1 + c3hy
′
n−1

+ h2(a31f1 + a32f2)), (10)

At this point we consider the third-stage explicit RKN
method which is presented by the Butcher tableau 1.

From the Butcher tableau 1, equation 9 is transformed
as follows:

yn = yn−1 + hy′n−1 + h2(
1

6
f1 +

2

6
f2),

y′n = y′n−1G+ h(
1

6
f1 + b′2f2 + b′3f3), (11)
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where

f1 = f(tn−1, yn−1),

f2 = f(tn−1 +
1

2
h, yn−1 +

1

2
hy′n−1 +

1

8
h2f1),

f3 = f(tn−1 + h, yn−1 + hy′n−1 +
1

2
h2f2),

(12)

In order to obtain the expressions of the coefficients b′2,
b′3 and G, we apply numerical method 11 to the test equa-
tion 4, and thus we compute the polynomials A, Ȧ,B, Ḃ
in terms of the modified Runge-Kutta-Nyström parame-
ters. From these polynomials we obtain the expressions
of R(z2) and Q(z2). Then, according to Lemma 1 we
solve the system of four equations (R(z2) = 2cos(z),
Q(z2) = 1, R′(z2) = −2sin(z)) and thus we obtain the
expressions of the coefficients which are fully depended
from the product of the step-length h and the frequency w.

b′2 = −1/3 (384 z3 sin (z)−54 z6−960 z2+304 z4+
1152 z2 cos (z) + 3 z8 − 84 z5 sin (z) + 6 z7 sin (z) +
24 z6 cos (z) − 336 z4 cos (z) − 576 z sin (z) + 1152 −
1152 cos (z))/(z2

(
88 z2 − 96− 18 z4 + z6

)
)

b′3 = −1/6 (1152 z sin (z) + 56 z4 − 1152 + 96 z2 +
1152 cos (z)−16 z6−336 z3 sin (z)+24 z5 sin (z)+z8+
48 z4 cos (z)− 576 z2 cos (z))
/(z2

(
88 z2 − 96− 18 z4 + z6

)
G = −1/12 (−1152 + 480 z2 − 120 z4 − 4 z6 +

2304 cos (z) + 1152 z sin (z)− 480 z3 sin (z) +
48 z5 sin (z) + 144 z4 cos (z)− 1536 z2 cos (z) + z8)/
(88 z2 − 96− 18 z4 + z6)

For small values of x the following Taylor series ex-
pansions are used

b′2 = 2
3−

1
240 z

4− 29
20160 z

6− 2753
1814400 z

8− 57221
53222400 z

10−
41764193

58118860800 z
12

b′3 = 1
6 +

1
96 z

4+ 11
1920 z

6+ 731
201600 z

8+ 68237
29030400 z

10+
41163389

26824089600 z
12

G = 1 + 1
180 z

6 + 11
4480 z

8 + 10411
7257600 z

10 +
108551

119750400 z
12 + 68305253

116237721600 z
14

5. Numerical illustrations

In this section we will apply our method to three well
known orbital problems. We are going to compare our re-
sults with other methods designed for solving second or-
der ordinary differential equations. The methods used in
the comparison have been denoted by:
• MRKN3: The new third-order MRKN method with three
stages, derived in Section 4.
• RKN3: The classical third-order RKN method with three

stages from which we were using the coefficients .
• PL6RKN3: The third-order RKN method with phase lag
of order six and zero amplification error of van der Houwen
and Sommeijer [1].
• EFRKN3: The fourth-order exponential fitted RKN method
with three stages, of J.M. Franco [2] .

One way to measure the efficiency of the method is to
compute the accuracy in the decimal digits, that is −log10
(maximum error through the integration intervals) versus
the computational effort measured by the log10(number of
function evaluations required). The problems are tested in
the interval [0, 1000].

Problem 1.(Orbit problem by Stiefel and Bettis [12])

y′′ = −y(t) + ϵexp(it), y(t) ∈ C

y(0) = 1, y′(0) = (1− 1

2
ϵ)i,

where ϵ = 0.001
The analytical solution is
y(t) = cos(t) + 1

2ϵtsin(t) + i[sin(t)− 1
2ϵtcos(t)]

Problem 2.(Orbit problem by Franco and Palacios [11])

y′′ = −y(t) + ϵexp(iψt),

y(0) = 1, y′(0) = i,

where ϵ = 0.001 and ψ = 0.01
The analytical solution y(t) = y1(t) + iy2(t) is given by:

y1(t) =
1− ϵ− ψ2

1− ψ2
cos(t) +

ϵ

1− ψ2
cos(ψt),

y2(t) =
1− ϵψ − ψ2

1− ψ2
sin(t) +

ϵ

1− ψ2
sin(ψt)

Problem 3.(Two-Body problem)

y′′1 = −y1
r3
, y′′2 = −y2

r3

where r =
√
y21 + y22 ,

y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1.
The analytical solution is
y1(t) = cos(t) and y2(t) = sin(t)

In the figures we display the efficiency curves, that
is the accuracy versus the computational cost measured
by the number of function evaluations required by each
method.

Numerical results indicate that the new method derived
in section 4 is much more accurate than the other methods.

More specifically the new method (MRKN3) is more
accurate from the classical (RKN3) one by one decimal
digit for the two-body problem and by three decimals for
the rest two problems. Also the new RKN method remains
more accurate than the PL6RKN3 by two decimals in all
cases. Finally the new method has achived better accuracy
from the EFRKN4 method by two decimals for the two
body problem and by three decimals for the rest two prob-
lems.
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Figure 1 Efficiency for the Stiefel and Bettis Problem
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Figure 2 Efficiency for the Franco and Palacios Problem
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Figure 3 Efficiency for the Two Body Problem

6. Conclusions

The new modified RKN method, developed in this pa-
per is much more efficient than all the other methods that
take place, in any case. The new method remained more
efficient for all the proplems and in some cases was more
accurate than the other methods up to three decimals.
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