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Abstract: In this article, we aim to analyze the Mixed Immunotherapy and Chemotherapy cancer treatment mathematical model to

strengthen cancer research. Firstly, the model is integrated into the Caputo-Fabrizio fractional derivative with a non-singular kernel in

order to overcome the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. After that, the presented

mathematical model is examined for the existence of system solutions in detail by applying the fixed-point postulate. We ascertain the

conditions under which the uniqueness of this system of solutions can be obtained.
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1 Introduction

Mathematical modeling is a powerful tool due to its manifest importance and multifaceted uses against real-world
problems in engineering, finance, social sciences and biology. Models have been formulated using classical derivatives.
Cancer is foremost among the world’s most fatal diseases and there are many contemporary integer order models, with
varying treatment approaches presented in [1–4]. However, due to the complexities of real-world problems, the modeling
concept was extended to the novel approach, applying fractional derivatives [5–7]. The basics of the fractional derivative,
Caputo-Fabrizio, are given in [8,9]. Thus, some of the studies focused on the multiple applications of fractional operator,
Caputo-Fabrizio derivatives, without a singular kernel. A variety of Fractional Models investigation are given in [10–21].
The subsequent research studies refer predominately to cancer treatment models [22–24].

Human anatomy encompasses over 200 standard cell types. These cells develop and regenerate in a controlled
manner to balance their decay. However, sometimes when there is a change in the DNA of a cell (for reasons known or
unknown), this creates a mutation that increases the cell’s growth and division rate in an unprecedented manner.
Subsequently, a mass of tissue called a tumor appears. These tumors can grow and adversely affect other body systems
like the nervous, digestive, and circulatory systems, That stated, all tumors are not cancerous. Likewise, tumors that are
not cancerous are diagnosed benign. Tumors that are cancer are diagnosed malignant. Malignant tumors can proliferate
to other parts of the body through the blood or lymphatic system–these are called Metastatic cancers. These malignant
tumor cells work as hunters; they can invade any cell and destroy it. We call this an advanced cancer stage. These cancers
cannot be completely cured or controlled with treatment. Thus, oncologists determine the possible course of action for
treatment by relying on many important factors. Relevant information considered includes patients’ past medical history,
age of the patient, stage of the tumor, treatment response or type of cancer (such as leukemia, lung cancer, lymphoma
and breast cancer). The goal of optimizing cancer treatment is to achieve minimum damage to normal cells and
effectuate higher results with lower treatment costs. In general, prevalent cancer treatment methods include surgery,
chemotherapy, immunotherapy and radiotherapy.
Immunotherapy treatment provides strength to our immune systems, to combat cancer cells and other forms of disease

∗ Corresponding author e-mail: jsmithj60@gmail.com

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/080204


244 V. S. Panwar and P. S. S. Uduman: Existence and Uniqueness of Solutions ...

verified by clinical trials and laboratory experiments. The accepted growth model for tumors indicates their increase in
size is logistic to the cell population growth law of immune response (supported by data). NK and CD8+T cells are
efficient in destroying tumor cells and they react to tumor cells by cytolytic action. Our body’s innate immune response
system consists of NK cells, which are always present even when there are no traces of tumor cells inside the body.
Whereas CD8+T active tumor-specific cells coexist in sizable numbers only in the presence of tumor cells. NK and
CD8+T cells move into the indolent state after a few encounters with tumor cells.
Chemotherapy treatment uses cytotoxic antineoplastic drugs (for example doxorubicin), which destroys cells that divide
speedily as it is the nature of cancer cells to divide rapidly. As we know our normal body cells ( i.e. hair, stomach lining
and bone marrow) are harmed by chemotherapy. However, it is of particular importance to note that immune cells
originate within bone marrow. Therefore high doses are not permitted in order to save other rapidly proliferating tissues
from damage. Ideally, chemotherapeutic drugs are more effective on tumor cells when compared with immune
cells [1, 4].
Inspired by the aforementioned study, in this article we address the Mixed Chemotherapy and Immunotherapy cancer
treatment modality proposed (the FODEs model) for tumor growth under the influence of combined chemotherapeutic
drug and immunotherapeutic drug interaction, whose results may be as close as possible to that of the original
circumstance. The presented mathematical model consists of four interrelated equations representing the influence of
chemotherapeutic drugs and immunotherapeutic drugs on tumor cell biomass and immune cell biomass in the
bloodstream.

To the best of our knowledge, until now, no one has yet considered the Mixed Immunotherapy and Chemotherapy cancer
treatment fractional model with the Caputo-Fabrizio derivative. The other remaining sections appear as follows: sect.2
contains background on definitions related to the Caputo-Fabrizio derivative. Sect.3 deals with modeling the Mixed
Immunotherapy and Chemotherapy cancer treatment fractional model with Caputo-Fabrizio derivative whereas sect.4
deals with theorems to prove existence and uniqueness of the solution using the fixed-point postulate. Lastly, sect.5
provides a conclusion.

2 Background for Caputo-Fabrizio fractional derivative

Definition 1 [8]Let Ξ ∈ H1(b,c), c > b, λ ∈ [0,1] then, the definition of the arbitary order Caputo-Fabrizio fractional

derivative is given by

Dλ
t (Ξ(t)) =

M (λ )

1−λ

∫ t

b
Ξ ′(z)exp

[

−λ
t − z

1−λ

]

dz. (1)

In the equation (1), M (λ ) represents normalization function with conditions M (1) = M (0) = 1 if Ξ does not belongs

to H1(b,c) then, we obtain

Dλ
t (Ξ i(t)) =

λM (λ )

1−λ

∫ t

a
(Ξ(t)−Ξ(z))exp

[

−λ
t − z

1−λ

]

dz. (2)

If ν = 1−λ
λ ∈ [0,∞), λ = 1

1+ν ∈ [0,1], under these conditions equation (2) become

Dλ
t (Ξ(t)) =

N (ν)

ν

∫ t

a
Ξ ′(z)exp

[

−
t − z

ν

]

dz, N (∞) = N (0) = 1. (3)

further,

lim
ν−→0

1

ν
exp

[

−
t − z

ν

]

=Θ(z− t). (4)

Definition 2 [9] Assume 0 < λ < 1, hence fractional order integral of order λ for function Ξ(z) is denoted as

Pλ
t (Ξ(t)) =

2(λ − 1)

(λ − 2)M (λ )
g(t)+

2λ

(2−λ )M (λ )

∫ t

0
Ξ(s)ds, t ≥ 0. (5)

2

2M (λ )−λM (λ )
= 1, (6)

We get M (λ ) = 2
2−λ , and with order 0 < λ < 1. The authors in [9] represent the new Caputo derivative in another form

as

Dλ
t (Ξ(t)) =

1

1−λ

∫ t

0
Ξ ′(z)exp

[

−λ
t − z

1−λ

]

dz. (7)
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3 Mixed immunotherapy and chemotherapy cancer treatment model

In this section, we present the fractional Mixed Immunotherapy and Chemotherapy cancer treatment model with CF
derivative, which includes tumor cell biomass denoted by T (t) and immune cell biomass P(t), and chemotherapeutic drug
and immunotherapeutic drug at time (t) in blood are denoted by X(t),Y (t) respectively. r,s,u,w,α1,α2,ρ ,h,β ,
µ ,ψ ,g,γ1,γ2,q1,q2 are the positive real-valued model parameters. FODEs model presented in (8) includes assumptions
and descriptions of parameters as per the ordinary differential equation mathematical model presented in the paper [4].The
Fractional Mixed Immunotherapy and Chemotherapy cancer treatment model with CF derivative is represented as:

CF
0 Dλ

t T = rT (t)(1− pT(t))−α1T (t)P(t)− q1X(t)T (t),

CF
0 Dλ

t P = ψ +
ρT 2(t)P(t)

h+T2(t)
+

β P(t)Y (t)

g+Y(t)
−α2T (t)P(t)− µP(t)− q2P(t)X(t),

CF
0 Dλ

t X = u− γ1X(t),

CF
0 Dλ

t Y = w− γ2Y (t). (8)

with initial conditions on (8) as

T (0) = n1 ≥ 0,P(0) = n2 > 0,X(0) = n3 ≥ 0, and Y (0) = n6 ≥ 0.

4 Existence of solution for cancer treatment FODEs mathematical model

In this section Fixed-point theory is applied to establish that the solution exists for the FODEs model. The fractional
integral operator on (8) gives

T (t)−T (0) = CF
0 Pλ

t {rT (t)(1−ρT(t))−α1T (t)P(t)− q1X(t)T (t)},

P(t)−P(0) = CF
0 Pλ

t

[

ψ +
ρ T (t)2P(t)

h+T(t)2
+

β P(t)Y (t)

g+Y(t)
−α 2T (t)P(t)− µ P(t)− q2P(t)X(t)

]

,

X(t)−X(0) = CF
0 Pλ

t [u− γ1X(t)] ,

Y (t)−Y (0) = CF
0 Pλ

t [w− γ2Y (t)] . (9)

Applying Nieto and Losada [9] notations on (9) gives

T (t)−T (0) =
2(λ − 1)

M (λ )(λ − 2)
{rT (t)(1−ρT(t))−α1T (t)P(t)− q1X(t)T (t)}

+
2λ

M (λ )(2−λ )

∫ t

0
{rT (t)(1−ρT(t))−α1T (t)P(t)− q1X(t)T (t)}dy,

P(t)−P(0) = {ψ +
ρT 2(t)P(t)

h+T2(t)
+

β P(t)Y (t)

g+Y(t)
−α2T (t)P(t)− µP(t)− q2P(t)X(t)}

+
2λ

M (λ )(2−λ )

∫ t

0
{ψ +

ρT 2(t)P(t)

h+T2(t)
+

β P(t)Y (t)

g+Y(t)

−α2T (t)P(t)− µP(t)− q2P(t)X(t)}dy,

X(t)−X(0) =
2(λ − 1)

M (λ )(λ − 2)
{u− γ1X(t)}

+
2λ

M (λ )(2−λ )

∫ t

0
{u− γ1X(t)}dy,

Y (t)−Y (0) =
2(λ − 1)

M (λ )(λ − 2)
{w− γ2Y (t)}

+
2λ

M (λ )(2−λ )

∫ t

0
{w− γ2Y (t)}dy. (10)
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For clarity, we substitute the following

E1(t,T ) = rT (t)(1−ρT(t))−α1T (t)P(t)− q1X(t)T (t),

E2(t,T ) = ψ +
ρT 2(t)P(t)

h+T2(t)
+

β P(t)Y (t)

g+Y(t)
−α2T (t)P(t)− µP(t)− q2P(t)X(t),

E3(t,X) = u− γ1X(t),

E4(t,Y ) = w− γ2Y (t). (11)

Theorem 1 The kernels E1,E2,E3 and E4 will satisfy the Lipchitz condition and contraction if the following inequality

holds:

0 ≤ (rk+α1c+ q1e)< 1.

Proof. We undertake the kernel E1. Let T and T1 are two functions. Then, we check the following

||E1(t,T )−E1(t,T1)|| = ||r(T (t)−T (t1))(1−ρ(T(t)−T(t1)))

−α1P(t)(T (t)−T(t1))− q1X(t)(T (t)−T(t1))}|| (12)

Applying triangular inequality on equation (12) we get

||E1(t,T )−E1(t,T1)|| ≤ ||rk{T (t)−T(t1)}||+ ||α1P(t){T (t)−T(t1)}||

+||q1X(t){T (t)−T(t1)}||,

≤ {rk+α1||P(t)||+ q1||X(t)||}||{T(t)−T(t1)}||,

≤ {rk+α1c+ q1e}||{T(t)−T (t1)}||,

≤ χ1||{T (t)−T(t1)}||. (13)

Taking χ1 = (rk +α1c+ q1e), where ||1− ρ(T (t)− T (t1))|| ≤ k, ||P(t)|| ≤ c and ||X(t)|| ≤ e, are bounded functions,
which prompt the consideration that

||E1(t,T )−E1(t,T1)|| ≤ χ1||T (t)−T (t1)||. (14)

Hence, the Lipschiz condition is verified for E1 and furthermore if 0≤ (rk+α1c+q1e)< 1 then that implies a contraction.
Lipschiz condition can be verified for the remaining cases as given below

|| E2(t,P)−E2(t,P1) || ≤ χ2|| P(t)−P(t1) ||,

||E3(t,X)−E2(t,X1)|| ≤ χ3||X(t)−X(t1)||,

||E4(t,Y )−E2(t,Y1)|| ≤ χ4||Y (t)−Y(t1)||. (15)

Considering the previously mentioned kernels, the equation (10) can be written as

T (t) = T (0)+
2(λ − 1)

(λ − 2)M (λ )
E1(t,T )+

2λ

(2−λ )M (λ )

∫ t

0
(E1(y,T ))dy,

P(t) = P(0)+
2(λ − 1)

(λ − 2)M (λ )
E2(t,P)+

2λ

(2−λ )M (λ )

∫ t

0
(E2(y,P))dy,

X(t) = X(0)+
2(λ − 1)

M (λ )(λ − 2)
E3(t,X)+

2λ

(2−λ )M (λ )

∫ t

0
(E3(y,X))dy,

Y (t) = Y (0)+
2(λ − 1)

M (λ )(λ − 2)
E4(t,Y )+

2λ

(2−λ )M (λ )

∫ t

0
(E4(y,Y ))dy. (16)

Now, we demonstrate the following recursive formula:

Tn(t) =
2(λ − 1)

(λ − 2)M (λ )
E1(t,Tn−1)+

2λ

(2−λ )M (λ )

∫ t

0
(E1(y,Tn−1))dy,
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Pn(t) =
2(λ − 1)

(λ − 2)M (λ )
E2(t,Pn−1)+

2λ

(2−λ )M (λ )

∫ t

0
(E2(y,Pn−1))dy,

Xn(t) =
2(λ − 1)

(λ − 2)M (λ )
E3(t,Xn−1)+

2λ

(2−λ )M (λ )

∫ t

0
(E3(y,Xn−1))dy,

Yn(t) =
2(λ − 1)

(λ − 2)M (λ )
E4(t,Yn−1)+

2λ

(2−λ )M (λ )

∫ t

0
(E4(y,Yn−1))dy. (17)

with following conditions

T0(t) = T (0), P0(t) = P(0), X0(t) = X(0), and Y0(t) = Y (0). (18)

Now, we obtain the successive terms difference as:

Θn(t) = Tn(t)−Tn−1(t) =
2(λ − 1)

(λ − 2)M (λ )
(E1(t,Tn−1)−E1(t,Tn−2))

+
2λ

(2−λ )M (λ )

∫ t

0
(E1(y,Tn−1)−E1(y,Tn−2))dy,

ζn(t) = Pn(t)−Pn−1(t) =
2(λ − 1)

(λ − 2)M (λ )
(E2(t,Pn−1)−E2(t,Pn−2))

+
2λ

(2−λ )M (λ )

∫ t

0
(E2(y,Pn−1)−E2(y,Pn−2))dy,

Φn(t) = Xn(t)−Xn−1(t) =
2(λ − 1)

(λ − 2)M (λ )
(E3(t,Xn−1)−E3(t,Xn−2))

+
2λ

(2−λ )M (λ )

∫ t

0
(E3(y,Xn−1)−E3(y,Xn−2))dy,

Ωn(t) = Yn(t)−Yn−1(t) =
2(λ − 1)

(λ − 2)M (λ )
(E4(t,Yn−1)−E4(t,Yn−2))

+
2λ

(2−λ )M (λ )

∫ t

0
(E4(y,Yn−1)−E4(y,Yn−2))dy. (19)

Which prompts towards the consideration that































































Tn(t) =
n

∑
i=1

Θi(t),

Pn(t) =
n

∑
i=1

ζi(t),

Xn(t) =
n

∑
i=1

Φi(t),

Yn(t) =
n

∑
i=1

Ωi(t).

(20)

Using step by step calculation we get

||Θn(t)|| = ||Tn(t)−Tn−1(t)||= ||
2(λ − 1)

(λ − 2)M (λ )
(E1(t,Tn−1)−E1(t,Tn−2))

+
2λ

M (λ )(2−λ )

∫ t

0
(E1(y,Tn−1)−E1(y,Tn−2))dy||. (21)

Employing triangular inequality on equation (21), we obtain

||Tn(t)−Tn−1(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
||(E1(t,Tn−1)−E1(t,Tn−2))||

+
2λ

M (λ )(2−λ )
||

∫ t

0
(E1(y,Tn−1)−E1(y,Tn−2))dy||. (22)
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Since kernel satisfies Lipchitz condition, thus we get

||Tn(t)−Tn−1(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
χ1||Tn−1 −Tn−2||

+
2λ

(2−λ )M (λ )
χ1

∫ t

0
||Tn−1 −Tn−2||dy. (23)

Hence, we have

||Θn(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
χ1||Θn−1(t)||+

2λ

(2−λ )M (λ )
χ1

∫ t

0
||Θn−1(y)||dy. (24)

In the same way, we obtain the subsequent results

||ζn(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
χ2||ζn−1(t)||+

2λ

M (λ )(2−λ )
χ2

∫ t

0
||ζn−1(y)||dy,

||Φn(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
χ3||Φn−1(t)||+

2λ

M (λ )(2−λ )
χ3

∫ t

0
||Φn−1(y)||dy,

||Ωn(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
χ4||Ωn−1(t)||+

2λ

M (λ )(2−λ )
χ4

∫ t

0
||Ωn−1(y)||dy. (25)

Considering the above presented results, the following theorem can be established.

Theorem 2 The Cancer treatment FODEs model (8) coupled solution exists under the condition that, we find t0 which

satisfy:
2(λ − 1)

(λ − 2)M (λ )
χ1 +

2λ

(2−λ )M (λ )
χ1t0 < 1.

Proof. Now we know that the Lipchitz condition holds for the kernels and the functions T (t), P(t), X(t), and Y (t) are
bounded. Hence, by applying this process recursively [11] on Eqs. (24) and (25), we obtain the inequalities:

||Θn(t)|| ≤ ||Tn(0)||
[( 2(λ − 1)

M (λ )(λ − 2)
χ1

)

+
( 2λ

M (λ )(2−λ )
χ1t

)]n

,

||ζn(t)|| ≤ ||Pn(0)||
[( 2(λ − 1)

M (λ )(λ − 2)
χ2

)

+
( 2λ

M (λ )(2−λ )
χ2t

)]n

,

||Φn(t)|| ≤ ||Xn(0)||
[( 2(λ − 1)

M (λ )(λ − 2)
χ3

)

+
( 2λ

M (λ )(2−λ )
χ3t

)]n

,

||Ωn(t)|| ≤ ||Yn(0)||
[( 2(λ − 1)

M (λ )(λ − 2)
χ4

)

+
( 2λ

M (λ )(2−λ )
χ4t

)]n

. (26)

Thus, the existence and continuity of the above presented solutions are proved. Next to confirm that the functions are the
solutions of eq. (8), we fixed

Tn(t)−Kn(t) = T (t)−T(0),

Pn(t)−Fn(t) = P(t)−P(0),

Xn(t)−Gn(t) = X(t)−X(0),

Yn(t)− Jn(t) = Y (t)−Y(0). (27)

Thus, we obtain

||Kn(t)|| =
∣

∣

∣

∣

∣

∣

2(λ − 1)

M (λ )(λ − 2)
(E1(t,T )−E1(t,Tn−1))+

2λ

M (λ )(2−λ )

∫ t

0
(E1(y,T )−E1(y,Tn−1))dy

∣

∣

∣

∣

∣

∣
,

≤
2(λ − 1)

(λ − 2)M (λ )
||(E1(t,T )−E1(t,Tn−1))||+

2λ

(2−λ )M (λ )

∫ t

0
||(E1(y,T )−E1(y,Tn−1))||dy,

≤
2(λ − 1)

(λ − 2)M (λ )
χ1||T −Tn−1||+

2λ

(2−λ )M (λ )
χ1||T −Tn−1||t. (28)
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After the repetition of the same process, we obtain

||Kn(t)|| ≤
( 2(λ − 1)

λM (λ )− 2M (λ )
−

2λ

λM (λ )− 2M (λ )
t

)n+1

χn+1
1 a. (29)

When t = t0

||Kn(t)|| ≤
( 2(λ − 1)

M (λ )(λ − 2)
−

2λ

M (λ )(λ − 2)
t0

)n+1

χn+1
1 a. (30)

Employing limits on eq. (30), if n → ∞, we obtain ||Kn(t)|| → 0.
In the same manner we obtain ||Fn(t)|| → 0, ||Gn(t)|| → 0, ||Jn(t)|| → 0.
Hence Hence existence is established.

Moreover, in order to obtain the uniqueness for the solution set of the aforesaid model (8), consider that there exists a
separate solution set for (8) as T1(t), P1(t), X1(T ), and Y1(t) thus

T (t)−T1(t) =
2(λ − 1)

(λ − 2)M (λ )
(E1(t,T )−E1(t,T1))+

2λ

(2−λ )M (λ )

∫ t

0
(E1(y,T )−E1(y,T1))dy. (31)

Employing the norm over the equation (31), we obtain

||T (t)−T1(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
||E1(t,T )−E1(t,T1)||+

2λ

(2−λ )M (λ )

∫ t

0
||E1(y,T )−E1(y,T1)||dy. (32)

Employing the Lipschitz condition of the kernel, we get

||T (t)−T1(t)|| ≤
2(λ − 1)

(λ − 2)M (λ )
χ1||T (t)−T1(t)||+

2λ

(2−λ )M (λ )
χ1t||T (t)−T1(t)|. (33)

It provides

||T (t)−T1(t)||
(

1−
2(λ − 1)

(λ − 2)M (λ )
χ1 +

2λ

λM (λ )− 2M (λ )
χ1t

)

≤ 0. (34)

Theorem 3 A unique solution of the FODEs model presented in (8) exists with the condition

(

1−
2(λ − 1)

(λ − 2)M (λ )
χ1 +

2λ

λM (λ )− 2M (λ )
χ1t

)

> 0.

Proof. Assuming the condition provided in (34) exists, then

||T (t)−T1(t)||
(

1−
2(λ − 1)

(λ − 2)M (λ )
χ1 +

2λ

λM (λ )− 2M (λ )
χ1t

)

≤ 0. (35)

implies that

||T (t)−T1(t)||= 0. (36)

Hence,

T1(t) = T (t). (37)

similarly, we get

P1(t) = P(t),

X1(t) = X(t),

Y1(t) = Y (t). (38)

Which completes the proof for the uniqueness of the solution. The FODEs model presented in (8) exists.
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5 Conclusion

We extended the Mixed Immunotherapy and Chemotherapy cancer treatment model to fractional calculus by using the
CF fractional derivative. To summarize, this derivative has a non-singular kernel and follows exponential distribution,
whereas both the fractional derivatives Riemann–Liouville and Caputo, have singular kernels and follow power-law
distribution [25]. Existence of the solution for the FODEs cancer treatment model is found by employing the fixed-point
theorem. We defined the conditions by which the uniqueness of this system of solutions can be achieved.Similar
comparative analysis can be undertaken of other integer order models. Non-integer values of λ the fractional parameter
and CF fractional derivative together help to create a significant mathematical model. This is very much in line with in
vivo cancer treatment data for accurate prediction and assists in the optimization of immunotherapy and chemotherapy.
Ostensibly, this will benefit cancer research by substantially reducing the cost of care.
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