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Abstract: Study the potential decays of the light–quarks at various incident energies is a method to investigate the meson 

structure and decay width. The formalism of the quark model is extended to be valid for an arbitrary form of the creation 

vertex in the presence of the exact meson wave functions. Based on the non–relativistic quark model, the light quark 

problem is solved. The model is then applied for stable mesons in the final state to be known experimentally. The 

calculated square roots of the decay width based on two different types of potentials (AL2 and AP2) are in good agreement 

with the experimental data. 
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1 Introduction   

 

The quark model [1] compares very well with the light 

quark meson spectrum and meson decays. Certainly, there 

are disagreements, but many of these deviations attributed 

to the natural limitations of the model when compared to 

the inherent complexity of quantum chromodynamics 

(QCD). However, there are some other prefunded degrees 

of disagreements which are presumably point out the 

uncounted features of QCD in the quark model, and may 

indeed point to the fundamental 
degrees

 of freedom needed to 

fully describe hadron structure. This way may lead to 

identify the necessary features which will one day have to 

be met by any purported solution of the full theory. 

Light Mesons are built of light flavors (i.e., u, d and s). The 

constituent masses of these quarks are so similar till the 

limit that they cannot be distinguished based on their quark 

content but must be expected to encounter mixed states of 

all three light flavors. The masses and quantum numbers of 

the various mesons may also be used to make sense of how 

these particles decay. Due to the difficulty of using 

perturbative and non–perturbative QCD in computing the 

hadronic properties, the properties of hadrons are calculated 

based on the models inspired by QCD rather than the full 

theory. Many authors [2–12] successfully applied the 

quark–pair creation (QPC)model to describe the strong 

decays of mesons. A good introduction to the model can be 

found in Refs. [13–15].In this paper,  

 

 

 

Phenomenological in describing ordinary hadrons, more 

specifically quark–antiquark bound states (mesons). 

2 The Quark Model 
 

One of the fruitful applications of the quark model into 

strong decays of hadrons is the well–known QPC model. In 

this model, meson decay occurs when a quark–antiquark 

pair is produced from the vacuum in a state suitable for 

quark rearrangement to occur, as shown in Figure (1). The 

created pair will have the quantum numbers of vacuum, J
PC

 

= 0
++

, where P is the parity and C is the conjugation of 

charge [16]. There is one undetermined parameter γ in the 

model which represents the probability that a quark–

antiquark pair will be created from the vacuum. The rest of 

the model is just the description of the overlap of the initial 

meson (A) and the created pair (sometimes referred to 0) 

with the two final mesons (B, C), and to calculate the 

probability that rearrangement (and hence decay) will occur 

[17]. 
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Fig.1: Two possible diagrams contributing to the meson 

decay (A→ BC) in the QPC model. 

 
The study of hadron decays using this model is concerned 

almost exclusively with numerical predictions, and yet 

leads to any fundamental modifications. Recent studies 

considered the changes in the spatial dependence of pair 

production amplitude as a function of quark coordinates [2, 

18, 19] but the fundamental decay mechanism is usually 

not addressed. In paper [20], a general formulation for any 

decay is investigated. Here, we skip a lot of technical 

details in order to focus more on new aspects that are 

developed. 

2.1 Meson Wave Function 

In a quark model of meson, the wave function describing 

the relative motion of the quark and antiquark is obtained 

by solving the Schrödinger equation with a Hamiltonian 

inspired by QCD [21]. In the non–relativistic 

approximation, the meson wave function is the 

eigenfunction of the Schrödinger equation 

 

 �̂�𝜓 = 𝐸𝜓 , (1) 
where the Hamiltonian of the system is 

 

 �̂� = 𝐾 + 𝑉𝑞�̅�(𝑟) , 
(2) 

 

where𝐾 is the kinetic energy and 𝑉𝑞�̅�(𝑟)is the effective 

potential which contains the effects of a Lorentz–vector 

one–gluon–exchange interaction at short distances and a 

Lorentz scalar linear confining interaction of the model. To 

find the meson wave function, Eq. (2) has to be solved as 

accurately as possible. It is quite easy to solve the 

differential equation resulting from the Schrödinger 

equation. However, the radial part𝑅𝑛𝑙𝑠(𝑟)of the meson 

wave function is calculated numerically on a grid. This 

form is not easily used to study more complicated 

problems. To solve this problem, the regularized part of the 

exact radial wave function must be approximated by a 

linear combination of Gaussian functions 

 

 𝑅𝑛𝑙𝑠(𝑟) ∑ 𝑐𝑖
𝑁
𝑖=1 exp(−𝛼𝑖𝑟

2) ,  
           (3) 

 

This expression is used in the model for meson decays. For 

a given number N of Gaussian functions, the parameters 

𝑐𝑖and 𝛼𝑖are determined by variational procedure on the 

energy state; N=1, which is a rather rough approximation, 

but for N=2 and 3aremassively improve the results [20]. 

2.2 Phase Space 

The phase space is the most important factor to 

calculate the decay width. The most interest part is the 

partial width 
BCA  corresponding to the decay of meson 

A into two mesons B and C. A coupling can be adopted 

based on the angular momentum JBC, total spin of (BC) and 

relative angular momentum l between B and C, 

 
)( l,JBC

,lJ

BCABCA

BC

   , 
(4) 

where the partial width corresponding to quantum numbers 

JBC, lis related to the transition amplitude M through the 

golden rule, 

 
Γ𝐴→𝐵𝐶(𝐽𝐵𝐶 , 𝑙) = 2𝜋 ∫ 𝑑𝑃0𝛿(𝐸𝑖 −

𝐸𝑓)|𝑀𝐴→𝐵𝐶(𝑃0)|2,  
(5) 

Where 𝐸𝑖 and𝐸𝑓are the initial and final energy states for 

mesons (A) and (B and C), respectively. The total width Γ is 

the sum of partial widths ΓA→BC on a given meson–meson 

channel. This quantity is the sum of partial widths with a 

given relative angular momentum 𝑙 and intrinsic spin of the 

final state JBC. 

The result for this integral on P, the relative momentum of 

Band C mesons, depends on which phase space is retained. 

In this paper, it follows the prescription of [18] and the 

formula for decay width in the relativistic expression is 

written as 

 
 

   
  2,2, relBCA

relA

relCrelB

BCBCA PM
Pm

PEPE
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(6) 
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(7) 

Where m is the rest of mass, E is the energy, Prel is the 

relative momentum, and 

  22

relBrelB PmPE   , 

  ,
22

relCrelC PmPE   

The non–relativistic expression for meson energy E = m+ 

( mPnrel 2/
2

) and with this prescription, we have 

  
 

  ,2, 2

nrelBCA

nrelCB

CB
BCBCA PM

Pmm

mm
lJ 


   (8) 

The non–relativistic momentum is given by 
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These expressions are coded into routines in the symbolic 

computation package Mathematica.  
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3 The Potentials Used 

Over the years, several potentials have been used and some 

of these potentials are found with very crucial test as a 

unified description of particle spectra. These potentials have 

been applied on the meson and baryon sectors, and also to 

tetra–quark states [21, 22].The resulted data of all cases are 

encouraging. In this paper, two potentials [23] that yield 

good overall results for the meson spectrum are used in the 

study. The use of different potentials allows us to check the 

sensitivity of our results and the inter–quark interaction. 

The general form of each potential is more or less imposed 

by some basic QCD constraints, but the parameters are 

determined by a fit to a well–chosen sample of light meson 

states. Both potentials rely on a non–relativistic expression 

of the kinetic energy operator, and they need to solve the 

Schrödinger equation using the Numerov algorithm [24–

29]. as well as they take the general form 

 

𝑉𝑞�́�(𝑟) = −
𝑘(1−exp(−

𝑟
𝑟𝑐

))

𝑟
 + 𝜆𝑟𝑝−Ʌ + (

2 𝜋�́�

3 𝑚𝑞𝑚�́�
(1 −

exp (−
𝑟

𝑟𝑐
))

exp(−
𝑟2

𝑟0
2)

𝜋
3

2⁄ 𝑟0
3

) 𝜎𝑞⃗⃗⃗⃗⃗𝜎�́�⃗⃗⃗⃗⃗ , 

(10) 

Where𝜎𝑞⃗⃗⃗⃗⃗, 𝜎�́�⃗⃗⃗⃗⃗, are the Pauli matrices. One characteristic of 

these potentials is that the range r0of the hyperfine term is 

mass dependence through the relation. 

 
𝑟0(𝑚𝑞𝑚�́�) =

𝑎 (
2𝑚𝑞𝑚�́�

𝑚𝑞+𝑚�́�
)

−𝑏

,  
(11) 

The letter A means "for All mesons". The letter L or P 

denotes as the Linear or the 2/3–Power confinement, 

respectively; the number 2indicatesthat the parameter rc is 

not equal to zero [23]. 

4 Results and Discussion 

The theoretical square roots of the decay width for some 

light mesons are calculated based on two types of potentials 

as explained on the above context. The obtained results are 

compared to new published experimental data [30]. These 

new results are fitted by using the experimental spectra to 

give the most suitable decay widths with experiments. The 

𝑥2 relation is used to easily compare among the results 

obtained by using potentials AL2 and AP2, and this relation 

is defined as 

 𝑥2 =
1

𝑛
∑(Γ½

𝑘
𝑡ℎ𝑒𝑜.

− Γ½
𝑘
𝐸𝑥𝑝.

)2

𝑛

𝑘=1

, (12) 

In this formula, the summation runs over a selected sample 

of n mesons in the group. The value Γ½
𝑘
𝐸𝑥𝑝.

is the 

experimental square root of the decay width for meson 

labeled k in the sample, while𝛤½
𝑘
𝑡ℎ𝑒𝑜.

 is the corresponding 

theoretical square root of the decay width depending on the 

free parameters. The formalism must be developed to study 

the influence of the creation vertex 𝛾(𝑝) for the description 

of the transition. This study is carried out using two 

different forms depending on several parameters 

 𝛾(𝑝) = A  , (13) 
Most authors have used a constant expression in Eq. (13) 

[20] essentially for simplicity and because of the results are 

corrected therefore the expression 

 𝛾(𝑝) = 𝐴𝐵𝑒−𝐶𝑝2
. (14) 

In fact, one aim of this paper is to explore the gain obtained 

in the framework of Eq. (14) compared to the traditional 

Eq. (13) via two different potential wave functions. Only 

one parameter A appears in Eq. (13), while, there are three 

parameters A, B and C in case of Gaussian vertex as shown 

in Eq. (14). The parameters of nn
-
 vertex (in the following n 

denotes generically a member of the isospin doublet u or d) 

are obtained by fitting the first seven transitions in Table I, 

while the parameters of ss
- 
vertex are obtained by fitting the 

next three transitions in Table 1.Since predominating the 

transitions related to either nn
- 
or ss

-
 creations, and the fit is 

conducted over the square of the amplitude, the sign of the 

vertex is irrelevant. Several criteria are used the expression 

(14) and some selected transitions are listed in Table 1.

  

Table 1: Transitions used to determine the parameters of 

𝛾(𝑝) 
 
 

Transition 

𝑓2(1270) →  𝜋 𝜋 

𝑓2̅(1525) → 𝑘 �̅� 

𝜑 → 𝑘 �̅� 
𝑘2

∗(1425) → 𝑘 𝜋 
𝑘2

∗(1425) → 𝑘 𝜌 
𝑘2

∗(1425) → 𝑘∗(892) 𝜋 

𝑘∗(892) →  𝑘 𝜋 
𝑎2 →  𝑘 𝑘 

𝑓2(1270) →  𝑘�̅� 
f4(2050) →  kk̅ 

 

In case of a Gaussian vertex Eq. (14), to determine the 

parameters As, Bs and Cs describing ss
-
 creation, we have 

to fit on 3 transitions. In order to determine the parameters 

An, Bn and Cn describing nn
-
 creation, we conducted the fit 

on five transitions. In practice, in order to keep some 

consistencies for the whole set of results, the 

form𝑘2
∗(1425) → 𝑘𝜌 and 𝑘2

∗(1425) → 𝑘∗(892)𝜋, is 

removed from the set of seven transitions being considered 

because they contain a broad meson in the final state. In 

general, we call a broad meson as a meson with width 

larger than 50 MeV. 

For the sake of calculations, the experimental masses of 

mesons are considered. To avoid giving too much 

importance to the well measured transitions, the weight 

used in 𝑥2 is considered. To avoid too large dispersion of 

the results, the square roots of the width corresponding to 

the given transitions are measured. It is more convenient to 

produce 𝑥2based on Γ
½ 

to conform more closely to the 

http://www.naturalspublishing.com/Journals.asp
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experimental platform. It also gives the absolute chi–square 

(𝑥2) and the chi– square per degree of freedom (𝑥2/d.o.f.). 

In Tables 2 and 3, the results are gathered based on AL2 

and AP2 potentials by using relativistic and non–relativistic 

phase space for both constant and Gaussian vertices when 

mesons appear in the final state with small width. Figures 2 

and 3, illustrate a comparison between experimental data 

and calculations based on the relativistic phase space. Same 

comparison is shown in Figures 4 and 5 for the non- 

relativistic phase space. 

 
 

Fig.2: Theoretical square root of decay width for constant 

function versus the experimental data using relativistic phase 

space. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig.3: Theoretical square root of decay width for   Gaussian 

vertex function versus the experimental data using relativistic 

phase space. 
 

Differences between AL2 and AP2 potentials are more 

pronounced. AL2 is slightly better on average when using 

relativistic phase space and using Gaussian vertex function, 

whilefor non-relativistic phase space and Gaussian vertex 

function, AP2 is better on average. Finally, one can allege 

that the results with relativistic phase space are better than 

the results using non-relativistic phase space, and this is 

acceptable for the small particles. 
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Table 2: Calculated square root of decay width of stable mesons in the final state for constant and Gaussian vertex functions. The 

AL2, AP2 potentials and relativistic phase space are used. The last column contains the experimental square root of the width. 

 

 
              Decay 

 

                                                 Γ
½
 [MeV]                                        Exp.                                                   

 𝛾 = A 𝛾 = 𝐴 + 𝐵 𝑒−𝐶𝑝2
  

  AL2  AP2  AL2   AP2 
𝑘∗(892) →  𝑘 𝜋 2.77 2.59 6.64 5.69 6.88 

𝑘2
∗(1425) → 𝑘 𝜋 10.03 6.77 8.81 7.93 7.01 

𝜑(1020) → 𝑘 �̅� 0.47 0.59 2.08 3.16 1.44 

𝑓2(1270) →  𝜋 𝜋 11.59 14.71 11.23 11.67 12.53 

𝑓2̅(1525) → 𝑘 �̅� 7.07 5.41 7.94 8.52 8.05 

𝑎2(1320) →  𝑘 𝑘 2.92 2.98 2.30 2.29 2.29 

𝑓2(1270) → 𝑘�̅� 

𝑓4(2050) → 𝑘�̅� 

0.94 
1.63 

1.71 
2.32 

2.93 
1.26 

2.92 
1.26 

2.92 
1.27 

 𝜌3(1690) → 𝑘 𝑘 

𝑘2
∗(1425) → 𝑘 𝜌 

 𝑘2
∗(1425) → 𝑘∗𝜋 

𝑘∗(1680) →  k π 

𝑘0
∗(1430) →  k π 

𝑘3
∗(1780) → k π 

𝑘1(1270) → 𝑘 𝜌 
𝑘1(1400) → 𝑘 𝜌 

π2(1670) → ρ π 

 π2(1670) → ρπ 

𝑘∗(1680) →  k ρ 

𝑘∗(1680) →  𝑘∗π 
k1(1270) → 𝑘∗π 

k1(1400) → 𝑘∗π 

π2(1670) → k  𝑘∗ 

𝑘3
∗(1780) → k ρ 

𝑘3
∗(1780) → 𝑘∗ π 

χ
2
 

χ
2
/d.o.f. 

1.37 
1.21 
4.70 
6.98 
13.64 
5.66 
4.81 
5.43 
6.99 
8.23 
8.69 
6.75 
4.28 
12.11 
5.36 
6.41 
5.89 
33.12 
5.52 

2.69 
0.40 
2.11 
6.76 
12.45 
5.12 
4.23 
6.76 
6.14 
7.62 
7.89 
6.37 
5.09 
11.27 
6.10 
5.91 
5.02 
45.22 
7.54 

0.713 
- 
- 
9.68 
14.16 
5.43 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
5.41 
1.35 

0.22 
- 
- 
8.74 
13.42 
4.99 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
6.19 
1.55 

1.59 
2.93 
4.93 
11.16 
16.34 
5.47 
6.15 
2.28 
7.02 
8.94 
10.06 
9.81 
3.80 
12.79 
3.29 
7.02 
5.64 
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Fig.4: Theoretical square root of decay width for constant 

function versus the experimental data using non-relativistic 

phase space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig.5: Theoretical square root of decay width for Gaussian 

vertex function versus the experimental data using non-

relativistic phase space. 
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Table 3: Theoretical square root of the decay width of stable mesons in the final state for constant and Gaussian 

vertex functions; The AL2, AP2 potentials and non–relativistic phase space are used. The last column contains the 

experimental square root of the decay width. 

 

              Decay 

  

               Γ
½
 [MeV]                                       Exp. 

 𝛾 = A 𝛾 = 𝐴 + 𝐵 𝑒−𝐶𝑝2
  

 

AL2 AP2 AL2 AP2  

𝑘∗(892) →  𝑘 𝜋 4.31 5.35 3.13 6.58 6.88 

𝑘2
∗(1425) → 𝑘 𝜋 6.44 5.77 6.00 7.95 7.01 

𝜑 (1020) → 𝑘 �̅� 1.29 2.21 1.62 3.07 1.44 

𝑓2(1270) →  𝜋 𝜋 4.71 7.88 7.02 13.73 12.53 

𝑓2̅(1525) → 𝑘 �̅� 12.50 12.67 5.95 10.65 8.05 

𝑎2(1320) →  𝑘 𝑘 2.93 3.23 3.35 1.52 2.29 

𝑓2(1270) → 𝑘�̅� 

𝑓4(2050) → 𝑘�̅� 

 𝜌3(1690) → 𝑘 𝑘 

𝑘2
∗(1425) → 𝑘 𝜌 

 𝑘2
∗(1425) → 𝑘∗𝜋 

𝑘∗(1680) →  𝑘 𝜋 

𝑘0
∗(1430) →  𝑘 𝜋 

𝑘3
∗(1780) → 𝑘 𝜋 

0.98 

2.94 

1.88 

2.07 

4.39 

3.89 

8.04 

5.24 

2.29 

4.35 

4.24 

1.29 

2.43 

8.21 

3.23 

2.17 

1.19 

3.04 

1.65 

- 

- 

9.30 

8.65 

4.13 

1.92 

0.21 

2.79 

- 

- 

10.41 

12.95 

4.78 

2.92 

1.27 

1.59 

2.93 

4.93 

11.16 

16.34 

5.47 

𝑘1(1270) → 𝑘 𝜌 

𝑘1(1400) → 𝑘 𝜌 

𝑘3
∗(1780) → 𝑘 𝜌 

𝜋2(1670) → 𝜌 𝜋 

𝑘∗(1680) →  𝑘 𝜌 

𝑘∗(1680) →  𝑘∗𝜋 

𝑘1(1270) → 𝑘∗ 𝜋 

𝑘1(1400) → 𝑘∗𝜋 

𝜋2(1670) → 𝑘  𝑘∗ 

𝑘3
∗(1780) → 𝑘 𝜌 

𝑘3
∗(1780) → 𝑘∗ 𝜋 

𝑥2 

 

𝑥2/d.o.f. 

2.22 

4.51 

8.12 

5.32 

10.3 

2.32 

1.65 

5.23 

5.99 

4.26 

6.57 

 

88.87 

14.81 

4.47 

3.58 

3.28 

2.85 

4.15 

8.71 

6.61 

6.81 

2.94 

6.30 

3.70 

 

56.36 

9.39 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

10.08 

2.52 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

2.88 

0.72 

6.15 

2.28 

7.02 

8.94 

10.06 

9.81 

3.80 

12.79 

3.29 

7.02 

5.64 
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5 Conclusions 

Predictive power of theory requires good models and 

accurate calculation methods. It is desirable for theorist to 

make predictive suggestion to experiments in quicker 

developing fields. In this work, the most sophisticated 

calculations in the framework of QPC model are presented. 

The meson wave functions are calculated by using the non–

relativistic potential. Although it is computed by using 

Numerov's algorithm, which is very precise, we have done 

a fit to express them as a sum of Gaussian functions. In this 

paper, both potentials (AL2 and AP2) are considered. In 

general, a good agreement between the predicted and 

experimental data is found. Both potentials reproduce decay 

width with comparable quality. Finally, it worth concluding 

that the most important ingredient of the QPC mechanism 

relies on suitable description of the vertex. However, the 

QPC model with a dynamical vertex 𝛾(𝑝)is very suitable 

for the study of strong transitions. 
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