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Abstract: In this paper, the conformable time-fractional derivative of order α ∈ (0,1] is considered, instead of the classical time

derivative for α = 1, in view of the Lax-pair operator that leads to a fractional nonlinear evolution system of

four-wave-interaction-equations (4-WIEs). The resulted system is then solved by an ansatz contains tan and secant hyperbolic

functions with complex coefficients. A systematic steps are introduced to obtain a general form of exact soliton solutions for the

resulted system in (1+1) one spatial and one temporal dimensions. We showed that the obtained solutions could be modified to

represent solutions of a similar system but in (2+1) two spatial and one temporal dimensions too. In fact, our suggested ansatz can be

used to obtain exact soliton solutions for fractional N-wave-interaction-equations (N-WIEs) in one or more spatial dimensions for N

greater than or equal to four. Eventually, some numerical examples are stated with 3D graphs to give a better understanding of the

behavior of the soliton waves while the interaction is turned on.

Keywords: Conformable derivative, Lax-pair operator, four wave interaction equation, soliton solution, ansatz method.

1 Introduction

The system of 4-WIEs is a mathematical model for many physical phenomena, including the surface gravity waves [1], the
freak waves which are waves with small depth [2], the four wave mixing phenomenon, which occurs when two or more
light waves or laser beams interact to produce a new signal wave with specific length and frequency, where the interaction
takes place in some physical medium, such as the optical fiber medium [3,4,5], and the study of some processes in
nonlinear optics such as: (i) Raman scattering process which is used to produce new frequencies by interacting laser
intense light with some material [6], (ii) Raman induced Kerr effect spectroscopy process which is used to stimulate the
molecular vibrations [7], and (iii) the process of generating new solitons by interacting four optics waves, which has many
applications such as super continuum generation [8]. Many more fields of applications for the 4-WIEs could be found
with their references in literature as in [9].

The definition of conformable derivative together with its properties and many proved theorems were introduced in the
past decades, the motivation of constructing this definition was to find some physical applications of it [10,11,12,13,14,
15]. In fact, the conformable derivative concept was introduced after many concepts of fractional derivative appeared, such
as the fractional derivative definitions introduced by Caputo, Riemann-Liouville, Caputo-Fabrizio, Atangana-Baleanu, and
Grunwald-Letnikov. More definitions of fractional derivatives together with their properties and useful applications could
be found in [16,17,18,19,20,21,22,23,24,25].

The present paper is considered as a new application on the conformable derivative concept. This application is the
system of conformable 4-WIEs, in which the order of the time derivative is α ∈ (0,1]. Anyhow, there are many ways used
to derive the mathematical model which represents the system of 4-WIEs for α = 1, each way starts from some point
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of view. For example, the model is derived in [26], when Zakharov and Shabat tried to generalize the Inverse Scattering
Transform (IST) method. The model is also derived in [27], when Sung and Fokas tried to look for the solvability of a
partial differential equation represents the time-independent part of the Lax pair. The model is also derived in [28], when
Gerdjikov et. al. classified the problems related to a simple Lie algebra and solved by the generalized IST method. The
Lax-pair is a set of two operators constructed carefully by satisfying some conditions, and when used, they lead to one or
more equations, called nonlinear evolution equations, including the famous KDV equation [29], the sine Gorden equation
[30], and the N-wave interaction equations for N ≥ 2 [28]. The resulted nonlinear evolution equations are then solved by
many methods as we will see soon.

The rest of the present paper is as follows: In Section 1, we state the basic definition and some needed properties
of the conformable derivative. Also, we state the problem of the present paper, which is the conformable time-fractional
derivative of the 4-WIEs in (1+1) and (2+1) dimensions. In Section 2, we state the methodology used to solve the problem
of the present paper in addition to the obtained sets of solutions. In Section 3, we state the results of the used method,
which show the benefits of the used method in obtaining exact solutions, then we discuss some of these results through
examples together with their 3D graphs. Eventually, the conclusions are provided in Section 4.

2 Conformable derivative

In the present paper, we state the definition of conformable derivative of order α ∈ (0,1] for a given function f (x),
together with some needed properties. See [31,32,33,34,35,36] for more discussion and applications of fractional
calculus.

Definition 1: [37] If f (x) : R+ −→ R is a given function, then the conformable derivative of order α ∈ (0,1] denoted by
Dα

x f (x) is given by the following limit:

Dα
x f (x) = Lim

ε−→0

f
(

x+ ε x1−α
)

− f (x)

ε
. (1)

The conformable derivative has the following properties:
(I) Dα

x (xn) = nxn−α ,∀n ∈ R.

(II) Dα
x (( f ◦ g)(x)) = x1−αg′(x) f ′(g(x)). where f ′(x) and g′(x) are the classical first derivative of f (x) and g(x).

(III) If we put g(x) = x, then by I and II we get the relation: Dα
x ( f (x)) = x1−α f ′(x).

2.1 Conformable 4-WIEs in 1+1 dimensions

In the present section, we considered a simple generalization of the well known nonlinear evolution system of four
partial differential equations whose solution represents the wave packets of four waves moving separately in the same
direction with different velocities, where the nonlinear interaction between them takes place at t = 0 at some interval of
the axis of motion called the interaction zone. The generalization comes from considering the conformable time
derivative of order α ∈ (0,1] instead of α = 1. The inputs of the model are [30]:
1- The numbers {a j,b j : j = 1,2} ∈ R+, chosen such that a1 > a2,b1 > b2.

2- The functions {Q j(x, t) : j = 1,2,3,4}, called the potential functions and represent the complex packets of the
interacting waves.
3- The matrices Q(x, t), A, and B, represented as follows:

Q(x, t) =











0 Q1(x, t) Q2(x, t) Q3(x, t) 0
Q∗

1(x, t) 0 Q4(x, t) 0 Q3(x, t)
Q∗

2(x, t) Q∗
4(x, t) 0 Q4(x, t) −Q2(x, t)

Q∗
3(x, t) 0 Q∗

4(x, t) 0 Q1(x, t)
0 Q∗

3(x, t) −Q∗
2(x, t) Q∗

1(x, t) 0











, (2)

where * is for complex conjugate,

A =











a1 0 0 0 0
0 a2 0 0 0
0 0 0 0 0
0 0 0 −a2 0
0 0 0 0 −a1











, B =











b1 0 0 0 0
0 b2 0 0 0
0 0 0 0 0
0 0 0 −b2 0
0 0 0 0 −b1











. (3)
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4- The Lax-pair operator defined by:

I [A,Dα
t Q(x, t)]− I [B,∂xQ(x, t)]− [ [A,Q(x, t)], [B,Q(x, t)] ] = 0, (4)

where I=
√
−1, and [X ,Y ] = X Y −Y X .

The result is a 5×5 matrix, with the property that it equals the transpose of its complex conjugate, and whose elements
are the following equations called conformable 4-WIEs:

I (a1 − a2) Dα
t Q1(x, t)− I (b1 − b2) ∂xQ1(x, t)− k Q2(x, t) Q∗

4(x, t) = 0,

I a1 Dα
t Q2(x, t)− I b1 ∂xQ2(x, t)− k (Q1(x, t) Q4(x, t)−Q3(x, t) Q∗

4(x, t)) = 0,

I (a1 + a2) Dα
t Q3(x, t)− I (b1 + b2) ∂xQ3(x, t)− k Q2(x, t) Q4(x, t) = 0,

I a2 Dα
t Q4(x, t)− I b2 ∂xQ4(x, t)+ k (Q3(x, t) Q∗

2(x, t)+Q2(x, t) Q∗
1(x, t)) = 0,

(5)

where k = a1b2 − a2b1.

3 Conformable 4-WIEs in (2+1) dimensions

The inputs which lead to the system in (5) can be modified to include the (2+1) dimensions (x,y, t) instead of the (1+1)
dimensions (x, t) [30]. After inserting the conformable derivative Dα

t , for α ∈ (0,1] instead of the classical first time
derivative, and following a similar derivation used to obtain the system in (5), we get the following conformable 4-WIEs
in (2+1) dimensions:

2Dα
t Q1(x,y, t)− ( a1−a2

b1−b2
)∂xQ1(x,y, t)− ( a1−a2

c1−c2
)∂yQ1(x,y, t)+ I k1Q2(x,y, t)Q

∗
4(x,y, t) := 0,

2Dα
t Q2(x,y, t)− ( a1

b1
)∂xQ2(x,y, t)− ( a1

c1
)∂yQ2(x,y, t)− I k2(Q1(x,y, t)Q4(x,y, t)−Q3(x,y, t)Q

∗
4(x,y, t)) = 0,

2Dα
t Q3(x,y, t)− ( a1+a2

b1+b2
)∂xQ3(x,y, t)− ( a1+a2

c1−c2
)∂yQ3(x,y, t)− I k3Q2(x,y, t)Q4(x,y, t) = 0,

2Dα
t Q4(x,y, t)− ( a2

b2
)∂xQ4(x,y, t)− ( a2

c2
)∂yQ4(x,y, t)+ I k4(Q3(x,y, t)Q

∗
2(x,y, t)+Q2(x,y, t)Q

∗
1(x,y, t)) = 0,

(6)

where the inputs of the model are {a j,b j,c j : j = 1,2} ⊂ R+, chosen so that a1 > a2,b1 > b2,c1 > c2, and the potential
functions {Qr(x,y, t) : r = 1,2,3,4}which are the complex wave packets of the interacting waves, where {kr,r = 1,2,3,4}
are given by

k1 =
a1b2−a2b1

b1−b2
+ a1c2−a2c1

c1−c2
, k2 =

a1b2−a2b1
b1

+ a1c2−a2c1
c1

,

k3 =
a1b2−a2b1

b1+b2
+ a1c2−a2c1

c1+c2
, k4 =

a1b2−a2b1
b2

+ a1c2−a2c1
c2

.

(7)

4 Methodology of ansatz method

There are many numerical and exact methods used to get solutions for the models in Equations (5) and (6) at α = 1. The
numerical methods are usually used to get a better understanding of the behaviour of the interacting waves under some
restrictions and circumstances, for example, some of these numerical methods are: The shooting method [38], and the finite
element method [39]. Even the numerical methods give a good point of view, unfortunately, many of them didn’t give
the whole picture of what is going on inside the interaction zone, and didn’t answer many important questions concerned
with the physical applications. Parallel to the numerical methods, researchers used the exact methods, which lead to one
or more soliton solutions, for example, some of these exact methods are the inverse scattering transform method [40], the
Darboux dressing method [41], and the Generalized Darboux-Manakov-Zakharov (GDMZ) method [42].

Herein, we will use the ansatz method by suggesting a form of the solutions consisting of tan and secant hyperbolic
functions with complex coefficients, then plugging this form in Equations (5) and (6), then trying to find these coefficients.
The proposed method proved its efficiency in solving the current nonlinear systems of partial differential equations as well
as it did in solving the system of three wave interaction equations [43,44].
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The ansatz method is simple and direct, to solve the system in (5), we start by introducing the variable ζ defined by
the following equation:

ζ (x, t) = m1x−λ tα

α , (8)

where m1,λ are constants yet to be found. Consequently, based on equation (8), we have

Dα
t Q j(x, t) =−λ Q

′
j(ζ ), ∂x Q j(x, t) = m1Q

′
j(ζ ), j = 1,2,3,4. (9)

Now, if we substitute equation (9) in Equation (5), then we get the following system

Q′
1(ζ )− Iδ1 Q2(ζ )Q

∗
4(ζ ) = 0,

Q′
2(ζ )− Iδ2 (Q1(ζ )Q4(ζ )−Q3(ζ )Q

∗
4(ζ )) = 0,

Q′
3(ζ )− Iδ3 Q2(ζ )Q4(ζ ) = 0,

Q′
4(ζ )+ Iδ4 (Q3(ζ )Q

∗
2(ζ )+Q2(ζ )Q

∗
1(ζ )) = 0,

(10)

where δi are given by

δ1 =
k

λ (a1−a2)+m1(b1−b2)
, δ2 =

k
λ a1+m1b1

,

δ3 =
k

λ (a1+a2)+m1(b1+b2)
, δ4 =

k
λ a2+m1b2

.

(11)

From Equation (11), δ2 and δ4 can be written in terms of δ1 and δ3 as follows

δ2 =
2δ1δ3
δ1+δ3

, δ4 =
2δ1δ3
δ1−δ3

, (12)

Furthermore, m1 and λ using equation (11) can be given in terms of δ1 and δ3 as follows

λ = 1
2
( b1+b2

δ1
+ b2−b1

δ3
), m1 =

1
2
(− a1+a2

δ1
+ a1−a2

δ3
), (13)

where δ1 and δ3 must satisfy the condition δ1 6= δ3 6= 0.

While to solve the system in (6), the variable ζ defined in Equation (8) now becomes as follows:

ζ (x,y, t) = m1x+m2y−λ tα

α , (14)

where m1,m2,λ are constants yet to be found, and α is the order of the fractional derivative, hence, the derivatives in
Equation (6) become:

Dα
t Q j(x,y, t) = −λ Q j

′ (ζ ), Dα
x Q j(x,y, t) = m1 Q j

′ (ζ ),

Dα
y Q j(x,y, t) = m2 Q j

′ (ζ ), j = 1,2,3,4.
(15)

If we substitute Equation (15) into Equation (6), then we obtain the following system:

Q1
′ (ζ )− I ∆1 Q2(ζ )Q

∗
4(ζ ) = 0,

Q2
′ (ζ )− I ∆2 (Q1(ζ )Q4(ζ )−Q3(ζ )Q

∗
4(ζ )) = 0,

Q3
′ (ζ )− I ∆3 Q2(ζ )Q4(ζ ) = 0,

Q4
′ (ζ )+ I ∆4 (Q3(ζ )Q

∗
2(ζ )+Q2(ζ )Q

∗
1(ζ )) = 0,

(16)

where ∆i are given by

∆1 =
k1

(2λ+m1(
a1−a2
b1−b2

)+m2(
a1−a2
c1−c2

))
, ∆2 =

−k2

(2λ+m1(
a1
b1

)+m2(
a1
c1

))
,

∆3 =
−k3

(2λ+m1(
a1+a2
b1+b2

)+m2(
a1+a2
c1−c2

))
, ∆4 =

−k4

(2λ+m1(
a2
b2

)+m2(
a2
c2

))
.

(17)
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The system in (16) is the same as the system in (10), except that δi become ∆i, and with small modification in the
definition of ζ . This shows that the two systems in (10) and (16) have the same solutions, but the solutions of the first
system will be in (1+1) dimensions, while the solutions of the second system will be in (2+1) dimensions.

The next step is to suggest a formula for the solutions Qr(ζ ), r = 1,2,3,4, suppose Qr(ζ ) have the form:

Q1(ζ ) = A0 +A1 tanh(ζ )+A2 sech(ζ ), Q2(ζ ) = B0 +B1 tanh(ζ )+B2 sech(ζ ),

Q3(ζ ) = C0 +C1 tanh(ζ )+C2 sech(ζ ), Q4(ζ ) = D0 +D1 tanh(ζ )+D2 sech(ζ ),
(18)

where {A j,B j ,C j,D j : j = 0,1,2} are unknown complex constants yet to be found. If we substitute Equation (18) into

Equation (10), and use the identity tanhn(ζ ) = tanhn−2(ζ )(1− sech2(ζ )), then each single equation of the system in (10)

becomes a combination of some coefficients multiplied by the functions 1, tanh(ζ ), sech(ζ ), sech(ζ ) tanh(ζ ), sech2(ζ ).
Anyhow, if we put the coefficients of these functions respectively equal to zero, then we get:

The coefficients of the first equation of the system in (10):

Iδ1(B0D
∗
0 +B1D

∗
1) = 0, Iδ1(B1D

∗
0 +B0D

∗
1) = 0,

Iδ1(B2D
∗
0 +B0D

∗
2) = 0, A2 + Iδ1(B2D

∗
1 +B1D

∗
2) = 0,

A1 + Iδ1(B1D
∗
1 −B2D

∗
2) = 0.

(19)

The coefficients of the second equation of the system in (10):

Iδ2(A0D0 +A1D1 −C0D
∗
0 −C1D

∗
1) = 0, Iδ2(A1D0 +A0D1 −C1D

∗
0 −C0D

∗
1) = 0,

Iδ2(A2D0 +A0D2 −C2D
∗
0 −C0D

∗
2) = 0, B2 + Iδ2(A2D1 +A1D2 −C2D

∗
1 −C1D

∗
2) = 0,

B1 + Iδ2(A1D1 −A2D2 −C1D
∗
1 +C2D

∗
2) = 0.

(20)

The coefficients of the third equation of the system in (10):

Iδ3(B0D0 +B1D1) = 0, Iδ3(B1D0 +B0D1) = 0,

Iδ3(B2D0 +B0D2) = 0, C2 + Iδ3(B2D1 +B1D2) = 0,

C1 + Iδ3(B1D1 −B2D2) = 0.

(21)

The coefficients of the fourth equation of the system in (10):

Iδ4(B0A
∗
0 +B1A

∗
1 +C0B

∗
0 +C1B

∗
1) = 0, Iδ4(B1A

∗
0 +B0A

∗
1 +C1B

∗
0 +C0B

∗
1) = 0,

Iδ4(B2A
∗
0 +B0A

∗
2 +C2B

∗
0 +C0B

∗
2) = 0, D2 − Iδ4(B2A

∗
1 +B1A

∗
2 +C2B

∗
1 +C1B

∗
2) = 0,

D1 − Iδ4(B1A
∗
1 −B2A

∗
2 +C1B

∗
1 −C2B

∗
2) = 0.

(22)

Herein, Equations (19 ) to (22) are 20 dependent nonlinear algebraic equations with 14 unknowns, namely
{δ1, δ3 ,A j, B j, C j, D j : j = 0,1,2}, where δ2, δ4, λ , m1 are related with δ1 and δ3 by Equations (12) and (13).

5 Sets of solutions

Our aim is to look for the general solution of Equations (19) - (22), then plug the founded values of the unknowns in
Equation (18), and use Equation (8) to get the general form of the system in (10). Before we write the steps of
constructing a solution for Equations (19) - (22), we need to prove the following claim, which means that the formula of
the obtained solutions are valid as we will see.

Claim:Claim:Claim: If we choose
(1){a1,a2,b1,b2} ∈R+ such that a1 > a2, b1 > b2, and k = b2a1 − a2b1 > 0,

(2){λ ,m1} ∈ R such that λ < 0 and m1 >
−λ a1

b1
,
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then the δ j defined in Equation (11) satisfy the following conditions:
(i) {δ j : j = 1,2,3,4} ⊂ R+,

(ii) δ1 − δ3 > 0.

Proof:Proof:Proof: (i) Since k = b2a1 − a2b1 > 0, we have
a2
b2

<
a1
b1

, so
−λ a2

b2
<

−λ a1
b1

< m1, which means δ2 = k
λ a1+m1b1

> 0,

δ4 =
k

λ a2+m1b2
> 0, δ3 =

k
m1(b1+b2)+λ (a1+a2)

> 0.

(ii) by (i) (λ a2 +m1b2)> 0, and (λ a1 +m1b1) > 0, so (λ a1 +m1 b1)+ (λ a2 +m1b2)> (λ a1 +m1b1)− (λ a2 +m1b2).

Thus k
m1(b1+b2)+λ (a1+a2)

<
k

m1(b1−b2)+λ (a1−a2)
, and then 0 < δ3 < δ1.

Solution set (1): To get a solution for the algebraic system in Equations (19)-(22), we do the following steps:
(i) choose {a1,a2,b1,b2,k,λ ,m1} as in the above claim.
(ii) Put

ζ (x, t) = m1x−λ tα

α , α ∈ (0,1],

Q1(ζ ) = (a10 + I a20)+
δ1

(δ1−δ3)
√

δ2 δ4

(a11 + I a21) tanh(ζ ),

Q2(ζ ) =
1√

(δ1−δ3) δ4

(b12 + I b22) sech(ζ ),

Q3(ζ ) = (c10 + I c20)+
δ3

(δ1−δ3)
√

δ2 δ4

(c11 + I c21) tanh(ζ ),

Q4(ζ ) =
1√

(δ1−δ3) δ2

(d12 + I d22) sech(ζ ).

(23)

(iii) Consider a10 ∈ R, b12,d12 ∈ [−1,1] such that b12 6=±d12 6= 0, and {a20,a11,a21,b22,c10,c20,c11,c21,d22} equal one
of the following sets in Equations (24)-(27):

a20 =− a10(b12

√
1−b2

12+d12

√
1−d2

12)

b2
12−d2

12

, a11 =
√

1− b2
12d12 − b12

√

1− d2
12,

a21 = b12d12 +
√

1− b2
12

√

1− d2
12, b22 =−

√

1− b2
12, c10 =− a10(

√
1−b2

12d12+b12

√
1−d2

12)

−
√

1−b2
12d12+b12

√
1−d2

12

,

c20 =
a10(−b12d12+

√
1−b2

12

√
1−d2

12)

−
√

1−b2
12d12+b12

√
1−d2

12

, c11 =
√

1− b2
12d12 + b12

√

1− d2
12,

c21 = b12d12 −
√

1− b2
12

√

1− d2
12, d22 =−

√

1− d2
12

(24)

a20 =
a10(b12

√
1−b2

12−d12

√
1−d2

12)

b2
12−d2

12

, a11 =−
√

1− b2
12d12 − b12

√

1− d2
12,

a21 = b12d12 −
√

1− b2
12

√

1− d2
12, b22 =

√

1− b2
12, c10 =

a10(
√

1−b2
12d12−b12

√
1−d2

12)√
1−b2

12d12+b12

√
1−d2

12

,

c20 =− a10(b12d12+
√

1−b2
12

√
1−d2

12)√
1−b2

12d12+b12

√
1−d2

12

, c11 =−
√

1− b2
12d12 + b12

√

1− d2
12,

c21 = b12d12 +
√

1− b2
12

√

1− d2
12, d22 =−

√

1− d2
12,

(25)

c© 2022 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 8, No. 4, 459-473 (2022) / www.naturalspublishing.com/Journals.asp 465

a20 =
a10(−b12

√
1−b2

12+d12

√
1−d2

12)

b2
12−d2

12

, a11 =
√

1− b2
12d12 + b12

√

1− d2
12,

a21 = b12d12 −
√

1− b2
12

√

1− d2
12, b22 =−

√

1− b2
12, c10 =

a10(
√

1−b2
12d12−b12

√
1−d2

12)√
1−b2

12d12+b12

√
1−d2

12

,

c20 =
a10(b12d12+

√
1−b2

12

√
1−d2

12)√
1−b2

12d12+b12

√
1−d2

12

, c11 =
√

1− b2
12d12 − b12

√

1− d2
12,

c21 = b12d12 +
√

1− b2
12

√

1− d2
12, d22 =

√

1− d2
12

(26)

a20 =
a10(b12

√
1−b2

12+d12

√
1−d2

12)

b2
12−d2

12

, a11 =−
√

1− b2
12d12 + b12

√

1− d2
12,

a21 = b12d12 +
√

1− b2
12

√

1− d2
12, b22 =

√

1− b2
12, c10 =− a10(

√
1−b2

12d12+b12

√
1−d2

12)

−
√

1−b2
12d12+b12

√
1−d2

12

,

c20 =
a10(b12d12−

√
1−b2

12

√
1−d2

12)

−
√

1−b2
12d12+b12

√
1−d2

12

, c11 =−
√

1− b2
12d12 − b12

√

1− d2
12,

c21 = b12d12 −
√

1− b2
12

√

1− d2
12, d22 =

√

1− d2
12.

(27)

Solution set (2): To get another solution for the algebraic system in Equations (19)-(22), we do the following steps:
(i) Do steps (i) and (ii) of solution set (1).
(ii) Consider a10 ∈ R,b12 ∈ [−1,1] such that b12 6= 0, and
{a20,a11,a21,b22,c10,c20,c11,c21,d12,d22} equal one of the following sets in Equations (28)-(31):

a20 =− a10

√
1−b2

12
b12

, a11 =−b12, a21 =
√

1− b2
12, b22 =−

√

1− b2
12,

c10 =−a10, c20 =
a10

√
1−b2

12
b12

, c11 = b12, c21 =−
√

1− b2
12, d12 = 0,d22 =−1,

(28)

a20 =
a10

√
1−b2

12
b12

, a11 =−b12, a21 =−
√

1− b2
12,

b22 =
√

1− b2
12, c10 =−a10, c20 =− a10

√
1−b2

12
b12

,

c11 = b12, c21 =
√

1− b2
12, d12 = 0, d22 =−1,

(29)

a20 =− a10

√
1−b2

12
b12

, a11 = b12, a21 =−
√

1− b2
12,

b22 =−
√

1− b2
12, c10 =−a10, c20 =

a10

√
1−b2

12
b12

,

c11 =−b12, c21 =
√

1− b2
12, d12 = 0, d22 = 1,

(30)
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a20 =
a10

√
1−b2

12
b12

, a11 = b12, a21 =
√

1− b2
12,

b22 =
√

1− b2
12, c10 =−a10, c20 =− a10

√
1−b2

12
b12

,

c11 =−b12, c21 =−
√

1− b2
12, d12 = 0, d22 = 1.

(31)

Solution set (3) : To get another solution for the algebraic system in Equations (19)-(22), we do the following steps:
(i) Do steps (i) and (ii) of solution set (1).
(ii) Consider a20 ∈ R,d12 ∈ [−1,1], and {a10,a11,a21,b12,b22,c10,c20,c11,c21,d22}
equal one of the following sets in Equations (32)-(35):

a10 = 0, a11 = 0, a21 =−1, b12 =−d12,

b22 =
√

1− d2
12, c10 = 2a20d12

√

1− d2
12, c20 = a20(−1+ 2d2

12),

c11 =−2d12

√

1− d2
12, c21 = 1− 2d2

12, d22 =−
√

1− d2
12,

(32)

a10 = 0, a11 = 0, a21 = 1, b12 = d12, b22 =−
√

1− d2
12,

c10 = 2a20d12

√

1− d2
12, c20 = a20(−1+ 2d2

12), c11 = 2d12

√

1− d2
12,

c21 =−1+ 2d2
12, d22 =−

√

1− d2
12,

(33)

a10 = 0, a11 = 0, a21 =−1, b12 =−d12, b22 =−
√

1− d2
12,

c10 =−2a20d12

√

1− d2
12, c20 = a20(−1+ 2d2

12), c11 = 2d12

√

1− d2
12,

c21 = 1− 2d2
12, d22 =

√

1− d2
12,

(34)

a10 = 0, a11 = 0, a21 = 1, b12 = d12, b22 =
√

1− d2
12,

c10 =−2a20d12

√

1− d2
12, c20 = a20(−1+ 2d2

12), c11 =−2d12

√

1− d2
12,

c21 =−1+ 2d2
12, d22 =

√

1− d2
12.

(35)

Solution set (4): To get another solution for the algebraic system in Equations (19)-(22), we do the following steps:
(i) Do steps (i) and (ii) of solution set (1).
(ii) Consider a20 ∈ R, and {a10,a11,a21,b12,b22,c10,c20,c11,c21,d12,d22} equal one of the following sets in Equations
(36)-(39):

a10 = 0, a11 = 0, a21 = 1, b12 = 0, b22 =−1, c10 = 0,

c20 =−a20, c11 = 0, c21 =−1, d12 = 0, d22 =−1,
(36)

a10 = 0, a11 = 0, a21 =−1, b12 = 0, b22 = 1, c10 = 0,

c20 =−a20, c11 = 0, c21 = 1, d12 = 0, d22 =−1,
(37)
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a10 = 0, a11 = 0, a21 =−1, b12 = 0, b22 =−1, c10 = 0,

c20 =−a20, c11 = 0, c21 = 1, d12 = 0, d22 = 1,
(38)

a10 = 0, a11 = 0, a21 = 1, b12 = 0, b22 = 1, c10 = 0,

c20 =−a20, c11 = 0, c21 =−1, d12 = 0, d22 = 1.
(39)

6 Results and discussion

The results obtained by applying the used method on the problem of the present paper, are explained and discussed
through the following examples, this shows the robustness of the used method in obtaining exact solutions. Moreover,
since the exact solutions are now can be obtained, one can study any physical behavior of the obtained solution, by
simply controlling the inputs of his interested problem.

Example 1: Following the steps of solution set (1), if we randomly choose

{a1,a2,b1,b2,k,λ ,m1,α} = {28.7653,9.61206,25.755,10.5996,57.3419,−2,3.23376,0.5}, and

{a10,b12,d12}= {3.6207,0.556191,0.206078}, then

{δ1,δ2,δ3,δ4}= {5.35778,2.22644,1.40518,3.80947}, and

{a20,a11,a21,b22,c10,c20,c11,c21,d22}=

{−9.00671,−0.372991,0.927835,−0.831055,−6.94566,6.78145,0.715514,−0.698598,−0.978536}

(40)

then after substituting these values in Equations (8), (23), and (24), the following solution of Equation (5) can be obtained:

Q1(x, t) = (3.6207− 9.00671 I)− (0.173605− 0.431853 I) tanh(4 t0.5 + 3.23376 x),

Q2(x, t) = (0.143334− 0.214169 I) sech(4 t0.5 + 3.23376 x),

Q3(x, t) = (−6.94566+ 6.78145 I)+ (0.0873435− 0.0852785 I) tanh(4 t0.5 + 3.23376 x),

Q4(x, t) = (0.069468− 0.32986 I) sech(4 t0.5 + 3.23376 x).

(41)

Figure 1 shows the interaction stages. Since the coefficient of t is positive, the direction of motion is toward the
negative t-axis. So, if we wish to reverse the direction of motion then we just multiply the coefficient of t by minus sign.
Before the interaction started, the waves moving successively and separately for about 20 time units, when they catch
each others, the interaction started and they start mixing, at these moments they united to form one intense signal wave
with some length, frequency and phase shift, which is the interesting physical phenomenon of solitons, for example the
carried energies could be transferred among them. The interaction lasts for about 15 time units, then they start separating
and keep moving till they disappear again because the limits of the above functions go to 0,±1 as x goes to ±∞.
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Before the interaction During the interaction After the interaction

Fig. 1: Plots of interaction of {|Q1(x, t)| ,10 |Q2(x, t)| , |Q3(x, t)| ,10 |Q4(x, t)|} of Example 1

Example 2: Following the steps of solution set (2), if we randomly choose

{a1,a2,b1,b2,k,λ ,m1,α} = {21.9075,7.12165,24.9157,11.9223,83.747,−1.76599,3.55278,0.5} and

{a10,b12}= {9.17805,0.537563} then

{δ1,δ2,δ3,δ4}= {4.1767,1.68061,1.05194,2.81215} and

{a20,a11,a21,b22,c10,c20,c11,c21,d12,d22}=

{−14.3968,−0.537563,0.843224,−0.843224,−9.17805,14.3968,0.537563,−0.843224,0,−1},

(42)

then after substituting these values in equations (8), (23), and (28), the following solution of Equation (5) can be obtained:

Q1(x, t) = (9.17805− 14.3968 I)− (0.330517− 0.518451 I) tanh( 3.53199 t0.5 + 3.55278 x),

Q2(x, t) = (0.181343− 0.284456 I) sech( 3.53199 t0.5 + 3.55278 x),

Q3(x, t) = (−9.17805+ 14.3968 I)+ (0.0832437− 0.130577 I) tanh( 3.53199 t0.5 + 3.55278 x),

Q4(x, t) = (0.− 0.436374 I) sech( 3.53199 t0.5 + 3.55278 x).

(43)

For Figure 2, the description of this figure is similar to Figure 1, but with different parameters, which shows that if
one wishes to study another physical phenomenon, then he can control and change the arbitrary parameters of the
problem and still get another solution.
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Before the interaction During the interaction After the interaction

Fig. 2: Plots of interaction of {|Q1(x, t)| ,20 |Q2(x, t)| , |Q3(x, t)| ,20 |Q4(x, t)|} of Example 2

Example 3: Following the steps of solution set 3, if we randomly choose

{a1,a2,b1,b2,k,λ ,m1,α} = {11.9496,4.25957,14.5568,7.42032,26.6642,−3.52818,3.89627,0.5} and,

{a20,d12}= {4.65269,−0.0279702}, then,

{δ1,δ2,δ3,δ4}= {39.5764,1.83174,0.937567,1.92063} and,

{a10,a11,a21,b12,b22,c10,c20,c11,c21,d22}=

{0,0,−1,0.0279702,0.999609,−0.260171,−4.64541,0.0559184,0.998435,−0.999609},

(44)

then after substituting these values in equations (8), (23)), and (32), the following solution of equation (5) can be obtained:

Q1(x, t) = (0.+ 4.65269 I)− (0.+ 0.546082 I) tanh( 7.05636 t0.5 + 3.89627 x),

Q2(x, t) = (0.00324684+ 0.116037 I)sech( 7.05636 t0.5 + 3.89627 x),

Q3(x, t) = (−0.260171− 4.64541 I)+ (0.0007234+ 0.0129165 I) tanh( 7.05636 t0.5 + 3.89627 x),

Q4(x, t) = (−0.00332469− 0.118819 I) sech( 7.05636 t0.5 + 3.89627 x).

(45)

For Figure 3, the description of the interaction is similar to the previous examples too, but here, the waves become
faster and the interaction lasts shorter, this is because the coefficient of time is increased.
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Before the interaction
During the interaction After the interaction

Fig. 3: Plots of interaction of {|Q1(x, t)| ,25 |Q2(x, t)| , |Q3(x, t)| ,25 |Q4(x, t)|} of Example 3

Example 4: Following the steps of solution set (4), if we randomly choose

{a1,a2,b1,b2,k,λ ,m1,α} = {23.8454,9.90918,24.3258,14.7082,109.674,−1.97561,4.9366,0.5} and,

a20 = 2.66457, then

{δ1,δ2,δ3,δ4}= {5.49858,1.50285,0.870365,2.06808}

{a10,a11,a21,b12,b22,c10,c20,c11,c21,d12,d22}= {0,0,1,0,−1,0,−2.66457,0,−1,0,−1},

(46)

then after substituting these values in equations (8), (23)), and (36), the following solution of equation (5) can be obtained:

Q1(x, t) = (0.+ 2.66457 I)+ (0.+ 0.6739 I) tanh(3.95123 t0.5 + 4.9366 x),

Q2(x, t) = (0.− 0.323228 I) sech(3.95123 t0.5 + 4.9366 x),

Q3(x, t) = (0.− 2.66457 I)− (0.+ 0.106671 I) tanh(3.95123 t0.5 + 4.9366 x),

Q4(x, t) = (0.− 0.379172I) sech.(3.95123 t0.5 + 4.9366 x).

(47)

In Figure 4, the waves moving faster so they take shorter time to start interacting, when they start interacting, a delay
in their speeds occurred and the interaction lasts longer.
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Before the interaction During the interaction After the interaction

Fig. 4: Plots of interaction of {|Q1(x, t)| ,6 |Q2(x, t)| , |Q3(x, t)| ,6 |Q4(x, t)|} of Example 4.

Example 5: Following the steps of solution set (1), if we randomly choose

{a1,a2,b1,b2,c1,c2}= {26.7869,9.97166,23.8354,12.1829,12.711,2.44439},

{λ ,m1,m2}= {−2.67798,4.25088,1.41024}, and

{a10,b12,d12}= {8.62981,−0.797496,−0.766498}, then

{k1,k2,k3,k4}= {1.64108,−1.1005,−1.58125,−17.7886},

{∆1,∆2,∆3,∆4}= {0.531418,0.459842,0.392225,4.58908}, and

{a20,a11,a21,b22,c10,c20,c11,c21,d22}=

{1.98157,0.974636,0.223795,0.603324,−0.440446,8.84343,−0.0497432,0.998762,−0.642247},

(48)

then after substituting these values in equations, (23), (25), and (14), the following solution of the equation (6) can be
obtained:

Q1(x,y, t) = (8.62981+ 1.98157 I)+ (2.5615 + 0.588171 I) tanh( 2.67798 tα

α + .4.25088 x+ 1.41024 y),

Q2(x,y, t) = (−0.997832+ 0.754883 I) sech( 2.67798 tα

α + .4.25088 x+ 1.41024 y),

Q3(x,y, t) = (−0.440446+ 8.84343 I)− (0.0964907 − 1.93737 I) tanh( 2.67798 tα

α + .4.25088 x+ 1.41024 y),

Q4(x,y, t) = (−3.02969− 2.53857 I) sech( 2.67798 tα

α + .4.25088 x+ 1.41024 y).

(49)
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7 Conclusion

We were able to obtain a general form of infinite exact soliton solutions for the 4-WIEs by an ansatz contains tan and
secant hyperbolic functions with complex coefficients. A systematic steps toward writing a solution was obtained too.
Then generalized the obtained solutions to be solutions for s similar system of 4-WIEs but in (2+1) dimensions. We
believe that there are more solutions which could be obtained by other ansatz. We also believe that our used ansatz is
useful and could be used to obtain exact soliton solutions for the N-wave interaction equations for higher values of N.
Finally, we believe that our obtained solutions have some physical applications, where one can control the inputs of the
system to satisfy the requirements of his studied problem.
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