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Abstract: In this paper, we will apply the Adomian decomposition method (ADM) to three different examples of the Telegraph

Equation with a nonlinear term by the two polynomials called Adomian polynomials and the new accelerated Adomian polynomials

proposed by El-kalla [12] that called El-kalla polynomials and compare the solution with the exact solution, we found that the new

accelerated polynomials is easier and converges rapidly than Adomaian polynomials, also we found that the error between the exact

solution and the solution using the new accelerated polynomials is less than the error between the exact solution and the solution using

Adomian polynomials.
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1 Introduction

There are many applications of the telegraph equation for
example, in wave phenomena and also in wave
propagation of electric signals in a cable transmission line
.
Some studies were done to solve the telegraph equation
numerically or analytically as
in [1], [2], [3], [4], [5], [6], [7], [14], [15], [16], [17].
ADM was discussed by the mathematician George
Adomian [8], [9], [10], [11], [13]. It has been shown that
ADM can solve a large class of ordinary or partial
differential equations and the approximate solution
converges rapidly to the accurate solutions.
The main purpose of this study is to solve the nonlinear
telegraph equation by using ADM and clarify the
advantages of El-kalla polynomials using the ADM for
solving nonlinear telegraph equation.
The results are presented graphically to show the
difference between using the two polynomials.

2 The Methods

In this section we will illustrate the main points of the
Adomian decomposition method incase of nonlinear
partial differential equations.

2.1 Adomian decomposition method in case of

nonlinear P.D.E

Let, u = u(x, t) and consider the differential equation

Ltu+Lxu+Ru(x, t)+ f (u(x, t)) = f (x, t), (1)

where Ltu = dn
dtn is the higher derivative of the t

variable, Lxu = dn
dxn is the higher derivative of the x

variable, Ru(x, t) is the other derivative terms, f (u(x, t))
will be a term of nonlinearity and f (x, t) is the terms
containing independent variables only. firstly we separate
the higher derivative of the (x) variable or of the (t)
variable in any side of the equal sign of the equation.

Lxu = f (x, t)+Ltu+Ru(x, t)+ f (u(x, t)), (2)
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and making the integration L−1
x to the sides of the equation,

where L−1
x is the integration from 0 to x equal n times of

the derivative, we get

u(x, t) = u(0, t)+L−1
x f (x, t)+L−1

x Ltu+

L−1
x Ru(x, t)+L−1

x An. (3)

Then the solution of Adomian will be

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + u3 + ..., (4)

u0 = u(0, t)+L−1
x f (x, t),

u1 = L−1
x (Ltu0)+L−1

x (Ru0(x, t))+L−1
x (A0) ,

u2 = L−1
x (Ltu1)+L−1

x (Ru1(x, t))+L−1
x (A1) ,

u3 = L−1
x (Ltu2)+L−1

x (Ru2(x, t))+L−1
x (A2) ,

... (5)

And getting the solution of the equation by the
integration, where A0,A1,A2, . . . called Adomian
polynomials or using the polynomials called El-kalla
polynomials Ā0, Ā1, Ā2, . . . as we will see later.

2.2 Adomian polynomial formula

An =
1

n!

(

dn

dλ n
[N(

n

∑
i=0

λ iui)]

)

λ=0

, (6)

such that N(ui) is the term of the nonlinearity

A0 =
1

0!

(

d0

dλ 0
[N(u0)]

)

λ=0

= N (u0) ,

A1 =
1

1!

(

d

dλ
[N(u0 +λ u1)]

)

λ=0

,

A2 =
1

2!

(

d2

dλ 2
[N(u0 +λ u1 +λ 2u2)]

)

λ=0

,

... (7)

2.3 El-kalla polynomial formula

Ān = f (sn)−
n−1

∑
i=0

Āi, (8)

where Ān, are El-kalla polynomials, Ā0, Ā1, Ā2, . . ..
f (sn): is making a substitution of the summation of the

solutions in the term of the nonlinearity n times,
for instance if the nonlinear function is f (u) = sin(u)

then

f (u0) = sin(u0),

f (u0 + u1) = sin(u0 + u1),

f (u0 + u1 + u2) = sin(u0 + u1 + u2),

...

so,

Ā1 = f (u0)− Ā0,

Ā2 = f (u0 + u1)−
(

Ā0 + Ā1

)

,

Ā3 = f (u0 + u1 + u2)−
(

Ā0 + Ā1 + Ā2

)

,

... (9)

For example, consider the nonlinear term y3, we clarify
both polynomials, the Adomian and El-kalla as in Table
(1) and it is clear that the terms of the polynomials
proposed by El-kalla has higher accuracy than the
polynomials of Adomian

3 Numerical Examples

3.1 Example 1

Consider the nonlinear telegraph equation

uxx = utt + 2ut + u2
− e(2x−4t)+ e(x−2t)

,

u(x,0) = ex
, ut(x,0) =−2ex

. (10)

Appling the ADM by El-kalla and Adomian

For the Adomian polynomials, the solution will be as
following: First we will assume the solution as following

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + u3 + ..., (11)

utt = uxx − 2ut − u2 + e(2x−4t)
− e(x−2t)

. (12)

Then, we integrate the two sides from 0 to t,

ut = ut(x,0)+

∫ t

0
uxxdt −

∫ t

0
2utdt

−

∫ t

0
u2dt +

∫ t

0

(

e(2x−4t)
− e(x−2t)

)

dt, (13)

Then, we integrate the two sides from 0 to t again, to
get

u = u(x,0)+
∫ t

0
ut(x,0)dt +

∫ t

0

∫ t

0
uxxdtdt −

∫ t

0

∫ t

0
2utdtdt

−

∫ t

0

∫ t

0
u2dtdt +

∫ t

0

∫ t

0

(

e(2x−4t)
−e(x−2t)

)

dtdt, (14)

u0 = ex +
∫ t

0
−2exdt +

∫ t

0

∫ t

0

(

e(2x−4t)
−e(x−2t)

)

dtdt,

u1 =
∫ t

0

∫ t

0
u0xxdtdt −

∫ t

0

∫ t

0
2u0tdtdt −

∫ t

0

∫ t

0
A0dtdt,

u2 =
∫ t

0

∫ t

0
u1xxdtdt −

∫ t

0

∫ t

0
2u1tdtdt −

∫ t

0

∫ t

0
A1dtdt,

.

.. (15)
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In the given problem the nonlinear term is u2, calculating
A0,A1,A2, . . . using Equation (6), we get

u = u(x,0)+

∫ t

0
ut(x,0)dt +

∫ t

0

∫ t

0
uxxdtdt −

∫ t

0

∫ t

0
2ut dtdt

−

∫ t

0

∫ t

0
u2dtdt +

∫ t

0

∫ t

0

(

e(2x−4t)
−e(x−2t)

)

dtdt,

A0 = (ex +
(e2x(4t +e−4t

−1))

16
−

(ex(2t +e−2t
−1))

4
−2tex)2

A1 =
1

1!

(

d

dλ
[(u0 +λu1)

2]

)

λ=0

,

A2 =
1

2!

(

d2

dλ 2
[(u0 +λu1 +λ 2u2)

2]

)

λ=0

,

... (16)

so, the solution will be

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + ..., (17)

u(x, t) = ex +
(e2x(4t + e−4t

− 1))

16
−

(ex(2t + e−2t
− 1))

4
− 2tex+ · · · , (18)

where the exact solution is

u(x, t) = ex−2t
. (19)

3.1.1 For the polynomials called El-kalla polynomials the
solution will be as following:

The steps will be the same as previous Equations (11),
(12), (13), (14), (15) but, for El-kalla polynomials it will
be as follow,

Ā0 = u2
0 = (ex +

(e2x(4t + e−4t
− 1))

16

−

(ex(2t + e−2t
− 1))

4
− 2tex)2

,

Ā1 = 2u0u1 + u2
1,

Ā2 = u2
2 + 2u0u2 + 2u1u2,

... (20)

u0 = ex +
(e2x(4t +e−4t

−1))

16
−

(ex(2t +e−2t
−1))

4
−2tex

u1 =
∫ t

0

∫ t

0
u0xxdtdt −

∫ t

0

∫ t

0
2u0t dtdt −

∫ t

0

∫ t

0
A0dtdt,

u2 =
∫ t

0

∫ t

0
u1xxdtdt −

∫ t

0

∫ t

0
2u1t dtdt −

∫ t

0

∫ t

0
A1dtdt,

.

.. (21)

Fig. 1: The difference between the exact solution and the solution

with Adomian polynomial of uxx = utt + 2ut + u2
− e(2x−4t) +

e(x−2t).

The solution is

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + u3 + ..., (22)

u(x, t) = ex +
(e2x(4t + e−4t

− 1))

16
−

(ex(2t + e−2t
− 1))

4
− 2tex+ · · · , (23)

The data in Table (1) was calculated with three terms
of the solution u(x, t) = u0 +u1 +u2, where the difference
between the exact solution and solution with El-kalla
polynomial called absolute relative error (ARE) and the
difference between the exact solution and with solution
Adomian polynomial at x = 0.01 for values of t in
Example 1.
Also time of the program when calculating the solution
by Matlab R2014a as following:
Time when solving by Adomian polynomials = 22.8280
seconds.
Time when solving by El-kalla polynomials = 18.1860
seconds.

3.2 Example 2

Consider the nonlinear telegraph equation

utt − uxx + 2ut − u2 = e−2t (coshx)2
− 2e−t coshx,

u(x,0) = coshx, ut(x,0) =−coshx. (24)

Applying the ADM by El-kalla and Adomian:
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Fig. 2: The difference between the exact solution and the solution

with El-kalla polynomial of uxx = utt +2ut +u2
−e(2x−4t)+e(x−

2t).

3.2.1 For the Adomian polynomials the solution will be
as following

We will assume the solution as following,

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + ..., (25)

utt = uxx − 2ut + u2
−

e−2t (coshx)2
− 2e−tcosh(x), (26)

integrate the two sides from 0 to t,

ut = ut(x,0)+

∫ t

0
uxxdt −

∫ t

0
2utdt +

∫ t

0
u2dt +

∫ t

0
e−2t (coshx)2

− 2e−tcosh(x)dt, (27)

integrate the two sides from 0 to t,

u = u(x,0)+
∫ t

0
ut(x,0)dt +

∫ t

0

∫ t

0
uxxdtdt

−

∫ t

0

∫ t

0
2utdtdt −

∫ t

0

∫ t

0
u2dtdt

+

∫ t

0

∫ t

0

[

e−2t (coshx)2
− 2e−t coshx

]

dtdt, (28)

u0 = coshx+

∫ t

0
−coshxdt

+

∫ t

0

∫ t

0
e−2t (coshx)2

− 2e−t coshxdtdt,

u1 =

∫ t

0

∫ t

0
u0xxdtdt −

∫ t

0

∫ t

0
2u0tdtdt −

∫ t

0

∫ t

0
A0dtdt,

u2 =
∫ t

0

∫ t

0
u1xxdtdt −

∫ t

0

∫ t

0
2u1tdtdt −

∫ t

0

∫ t

0
A1dtdt,

... (29)

In the given problem the nonlinear term is u2,
calculating A0,A1,A2,. . . using Equation (6)

A0 = (coshx+
t

8
(

e−x

2
+ ex)2

−

t coshx+
1

16
(

e−x

2
+ ex)2(e−2t

− 1)−

e−x−t(e2x + 1)(tet
− et + 1))2

,

A1 =
1

1!

(

d

dλ
[(u0 +λ u1)

2]

)

λ=0

,

A2 =
1

2!

(

d2

dλ 2
[(u0 +λ u1+λ 2u2)

2]

)

λ=0

,

... (30)

so, the solution is

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + u3 + ..., (31)

u(x, t) = (coshx+
t

8
(

e−x

2
+ ex)2

−t coshx+
1

16
(

e−x

2
+ ex)2(e−2t

− 1)

−e−x−t(e2x + 1)(tet
− et + 1))2 + · · · , (32)

where the exact solution

u(x, t) = e−t coshx. (33)

3.2.2 For the polynomials called El-kalla polynomials the
solution will be as following

The steps will be the same as previous equations (25),
(26), (27), (28), (29) but, for El-kalla polynomials it will
be as follow,

Ā0 = u2
0 = (cosh x+

t

8
(

e−x

2
+ex)2

− t coshx+

1

16
(

e−x

2
+ex)2(e−2t

−1)−e−x−t (e2x +1)(tet
−et +1))2

,

Ā1 = 2u0u1 +u2
1,

Ā2 = u2
2 +2u0u2 +2u1u2,

.

.. (34)
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u0 = coshx+

∫ t

0
−coshxdt +

∫ t

0

∫ t

0

[

e−2t (coshx)2
− 2e−t coshx

]

dtdt,

u1 =

∫ t

0

∫ t

0
u0xxdtdt −

∫ t

0

∫ t

0
2u0tdtdt −

∫ t

0

∫ t

0
A0dtdt,

u2 =
∫ t

0

∫ t

0
u1xxdtdt −

∫ t

0

∫ t

0
2u1tdtdt −

∫ t

0

∫ t

0
A1dtdt,

... (35)

The solution is

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + ..., (36)

u(x, t) = (coshx+
t

8
(

e−x

2
+ ex)2

−

t coshx+
1

16
(

e−x

2
+ ex)2(e−2t

− 1)−

e−x−t(e2x + 1)(tet
− et + 1))2 + · · · , (37)

The data in the Table (3) calculated with three terms
of the solution u(x, t) = u0 + u1 + u2.

In the Table (3), we clear the difference between the
solution using El-kalla polynomials and the exact solution
that called absolute relative error (ARE)and the difference
between the solution using Adomian polynomials and the
Exact solution at x = 0.01 for values of t in Example 2.
Also time of the program when calculating the solution in
Matlab R2014a as following Time when solving by
Adomian polynomials= 63.0717 seconds.
Time when solving by El-kalla polynomials= 57.1515
seconds.

3.3 Example 3

Consider the following nonlinear telegraph equation

utt − uxx = u3
− 2ut − u,

u(x,0) =
1

2
+

1

2
tanh

( x

8
+ 5
)

,

ut(x,0) =
3

16
+

3

16

(

tanh
( x

8
+ 5
))2

. (38)

Applying the ADM by El-kalla and Adomian

3.3.1 For the Adomian polynomials the solution will be
as following:

We will assume the solution as following

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + u3 + ..., (39)

utt = uxx + u3
− 2ut − u, (40)

Fig. 3: The difference between the exact solution and the solution

with El-kalla polynomial of The difference between the exact

solution and solution with Adomian polynomial of utt − uxx +
2ut −u2 = e−2t(coshx)2

−2e−t cosh x.

Fig. 4: The difference between the exact solution and the solution

with El-kalla polynomial of The difference between the exact

solution and solution with Adomian polynomial ofutt − uxx +
2ut −u2 = e−2t(coshx)2

−2e−t coshx.
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integrate the two sides from 0 to t,

ut = ut(x,0)+

∫ t

0
uxxdt +

∫ t

0
u3dt −

∫ t

0
2utdt −

∫ t

0
udt,

(41)
integrate the two sides from 0 to t

u = u(x,0)+
∫ t

0
ut (x,0)dt +

∫ t

0

∫ t

0
uxxdtdt

+

∫ t

0

∫ t

0
u3dtdt −

∫ t

0

∫ t

0
2ut dtdt

−

∫ t

0

∫ t

0
udtdt, (42)

u0 =
1

2
+

1

2
tanh

( x

8
+5
)

+
∫ t

0

[

3

16
+

3

16
tanh

( x

8
+5
)2
]

dt,

u1 =
∫ t

0

∫ t

0
u0xxdtdt +

∫ t

0

∫ t

0
A0dtdt

−

∫ t

0

∫ t

0
2u0t dtdt −

∫ t

0

∫ t

0
2u0dtdt,

u2 =
∫ t

0

∫ t

0
u1xxdtdt +

∫ t

0

∫ t

0
A1dtdt

−

∫ t

0

∫ t

0
2u1t dtdt −

∫ t

0

∫ t

0
2u1dtdt,

... (43)

In the given problem the nonlinear term is u3, calculating
A0,A1,A2,. . . using Equation (6)

A0 = u3
0 =

[

1
2

tanh
(

x
8
+ 5
)

−

3t
16

((

tanh
(

x
8
+ 5
)2
− 1
)

+ 1
2

)

]3

,

A1 =
1

1!

(

d

dλ
[(u0 +λ u1)

3]

)

λ=0

,

A2 =
1

2!

(

d2

dλ 2
[(u0 +λ u1 +λ 2u2)

3]

)

λ=0

,

... (44)

So, the solution is

u(x, t) =
∞

∑
n=0

un = u0 + u1 + u2 + u3 + ..., (45)

u(x, t) =
1

2
tanh

( x

8
+ 5
)

−

3t

16

(

tanh
( x

8
+ 5
)2

− 1

)

+
1

2
+ · · · , (46)

where the exact solution

u(x, t) =
1

2
+

1

2
tanh2061

(

x

8
+

3t

8
+ 5

)

. (47)

3.3.2 For the polynomials called El-kalla polynomials the
Solution will be as following

The steps will be the same as previous Equations (39),
(40), (41), (42), (43) but, for El-kalla polynomials it will

be as follow:

Ā0 = u3
0 =

[

1

2
tanh

( x

8
+5
)

−

3t

16

((

tanh
( x

8
+5
)2

−1

)

+
1

2

)]3

,

Ā1 = (u0 +u1)
3
−u3

0,

Ā2 = (u0 +u1 +u2)
3
− Ā0 − Ā1,

... (48)

u0 =
1

2
+

1

2
tanh

( x

8
+5
)

+
∫ t

0

[

3

16
+

3

16
tanh

( x

8
+5
)2
]

dt,

u1 =
∫ t

0

∫ t

0
u0xxdtdt +

∫ t

0

∫ t

0
A0dtdt

= −

∫ t

0

∫ t

0
2u0t dtdt −

∫ t

0

∫ t

0
2u0dtdt,

u2 =
∫ t

0

∫ t

0
u1xxdtdt +

∫ t

0

∫ t

0
A1dtdt

= −

∫ t

0

∫ t

0
2u1t dtdt −

∫ t

0

∫ t

0
2u1dtdt,

... (49)

The solution is

u(x, t) =
∞

∑
n=0

un = u0 +u1 +u2 +u3 + ..., (50)

u(x, t) =
1

2
tanh

( x

8
+5
)

−

3t

16

(

tanh
( x

8
+5
)2

−1

)

+
1

2
+ · · · , (51)

The data in the Table (4) calculated with three terms of the

solution u(x, t) = u0 +u1 +u2.

In the Table (4), we clear the difference between the exact

solution and solution with El-kalla polynomial that called

absolute relative error (ARE) and the difference between the

exact solution and solution with Adomian polynomial at

x = 0.01 for values of t in Example 3.

Also time of the program when calculating the solution in

Matlab R2014a as following:

Time when solving by Adomian polynomials= 5.2057 seconds.

Time when solving by El-kalla polynomials= 4.7091 seconds.

Table 1: An example of the y3 nonlinear term to clear that the

polynomials of Adomian appear slower than the polynomials of

El-kalla

By the traditional formula By El-Kalla’s formula

A0 = y3
0, Ā0 = y3

0,

A1 = 3y2
0y1, Ā1 = 3y2

0y1 +3y0y2
1 +y3

1,

A2 = 3y2
0y1 +3y2

1y0, Ā2 = 3y2
0y2 +6y0y1y2 +3y2

1y2

+3y0y2
2 +3y1y2

2 +y3
2,

A3 = y3
1 +3y2

0y3 +6y0y1y2, Ā3 = 3y2
0y3 +6y0y1y3 +3y2

1y3

A4 = 3y2
0y4 +3y2

1y2 +6y0y2y3 +6y1y2y3 +3y2
2y3

+3y2
2y0 +6y0y1y3. +3y0y2

3 +3y1y2
3 +3y2y2

3 +y3
3.
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Table 2: The difference between the exact solution and solution

with El-kalla polynomial that called absolute relative error

(ARE). And the difference between the exact solution and

solution with Adomian polynomial at x = 0.01 for values of t

, in Example 1

t (ARE)of ADM at x = 0.01 (ARE)of El-kalla at x = 0.01

0.1 6.70184245∗10−5 6.715700672∗10−6

0.2 1.054413173∗10−3 1.0634826002∗10−4

0.3 5.179816713∗10−3 5.2852626316∗10−4

0.4 1.568758671∗10−2 1.6290984728∗10−3

0.5 3.625025864∗10−2 3.858860689∗10−3

0.6 7.0250310527∗10−2 7.73238466857∗10−3

0.7 0.12000282907 1.3801903921∗10−2

0.8 0.18596913217 2.26388934648∗10−2

0.9 0.26600379658 3.4823923093∗10−2

1 0.35467204962 5.09435831384∗10−2

Table 3: The difference between the exact solution and solution

with El-kalla polynomial that called absolute relative error

(ARE). And the difference between the exact solution and

solution with Adomian polynomial at x = 0.01 for values of t,

in Example 2

t (ARE)of ADM at x = 0.01 (ARE)of El-kalla at x = 0.01

0.1 8.73122605∗10−3 8.7313578254∗10−4

0.2 3.030788465∗10−2 3.0316217252∗10−3

0.3 5.868434229∗10−2 5.877812371∗10−3

0.4 8.8702292699∗10−2 8.92229621507∗10−3

0.5 0.11572650561 1.1768939792∗10−2

0.6 0.13526819187 1.410620088106∗10−2

0.7 0.14259270381 1.57039933919∗10−2

0.8 0.13230896442 1.641576130971∗10−2

0.9 9.79377771519∗10−2 1.61858050708∗10−2

1 3.1455235866∗10−2 0.150623247937

Table 4: The difference between the exact solution and solution

with El-kalla polynomial that called absolute relative error

(ARE). And the difference between the exact solution and

solution with Adomian polynomial at x = 0.01 for values of t,

in Example 3

t (ARE)of ADM at x = 0.01 (ARE)of El-kalla at x = 0.01

0.1 6.1887411743∗10−7 6.18874116796∗10−8

0.2 2.2490574667∗10−7 2.249057426∗10−7

0.3 4.584065585∗10−6 4.58406514∗10−7

0.4 7.3605672875∗10−6 7.3605648385∗10−7

0.5 1.03570304106∗10−5 1.035702126∗10−6

0.6 1.33923610671∗10−5 1.3392334357∗10−6

0.7 1.63245368513∗10−5 1.632447097∗10−6

0.8 1.904923443947∗10−5 1.904909088∗10−6

0.9 2.149845197∗10−5 2.1498167436∗10−6

1 2.3639126642∗10−5 2.3638603288∗10−6

Fig. 5: The difference between the exact solution and solution

with Adomian polynomial of utt −uxx = u3
−2ut −u.

Fig. 6: The difference between the exact solution and solution

with El-kalla polynomial of utt −uxx = u3
−2ut −u.
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