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Abstract: Some new concepts of the strongly log convex functions are considered in this paper. Properties of the strongly convex

functions are investigated under suitable conditions. The minimum of the differentiable strongly log-convex functions is characterized

by variational inequality, which is itself an interesting problem. Some important special cases are discussed. It is proved that the

parallelogram laws for inner product spaces can be obtained as applications of strongly log-affine functions as a novel application.

Results obtained in this paper can be viewed as refinement and improvement of previously known results.
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1 Introduction

Convexity theory is a branch of mathematical sciences
with a wide range of applications in industry, physical,
social, regional and engineering sciences. In recent years,
several new generalizations of convex functions have
been introduced using novel and innovative ideas to tackle
difficult problems, which arise in various fields of pure
and applied sciences. Exponentially convex(concave)
functions can be considered as a significant extension of
the convex functions and have important applications in
information theory, big data analysis, machine learning
and statistic, see, for example, [1–8] and the references
therein. Alirazaie and Mathur [2], and Noor et al [7–9]
have derived several results for these exponentially
convex functions. Related to the exponentially convex
functions, we have log-convex functions. It is known that
log-convex functions are convex functions, but the
converse is not true. For example. the function ex is a
log-convex function, but not convex. Hypergeometric
functions including Gamma and Beta functions are
log-convex functions, which have important applications
in several branches of pure and applied sciences. A
different class of exponentially convex functions was
investigated by Awan et al. [10]. Noor et al [11] have
considered another equivalent formulation of log-convex
functions to discuss several new hidden aspects.

Strongly convex functions were introduced and
studied by Polyak [12]. For the applications of strongly

convex functions, see [13–18, 20–22]. Motivated and
inspired by the ongoing research in generalized convexity,
we consider strongly log-convex function, which is the
main motivation of this paper. Several new concepts of
monotonicity are introduced. We establish the
relationship between these classes and derive some new
results under some mild conditions. We have shown that
new log-parallelogram laws can be obtained from
strongly log-affine functions, which can be used to
characterize the inner product spaces. This fact can be
viewed itself an elegant and interesting applications of the
strongly log-affine functions. As special cases, one can
obtain various new and refined versions of known results.
It is expected that the ideas and techniques of this paper
may stimulate further research in this field.

2 Formulations and basic facts

Let K be a nonempty closed set in a real Hilbert space H.
We denote by 〈·, ·〉 and ‖ · ‖ be the inner product and norm,
respectively.

Definition 1. [15, 16, 18] A set K in H is said to be a convex set,

if

u+ t(v−u) ∈ K, ∀u,v ∈ K, t ∈ [0,1].

We now introduce some new classes of strongly log-convex

functions and strongly log-affine functions.
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Definition 2. A function F on the convex set K is said to be

strongly log- convex, if there exists a constant µ > 0, such that

logF(u+ t(v−u)) ≤ (1− t) log F(u)+ t logF(v)

−µt(1− t)‖v−u)‖2
,∀u,v ∈ K, t ∈ [0,1].

We would like to mention that, if µ = 0, then Definition 2 reduces

to

Definition 3. [11] A function F on the convex set K is said to

be log- convex, if

logF(u+ t(v−u)) ≤ (1− t) log F(u)+ t logF(v),

∀u,v ∈ K, t ∈ [0,1].

For the properties of log-convex functions, see Noor et al. [11].

A function F is said to strongly log-concave, if and only if,

−F is strongly log-convex function.

If t = 1
2 , then

logF

(

u+v

2

)

≤
logF(u)+ log F(v)

2

−µ
1

4
‖v−u‖2

,∀u,v ∈ K.

The function F is said to be strongly J− log-convex function.

Note that if a functions is both strongly log-convex and

strongly log-concave, then it is strongly log-affine function.

Consequently, we have new concepts.

Definition 4. A function F is said to be a strongly log-affine

function, if there exists a constant µ > 0, such that

logF(u+ t(v−u)) = (1− t) log F(u)+ t logF(v)

−µt(1− t)‖v−u‖2
,∀u,v ∈ K, t ∈ [0,1].

If t = 1
2 , then Definition 4 reduces to:

Definition 5.A function F is called strongly quadratic

log-equation, if there exists a constant µ > 0, such that

logF

(

u+v

2

)

=
logF(u)+ log F(v)

2
−µ

1

4
‖v−u‖2

,

∀u,v ∈ K, t ∈ [0,1].

Definition 6. A function F on the convex set K is said to be

strongly log-quasiconvex function, if there exists a constant µ > 0

such that

logF(u+ t(v−u) ≤ max{logF(u), logF(v)}−µt(1− t)‖v−u‖2
,

∀u,v ∈ K, t ∈ [0,1].

Definition 7. A function F on the convex set K is said to be

strongly log-convex , if there exists a constant µ > 0 such that

logF(u+ t(v−u)) ≤ (logF(u))1−t(logF(v))t

−µt(1− t)‖v−u‖2
,∀u,v ∈ K, t ∈ [0,1],

where F(·)> 0.

From the above definitions, we have

logF(u+ t(v−u))

≤ (logF(u))1−t(logF(v))t −µt(1− t)‖v−u‖2

≤ (1− t) log F(u)+ t logF(v)−µt(1− t)‖v−u‖2

≤ max{logF(u), logF(v)}−µt(1− t)‖v−u‖2
.

This shows that every strongly log-convex function is a strongly

log-convex function and every strongly log-convex function is a

strongly log-quasiconvex function. However, the converse is not

true.

Definition 8. An operator T : K → H is said to be:

1.strongly monotone, iff, there exists a constant α > 0 such that

〈Tu−T v,u−v〉 ≥ α‖v−u‖2
,∀u,v ∈ K.

2.strongly pseudomonotone, iff, there exists a constant ν > 0

such that

〈Tu,v−u〉+ν‖v−u‖2 ≥ 0

⇒

〈T v,v−u〉 ≥ 0,∀u,v ∈ K.

3.strongly relaxed pseudomonotone, iff, there exists a constant

µ > 0 such that

〈Tu,v−u〉 ≥ 0

⇒

−〈T v,u−v〉+µ‖v−u‖2 ≥ 0,∀u,v ∈ K.

Definition 9. A differentiable function F on the convex set K is

said to be strongly log-pseudoconvex function, if and only if, if

there exists a constant µ > 0 such that

〈
F ′(u)

F(u)
,v−u〉+µ‖v−u‖2 ≥ 0 ⇒ F(v)≥ F(u),∀u,v ∈ K.

3 Main results

In this section, we consider some basic properties of strongly log-

convex functions.

Theorem 1. Let F be a differentiable function on the convex

set K. Then the function F is strongly log-convex function, if and

only if,

F(v)−F(u)≥ 〈
F ′(u)

F(u)
,v−u〉+µ‖v−u‖2

,∀v,u ∈ K. (1)

Proof. Let F be a strongly log-convex function on the convex

set K. Then

F(u+ t(v−u)) ≤ (1− t)F(u)+ tF(v)−µt(1− t)‖v−u‖2
,

∀u,v ∈ K,

which can be written as

F(v)−F(u)≥ {
F(u+ t(v−u)−F (u)

t
}+(1− t)µ‖v−u‖2

,

∀u,v ∈ K.
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Taking the limit in the above inequality as t → 0,, we have

F(v)−F(u)≥ 〈
F ′(u)

F(u)
,v−u)〉+µ‖v−u‖2

,∀u,v ∈ K.

which is (1), the required result.

Conversely, let (1) hold. Then, ∀u,v ∈ K, t ∈ [0,1],
vt = u+ t(v−u) ∈ K, we have

logF(v)− logF(vt) ≥ 〈
F ′(vt)

F(vt)
,v−vt )〉+µ‖v−vt )‖

2

= (1− t)〈
F ′(vt)

F(vt)
,v−u〉

+µ(1− t)2‖v−u‖2
,∀u,v ∈ K. (2)

In a similar way, we have

logF(u)− log F(vt) ≥ 〈
F ′(vt)

F(vt)
,u−vt )〉+µ‖u−vt )‖

2

= −t〈
F ′(vt)

F(vt)
,v−u〉+µt2‖v−u‖2

. (3)

Multiplying (2) by t and (3) by (1− t) and adding the resultant,

we have

logF(u+ tη(v,u)) ≤ (1− t) log F(u)+ t logF(v)

−µt(1− t)‖v−u‖2
,∀u,v ∈ K,

showing that F is a strongly log-convex function.

Theorem 2. Let F be a differentiable strongly log-convex

function on the convex set K. Then

〈
F ′(u)

F(u)
−

F ′(v)

F(v)
,u−v〉 ≥ µ‖v−u‖2

, ∀u,v ∈ K. (4)

Proof.Let F be a differentiable strongly log-convex function on

the convex set K. Then, from Theorem 1. we have

logF(v)− logF(u)≥ 〈
F ′(u)

F(u)
,v−u〉+µ‖v−u‖2

,∀u,v ∈ K. (5)

Changing the role of u and v in (5), we have

logF(u)− log F(v)≥ 〈
F ′(v)

F(v)
,u−v)〉+µ‖u−v‖p

,∀u,v ∈ K.(6)

Adding (5) and (6), we have

〈
F ′(u)

F(u)
−

F ′(v)

F(v)
,u−v〉 ≥ 2µ‖v−u‖2

,∀u,v ∈ K. (7)

which shows that F ′(.) is a strongly monotone operator.

Theorem 3.If the differential operator F ′(.) of a differentiable

strongly log-convex function F is strongly monotone operator,

then

logF(v)− logF(u)≥ 〈
F ′(u)

F(u)
,v−u〉+µ‖v−u‖2

,∀u,v ∈ K. (8)

Proof.Let F ′ be a strongly monotone operator. Then, from (7),

we have

〈
F ′(v)

F(v)
,u−v〉 ≥ 〈

F ′(u)

F(u)
,u−v)〉+µ‖v−u‖2

. ∀u,v ∈ K. (9)

Since K is an convex set, ∀u,v ∈ K, t ∈ [0,1], vt = u+ t(v−u) ∈
K. Taking v = vt in (9, we have

〈
F ′(vt)

F(vt)
,u−vt 〉 ≤ 〈

F ′(u)

F(u)
,u−vt 〉−2µ‖vt −u‖2

= −t〈
F ′(u)

F(u)
,v−u〉−2µt2‖v−u‖2

,

which implies that

〈
F ′(vt)

F(vt)
,v−u〉 ≥ 〈

F ′(u)

F(u)
,v−u〉+2µt‖v−u‖2

. (10)

Consider the auxiliary function

ζ (t) = F(u+ t(v−u),∀u,v ∈ K,

from which, we have

ζ (1) = F(v), ζ (0) = F(u).

Then, from (10), we have

ζ ′(t) = 〈
F ′(vt)

F(vt)
,v−u〉 ≥ 〈

F ′(u)

F(u)
,v−u〉+2µt‖v−u‖2

. (11)

Integrating (11) between 0 and 1, we have

ζ (1)−ζ (0) =

∫ 1

0
ζ ′(t)dt ≥ 〈

F ′(u)

F(u)
,v−u〉+µ‖v−u‖2

.

Thus it follows that

F(v)−F(u)≥ 〈
F ′(u)

F(u)
,v−u〉+µ‖v−u‖2

,∀u,v ∈ K,

which is the required (8).

Theorem 3 can be viewed as a converse of Theorem 2.

We now give a necessary condition for strongly

log-pseudoconvex function.

Theorem 4. Let
F ′(u)
F(u) be a relaxed pseudomonotone operator.

Then F is a strongly log-pseudoconnvex function.

Proof. Let
F ′(u)
F(u) be a strongly relaxed pseudomonotone

operator. Then, ∀u,v ∈ K,

〈
F ′(u)

F(u)
,v−u〉 ≥ 0.

implies that

〈
F ′(v)

F(v)
,v−u〉 ≥ µ‖v−u‖2

,∀u,v ∈ K. (12)

Since K is an convex set, ∀u,v ∈ K, t ∈ [0,1],
vt = u+ t(v−u) ∈ K.

Taking v = vt in (12), we have

〈
F ′(vt)

F(vt)
,vt −u〉 ≥ µt p−1‖vt −u‖2

. (13)
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Consider the auxiliary function

ζ (t) = logF(u+ t(v−u)) = logF(vt), ∀u,v ∈ K, t ∈ [0,1],

which is differentiable. Then, using (13), we have

ζ ′(t) = 〈
F ′(vt)

F(vt)
,v−u)〉 ≥ µt‖v−u‖2

.

Integrating the above relation between 0 to 1, we have

ζ (1)−ζ (0) =
∫ 1

0
ζ ′(t)dt ≥

µ

2
‖ξ (v,u)‖2

,

that is,

logF(v)− logF(u)≥
µ

2
‖v−u‖2),∀u,v ∈ K,

showing that F is a strongly log-pseudoconvex function.

Definition 10. A function F is said to be sharply strongly log-

pseudoconvex, if there exists a constant µ > 0 such that

〈
F ′(u)

F(u)
,v−u〉 ≥ 0

⇒

logF(v)≥ logF(v+ t(u−v))+µt(1− t)‖v−u‖2
,∀u,v ∈ K.

Theorem 5. Let F be a sharply strongly log-pseudoconvex

function on K with a constant µ > 0. Then

〈
F ′(v)

F(v)
,v−u〉 ≥ µ‖v−u‖2

,∀u,v ∈ K.

Proof. Let F be a sharply strongly log-pseudoconvex function

on K. Then

logF(v)≥ logF(v+ t(u−v))+µt(1− t)‖v−u‖2
,

∀u,v ∈ K, t ∈ [0,1],

from which, we have

logF(v+ t(u−v)− log F(v)

t
+µ(1− t)‖v−u‖2 ≥ 0.

Taking limit in the above inequality, as t → 0, we have

〈
F ′(v)

F(v)
,v−u〉 ≥ µ‖ξ (v,u)‖2

,∀u,v ∈ K,

the required result.

Definition 11. A function F is said to be a pseudoconvex

function with respect to a strictly positive bifunction B(., .) such

that

logF(v)< logF(u)

⇒

logF(u+ t(v−u)) < logF(u)+ t(t −1)B(v,u),

∀u,v ∈ K, t ∈ [0,1].

Theorem 6. If the function F is strongly log-convex function

such that logF(v) < logF(u), then F is strongly

log-pseudoconvex function.

Proof. Since logF(v) < logF(u) and F is strongly log-convex

function, then

∀u,v ∈ K, t ∈ [0,1], we have

logF(u+ t(v−u))

≤ logF(u)+ t(log F(v)− log F(u))−µt(1− t)‖v−u‖2

< logF(u)+ t(a− t)(log F(v)− log F(u))−µt(1− t)‖v−u‖2

= logF(u)+ t(t −1)(log F(u)− log F(v))−µt(1− t)‖v−u‖2

< F(u)+ t(t −1)B(u,v)−µt(1− t)‖v−u‖2
,∀u,v ∈ K,

where B(u,v) = logF(u)− logF(v) > 0, which is the required

result.

We now discuss the optimality for the differentiable strongly

log-convex functions, which is the main motivation of our next

result.

Theorem 7. Let F be a differentiable strongly log-convex

function with modulus µ > 0. If u ∈ K is the minimum of the

function F, then

logF(v)− log F(u)≥ µ‖v−u‖2
, ∀u,v ∈ K. (14)

Proof. Let u ∈ K be a minimum of the function F. Then

F(u)≤ F(v),∀v ∈ K,

from which, it follows that

logF(u)≤ logF(v),∀v ∈ K, (15)

Since K is a convex set, so, ∀u,v ∈ K, t ∈ [0,1],

vt = (1− t)u+ tv ∈ K.

Taking v = vt in (15), we have

0 ≤ lim
t→0

{
logF(u+ t(v−u))− log F(u)

t
}= 〈

F ′(u)

F(u)
,v−u〉. (16)

Since F is differentiable strongly log-convex function, so

logF(u+ t(v−u)) ≤ logF(u)+ t(F(v)−F(u))

−µt(1− t)‖v−u‖2
,∀u,v ∈ K,

from which, using (16), we have

logF(v)− log F(u) ≥ lim
t→0

{
logF(u+ t(v−u))− log F(u)

t
}

+µ‖v−u‖2

= 〈
F ′(u)

F(u)
,v−u〉+µ‖v−u‖2

,

the required result (14).

Remark. We would like to mention that, if u ∈ K satisfies the

inequality

〈(logF(u))′,v−u〉 = 〈
F ′(u)

F(u)
,v−u〉

+µ‖v−u‖2 ≥ 0, ∀u,v ∈ K, (17)

then u ∈ K is the minimum of the function F. The inequality

(17) is called the log-variational inequality. It is an interesting

problem for future research
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Theorem 8. Let f be a strongly log-affine function. Then F is

a strongly convex function, if and only if, H = F − f is a convex

function.

Proof. Let f be a strongly log-affine function, Then

log f ((1− t)u+ tv) = (1− t) log f (u)+ t log f (v)

−µt(1− t)‖v−u‖2
,∀u,v ∈ K. (18)

From the higher order strongly convexity of F, we have

logF((1− t)u+ tv) ≤ (1− t) log F(u)+ t logF(v)

−µt(1− t)‖v−u‖2
,∀u,v ∈ K.

From (18 ) and (19), we have

logF((1− t)u+ tv) − log f ((1− t)u+ tv)

≤ (1− t)(log F(u)− log f (u))

+t(logF(v)− log f (v)), (19)

from which it follows that

logH((1− t)u+ tv)

= logF((1− t)u+ tv)− log f ((1− t)u+ tv)

≤ (1− t) log F(u)+ t logF(v)− (1− t) log f (u)− t log f (v)

= (1− t)(log F(u)− log f (u))+ t(logF(v)− log f (v)),

which show that H = F − f is a log-convex function.The inverse

implication is obvious.

It is worth mentioning that the strongly log-convex function

is also strongly Wright log-convex function. From the definition

2, we have

logF(u+ t(v−u))+ log F(v+ t(u−v))

= logF(u+ t(v−u))F(v+ t(u−v))

≤ logF(u)+ logF(v)−2µt(1− t)‖v−u‖2

= logF(u)F(v)−2µt(1− t)‖v−u‖2

Consequently, we have

F(u+ t(v−u))F(v+ t(u−v))

= F(u)F(v)exp{−2µt(1− t)‖v−u‖2},

which is called multiplicative strongly Wright log-convex

function. One can studies the properties and applications of the

strongly Wright log-convex functions in optimization and

mathematical programming.

4 Applications

In this section, we show that the characterizations of uniformly

Banach spaces involving the notion of strongly log-affine are

given.

From Definition 4, we have

‖ logF(u+ t(v−u))‖2

= (1− t)‖ log F(u)‖2 + t‖ log F(v)‖2

−µt(1− t)‖v−u‖2
,∀u,v ∈ K, t ∈ [0,1]. (20)

Taking t = 1
2 in (20), we have

‖ logF(
u+v

2
)‖2 + µ

1

4
‖v−u‖2

=
1

2
‖ logF(u)‖2 +

1

2
‖ log F(v)‖2

,∀u,v ∈ K,

which is called the log-parallelogram for the inner product

spaces.

Setting logF(u) = ‖u‖2 in (21), we obtain

‖u+v‖2 +µ‖v−u‖2 = 2{‖u‖2 +‖v‖2},∀u,v ∈ K, (21)

which is well known parallelogram for the inner product spaces.

5 Conclusion

In this paper, we have introduced and studied a new class of

convex functions, which is called strongly log-convex function.

It is shown that several new classes of log-convex functions can

be obtained as special cases of these strongly log-convex

functions. We have studied the basic properties of these

functions. It is shown that optimality conditions of the

differentiable strongly lg-convex functions can be characterized

by a class of variational inequalities, which is called log

variational inequality. To investigate the applications and

approximate solutions of log variational inequalities is an open

interesting problem for future research. We have shown that one

can derive a new log-parallelogram laws from strongly

log-affine functions. These log-parallelogram laws can be used

to characterize the inner product spaces. The interested readers

may explore the applications and other properties of the strongly

log-convex functions in various fields of pure and applied

sciences. This is an interesting direction of future research.
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