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Abstract: In this paper, we have introduced a new generalization of the Exponentiated Pareto distribution named as the MG

Exponentiated Pareto (MGEP) distribution based on MG transmutation map introduced by Kumar et al. (2017). Furthermore, we have

derived some statistical properties of the MGEP distribution. The parameters for the proposed distribution is estimated using

maximum likelihood method and the performance of estimators is studied by using simulation. An application of MGEP distribution

to a real data set for the purpose of illustration is conducted.
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1. Introduction

The statistical literature filled with several methods to propose new distribution, by the use of some available
distributions, are called baseline distributions. For instance, Gupta et al [1] suggested a family of distributions termed as
exponentiated exponential distribution by using cumulative distribution function of a new distribution corresponding to
the cumulative distribution function of the baseline distribution function. Shaw and Buckley [2] developed the
transmutation maps to solve financial mathematics problems. Based on Shaw and Buckley’s quadratic transmuted family,
several forms of cubic ranking have been proposed. For example, Granzottoa et al [3] suggested the cubic ranking
transmutation map with two transmutation parameters. Rahman et al [4] proposed an extension of the quadratic
transmuted distribution and named the resulting family as the cubic transmuted family of distribution. Al- Kadim [5]
suggested cubic ranking transmutation map with single parameter. Another idea of getting a new distribution is to
transform the baseline distribution. Kumar et al [6] introduced DUS transformation. Kumar et al [7] suggested SS
transformation by use of the sine function. Kumar et al [8] proposed MG transmutation map which was used to
generalizes the exponential distribution.

In this article MG transmutation map suggested by Kumar et al [8] is used to propose a new model which generalizes
the exponentiated Pareto distribution. This new version of the Exponentiated Pareto distribution called MG
Exponentiated Pareto (MGEP) distribution. Some statistical properties are studied including survival and hazard
function, quantile function, mean, variance and random number generation. The parameters of MGEP distribution is
estimated using Maximum Likelihood method and the performance of the estimators is studied using simulation.
Moreover, an application of MGEP distribution to a real data set for the purpose of illustration is conducted.

The proposed MGEP distribution consider as one of a lifetime distribution, it is useful to analyze the skewed
extremely positive data sets concerning the distribution of wealth.
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1.1. Exponentiated Pareto distribution

Let X be a random variable with the exponentiated Pareto distribution. The probability density function (pdf) and the
cumulative distribution function (cdf) are defined, respectively, as

g(x) = akae−ax (1)

and
G(x) = 1− kae−ax; x ≥ lnk, a,k > 0 (2)

1.2. MG Transmutation

According to the MG transmutation approach proposed by Kumar et al[8], the cumulative distribution function (cdf)
satisfies the following relationship

F(x) = exp
(

1−
1

G(x)

)

(3)

and the density function (pdf) is given by

f (x) =
exp(1− 1

G(x) )

[G(x)]2
g(x) (4)

where G(x) and g(x) is the cdf and pdf of the base distribution respectively.

1.3. Organization of the paper

The remainder of this paper is organized as follows. The new proposed distribution MGEP and its hazard and survival
function is presented in Section 2. Some statistical properties is derived in Section 3. Section 4 provides parameter
estimation of MGEP. Simulation is conducted in section 5. An application of MGEP to a real data set for the purpose of
illustration is provided in Section 6. Finally, Section 7 gives some concluding remarks.

2. MG Exponentiated Pareto (MGEP) Distribution

In this Section, the new proposed distribution MG Exponentiated Pareto (MGEP) is demonstrated.

2.1. Cumulative and Density Function

Lemma 1. Let X be a continuous random variable; follows an exponentiated Pareto distribution then the cumulative
distribution function (cdf) and probability density function (pdf) of the MGEP are respectively given by

F(x) = exp
(

−
kae−ax

1− kae−ax

)

(5)

and

f (x) =
akae−ax

(1− kae−ax)2
exp

(

−
kae−ax

1− kae−ax

)

; x ≥ lnk, a,k > 0 (6)

Proof. Proof is straightforward.
Figure 1 illustrates some of possible shapes of the pdf and cdf of MGEP for selected values of parameters a where
k = 1.5.
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Fig. 1: The pdf and cdf of MGEP for different value of a.

From plot of pdf of Figure 1, we can observe that as the shape parameter a increases, the distribution is skewed
extremely positive and the kurtosis is becomes more leptokurtic.
Lemma 2. The limit of MGEP density as x → lnk is ∞ and the limit as x → ∞ is 0.
Proof. The proof is straightforward.
Lemma 3. f (x) of Eq.(6) is a probability density function.
To prove f (x) is a pdf, we need to prove f (x) ≥ 0 and

∫ ∞
lnk f (x)dx = 1.

(1) Proof of f (x) ≥ 0
From Lemma 2, since lim

x→ln k
f (x) = ∞ and lim

x→∞
f (x) = 0 then f (x) ≥ 0

(2) Proof of
∫ ∞

lnk f (x)dx = 1

∫ ∞

lnk
f (x)dx =

∫ ∞

lnk

[ akae−ax

(1− kae−ax)2
exp

(

−
kae−ax

1− kae−ax

)]

dx

let kae−ax

(1−kae−ax)
= u then akae−ax

(1−kae−ax)2 dx =−du, for x = lnk → u = ∞,x = ∞ → u = 0

∫ ∞

lnk
f (x)dx =

∫ 0

∞
e−u(−du) =

∫ ∞

0
e−udu =

[

e−u
]∞

0
= 1

From 1 and 2 we conclude that f (x) is probability density function.

2.2. Survival and hazard function

The survival (reliability) function of MGEP is

S(x) = 1− exp
(

−
kae−ax

1− kae−ax

)

(7)

The hazard function of MGEP is

h(x) =

akae−ax

(1−kae−ax)2 exp
(

−
kae−ax

1−kae−ax

)

1− exp
(

− kae−ax

1−kae−ax

) (8)
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Fig. 2: The hazard function of MGEP for different values of a at k = 1.5 and k = 2.

Figure 2 illustrates the hazard function of MGEP for different values of a at k = 1.5 and k = 2 .
From Figure 2, it is shown that as a increases the hazard function curve moves upward. Moreover, as k increases the curve
shifts to the right.

3. Statistical Properties

In this Section, some statistical properties for MGEP are demonstrated include arithmetic mean, variance and quantile
function. This section also provides simulation of the random sample.

3.1. Arithmetic Mean

Theorem 1. If X is a random variable having the MGEP then the arithmetic mean µX is

µX = E(X) = lnk+
1.173563

a
(9)

and

Var(X) =
0.862770

a2

Proof. We know that

E(X) =

∫ ∞

−∞
x f (x)dx

Substitute f (x) in above equation by its value in Eq.(6) to get

E(X) =

∫ ∞

lnk
x

[ akae−ax

(1− kae−ax)2
exp

(

−
kae−ax

1− kae−ax

)]

dx
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let kae−ax

(1−kae−ax)
= u (see proof (2) for Lemma 3) and it follows that x = lnk+ 1

a
ln( 1+u

u
)

E(X) =
∫ ∞

0

[

lnk+
1

a
ln(

1+ u

u
)
]

e−udu

= lnk

∫ ∞

0
e−udu+

1

a

[

∫ ∞

0
e−u ln(1+ u)du−

∫ ∞

0
e−u lnu du

]

= lnk+
1

a

[

− eEi(−1)− (−γ)
]

where Ei(x) is the exponential integral Ei , −eEi(−1) ≅ 0.596347 and γ ≅ 0.577216 is the Euter-Mascheroni constant.
Therefore,

E(X) = lnk+
1.173563

a

This completes the proof.
Similarly, we can prove that

Var(X) =
0.862770

a2

3.2. Quantile function

The quantile function for MGEP is derived by finding the value of Q for which F(x) = p :

Q(p,a) = lnk+
1

a

[

ln(1− (ln p)−1)
]

for 0 ≤ p ≤ 1 (10)

The three quartiles Q1,Q2 and Q3 can be obtained by using p = 0.25,0.50 and 0.75 in Eq.(10) respectively.
The mean, median and variance of MGEP for various values of a are given in Table 1.

Table 1: Mean, median and variance of MGEP distribution for different values of a.

Measure a = 0.5 a = 1 a = 2 a = 3

Mean 2.7526 1.5790 0.9922 0.7967

Median 2.1917 1.2986 0.8520 0.7032

Variance 3.4511 0.8628 0.2157 0.0959

3.3. Simulating the Random Sample

Random numbers from the MGEP can be obtained by equating cdf of the distribution in Eq.(5) with a uniform random
number and inverting the expression; that is the random number from MGEP is obtained by solving

exp
(

−
kae−ax

1− kae−ax

)

= u

for x. The random sample from MGEP can be further expressed as

x = lnk+
1

a

[

ln(1− (lnu)−1)
]

(11)

where u is an arbitrary continuous uniform point over (0,1).
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4. Parameters Estimation

Maximum likelihood approach can be used for the estimation of model parameters. The maximum likelihood estimates
(MLE) of the parameters that are inherent within the MGEP is given by the following.
Let X1,X2, . . . ,Xn be a random sample of size n from MGEP distribution. Then the likelihood function is given by

L =
n

∏
i=1

f (xi;a,k) =
n

∏
i=1

[ akae−axi

(1− kae−axi)2
exp

(

−
kae−axi

1− kae−axi

)]

= anknae−a∑n
i=1 xi

n

∏
i=1

[ 1

(1− kae−axi)2

]

exp
( n

∑
i=1

−
kae−axi

1− kae−axi

)

so, the log likelihood function is

lnL = n lna+ an lnk− a
n

∑
i=1

xi − 2
n

∑
i=1

ln(1− kae−axi)− ka
n

∑
i=1

e−axi

1− kae−axi
(12)

Therefore, the maximum likelihood estimates of a and k which maximize Eq.(12), must satisfy the two normal Eq.’s(13)
and (14).

∂ lnL

∂a
= ka

n

∑
i=1

(xi − lnk)e−axi

(1− kae−axi)2
+ 2ka

n

∑
i=1

(xi − lnk)e−axi

1− kae−axi
−

n

∑
i=1

xi + n lnk+
n

a
= 0 (13)

∂ lnL

∂k
= n+ 2ka−1

n

∑
i=1

e−axi

1− kae−axi
− ka−1

n

∑
i=1

e−2axi

(1− kae−axi)2
= 0 (14)

The maximum likelihood estimates θ̂ = (â, k̂) of θ = (a,k) is obtained by solving the above nonlinear system of Eq. (13)
and (14). It is more convenient to use nonlinear optimization algorithms such as the quazi-Newton or Newton-Raphson to
numerically maximize the log-likelihood function in Eq. (12).

5. Simulation Study

In this Section, the simulation study is conducted to see the performance of the maximum likelihood estimators of MGEP
distribution. The simulation study have been performed by drawing random samples of sizes 10,25,50 and 100 from the
MGEP distribution for k = 1.5,a = 0.5,1,2 and 3. For each sample size, the maximum likelihood estimators are obtained
and the procedure is repeated for 10000 times. We have computed average for the estimated value and MSE of parameter
estimates for these 10000 values and the results are shown in Table 2.

Table 2: The estimated value and MSE of parameter estimates of MGEP for different values of a and sample sizes.

n
a = 0.5 a = 1 a = 2 a = 3

â MSE â MSE â MSE â MSE

10 0.5088 0.026588 1.0200 0.109299 2.0441 0.434601 3.0580 0.97919

25 0.5039 0.010316 1.0067 0.040358 2.0144 0.162820 3.0234 0.365272

50 0.5018 0.004981 1.0042 0.019921 2.0084 0.079207 3.0126 0.178266

100 0.5006 0.002435 1.0026 0.009815 2.0042 0.039656 3.0049 0.088807

It can be noticed that from Table 2, that the estimated values of the parameter a are very close to the true values, and
all MSEs decrease as the sample size increases, while they increase with increasing of the true parameter.

6. Application of MG Exponentiated Pareto distribution

In this section, we provide an application of MGEP distribution. Therefore, in order to test MGEP’s goodness of fit, it
has been fitted to a real lifetime data set. Moreover, MGEP has been compared with some related distributions involving
Pareto, exponential Pareto, exponential, and MG exponential distribution.
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The data set reported by Gross and Clark [9] represents the relief times (in minutes) of 20 patients receiving an analgesic.
This dataset was analyzed by Shanker et al [10] and Kumar et at [8].
For the purpose of the analysis we set lnk = exp[min(x)] . In order to compare MGEP with Pareto, exponential Pareto,
exponential, and MG exponential distribution we use some different comparison measures includes −2× log-likelihood
(−2log(L)), Akaike’s information criterion (AIC), Corrected Akaike’s information criterion (AICC), Schwarz’s Bayesian
information criterion(BIC) and Kolmogorov-Smirnov (ks) test. Table 3 shows the results.

Table 3: Comparison criteria for the relief times data set

Distribution −2log(L) AIC AICC BIC ks

Pareto 59.4755 63.4755 64.1814 65.4669 0.3922

Exponentiated Pareto 46.6206 50.6206 51.3265 52.612 0.2986

Exponential 65.2509 67.2509 67.4731 68.2466 0.4218

MG exponential 52.4501 54.4501 54.6723 55.4458 0.2386

MG exponential Pareto 45.2972 49.2972 50.003 51.2886 0.2178

From table 3, concerning the relief times of 20 patients receiving an analgesic data set, we observe that the calculated
values of the five comparison criteria (the smaller the better) reveal that the MGEP distribution is the most appropriate
model.

7. Conclusions

In this article, a new generalization of the exponentiated Pareto distribution named as the MG Exponentiated Pareto
(MGEP) distribution is introduced and studied. Furthermore, some properties of the MGEP including survival and
hazard functions, quantile function, mean, variance and random number generation are derived. The estimation of the
distribution parameters are conducted using maximum Likelihood method and the simulation study is used to evaluate
them. In order to test a goodness of fit for MGEP, the distribution is fitted to a real lifetime data set and compared with
some related distributions. It is observed that the new distribution works better than these distributions.
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