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Abstract: In this paper, we subedit a search for a randomly moving Coronavirus (COVID-19) among a finite set of different states.

We use a monitoring system to search for COVID-19 which is hidden in one of the n cells of the respiratory system in the human body

in each fixed number of time intervals m. The expected rescue time of the patient and detecting COVID-19 has been obtained. Also,

we extend the results and obtain the total optimal expected search time of COVID-19. The optimal search strategy is derived suing a

dynamic programming algorithm. An illustrative real life example introduced to clear the applicability of this model.
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1 Introduction

Since the beginning of 2020, mankind has faced one of the biggest global disasters, which is the spread of Coronavirus
(COVID-19) worldwide. The question we think about a lot now is: How does the Coronavirus attack the human body?

COVID-19 is a respiratory virus that affects the upper and lower respiratory tracts and as same as other respiratory
viruses, but the difference is that it is highly contagious and does not spread through droplets from an infected person to
a healthy person only, but also through surfaces and places with a spray, because it lives for hours on the places where it
spread. And enter through the nose, eye and mouth.

The virus needs a cell in order for its growth to complete, it is possible that the cell is in the throat or certain receptors
within the respiratory system, where it penetrates the receptors and attaches to them between the virus cell and the
respiratory system cell, then growth and replication of the DNA cells occurs, and the virus begins to multiply and multiply
with millions and its symptoms appear in the body including ”sore throat, difficulty breathing, and dry cough”.

Our mission in this paper is to calculate the expected total rescue time of the patient and detecting COVID-19 before
multiplying with millions and its side effects appear on the human body. Also, we will obtain the total optimal excepted
search time of COVID-19.

In our daily lives, we all suffer from the disappearance of some important things that require us to search for them and
find them as quickly as possible, different models that have been studied previously using different search strategies and
are also interesting at the same time. All this was aimed for finding the lost target quickly and with the minimum cost. To
mention some important models, better to start with a linear search strategy, which has many life and mission applications,
for example, searching for a damaged until in a large linear system (electrical power lines, telephone lines and petrol or
gas support lines), whether this linear system is independent or intersecting (see A. B. El-Rayes, A. A. Mohamed, and
Fergani [1], A. B. El-Rayes, A. A. Mohamed [2], A. A. Mohamed [3], A. A. Mohamed and H. M. Abou Gabal [4,5,6],
Zaid [7]). Also, the coordinated search technique has been studied in case of linear search by many authors (see A. A.
Mohamed, H. M. AbouGabal, and W. A. Afifi [8,9,10]), and discussed the coordinated search technique for a located
target on two intersected lines, when the located target has symmetric and unsymmetrical distribution, A. A. Mohamed
and W. A. Afifi [11], W. A. Afifi, El-Bagoury and S. N. Al-Aziz [12], presented more advanced work and use coordinated
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search technique for a moving target on one line and many independent lines, respectively. Recently, El-Hadidy, and El-
Bagoury [13,14], A. A. Mohamed and El-Bagoury [15] and M. A. Kassem, El-Bagoury, Afifi and Alaziz [16], studied a
more sophisticated search model in the three dimensional space to find a 3-D randomly located target by one searcher,
two searchers and four searchers.

The discrete search problems are not new. In this technique a target is assumed to be in one of several cells and the
searcher must distribute his effort (time, energy, etc.) among the cells to find the target. The probability of being in a
certain cell at a certain time and the detection function are supposed to be known to the searcher, the searcher wishes to
find the optimal distribution of the effort over the set of possible cells such that the overall probability of detecting the
target is maximal [17].

In this paper, we consider the monitoring system with the main aim that the system is to detect the lost moving
COVID-19 between n cells according to some random motion. For every m time period, one cell is occupied by COVID-
19. We assume that the searches in different time intervals are independent. Place of COVID-19 is uncertain, so there are
some previous probability distribution that can be quantified using some previous information. The n locations in each
time interval i are searched sequentially by the sensor, where i = 1,2, ...,m (i. e., the sensor searches sequentially all the
locations from cell 1 to ni cell in each time interval i), is imperfect and therefore, the outgoing signals from the sensor are
subject to errors. Verification of positive detections using sensor only from the investigation team is imperfect in order to
verify whether it is true or false. This type of search takes time and the objective is to find a search policy that minimizes
the expected search time until COVID-19 is found.

Here we have two cases:

Case 1: The total tie of detecting COVID-19 by the monitoring system in any time interval i is less than or equal to the
time of existing COVID-19 in this time interval before it moves to the next time interval i+ 1.

Case 2: The total time of detecting COVID-19 by the monitoring system in any time interval i is more than the time of
existing COVID-19 in this time interval then COVID-19 moves to the next time interval i+ 1 before the surveillance
system has finished its search in time interval i.

2 Search plan

COVID-19 is assumed to be in one of several cells not necessarily identical regions. Let the number of cells be n. Through
each of m time intervals, only one state is being gilled with COVID-19. In our model let COVID-19 be hidden in one of
cells of the nasopharynx and located in each one of n possible area cells AC ji where i = 1,2, ...,m and j = 1,2, ...,n (e. g.,
the respiratory system) during each of m time intervals. COVID-19 is randomly moving from one cell to another in each
time interval i where it can change its place (cell) in each time interval i and occupies a new cell during each of m time
intervals and the searches in each time intervals are independent of searcher’s action. Our aim is to detect COVID-19 as
quickly as possible. In each time interval, the imperfect sensor searches the n ACs sequentially.

After locating the place, where COVID-19 is in the AC ji (e. g., the affecteed cell) using the imperfect sensor. To
investigate the detection, a rescue team (PCR test) is sent to that cell, the test detects the virus’s DNA through ”polymerase
chain reaction” so that the virus’s genome is determined. If PCR test is positive, then we have three kinds of detection as
following:

1- Perfect Detection: The sensor identifies correctly the place (the affected cell), where COVID-19 is kept.
2- Partial Detection: The sensor correctly identifies the AC ji , where COVID-19 is held, but incorrectly identifies the

specific place captivity.
3- False Detection: COVID-19 is not hidden in the AC ji , where the sensor has recorded a detection.

In the following Figure (1), the affected part in human naspharynx is divided into 10 ACs, and a search in AC8 in a
certain time interval i = 3 yields a detection at a specific cell. The rescue team completes the search for COVID-19 in the
rest of AC ji even if it was sent to the wrong address in AC ji from the beginning, and if the COVID-19 is found there by
the team then it will be the case of partial detection. If COVID-19 is not detected in AC ji (the case of false detection), the
AC ji will be permanently erased by the sensor until the end of the search.

Suppose that AC ji , where i = 1,2, ...,m and j = 1,2, ...,n, is the cell which into stat j at time interval i, and let θi be the
parameter description of AC ji , where COVID-19 exists in the time interval, that is, θi = ji when COVID-19 is contained
in AC ji .
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Fig. 1: The part in human nasopharynx is divided into 10 ACs, COVID-19 moves from one cell to another in every time interval until

it is discovered.

Let the prior probability mass function (p. m. f.) of θi be

πi : (1i,2i, ...,ni)→ [0,1].

We write π ji = P(θi = ji).
The sensor is incomplete (imperfect) as we have seen before. Suppose that p ji = P (sensor indicates detection in

AC ji\θi = ji): that is p ji is the probability that the sensor is correctly identified the AC ji , where COVID-19 is hidden at
time interval i.

Let r ji = P (The location and detection are correctly determined by the sensor in AC ji\θi = ji).
It is clear; r ji ≤ p ji and p ji − r ji is the probability that the wrong place of COVID-19 was located in the AC ji by the

sensor, where COVID-19 is hidden.
Also, let q ji = P (detection indicated by the sensor in AC ji\θi 6= ji); 1−q ji is the sensor specificity in AC ji . Also, while

keeping the generality, we assume that p ji ≥ q ji .
Given a prior p. m. f. πi, we choose an action ai(πi) ∈ {1,2, ...,ni} that select that AC, begin searching in the next

time interval i. An action ai(πi) 6= θi leads us to one of two following results: a false detection or no detection. Following
either of these outcomes, posterior probabilities are obtained and the prior p. m. f. of θi are updated. In the case of a no
detection, the posterior p. m. f. Π−ai, ji

(πi) = (Π−ai,1
, · · · ,Π−ai,ni

) is given by

Π−ai, ji
(πi) =







(1−pai
)πai

1−pai
πai
−qai

(1−πai
)
, if ji = ai,

(1−qai
)πai

1−pai
πai
−qai

(1−πai
)
, if ji 6= ai .

(1)

The posterior p. m. f. is represented by Π+
ai, ji

(πi) = (Πai,1, · · · ,Π
+
ai,ni

)(πi) when COVID-19 detection is false.

Π+
ai, ji

(πi) =

{

0 if ji = ai
π ji

1−πai
if ji 6= ai

(2)

On the other case, no detection or false detection, we update the prior πi by Π−ai
(πi) and Π+

ai
(πi), respectively. We

must obtain a sequence of priors to get a true detection.
Let c ji be the time which the sensor needs to search AC ji . In perfect detection case, the rescue mission can be completed

by rescue team in C
(1)
ji

time units. In partial detection case, the rescue mission length is C
(2)
ji

>C
(1)
ji

. The total verification

time by the resuce team in AC ji , before it is declared to be clear, is C
(3)
ji

in false detection.

The goal of the monitoring system is to minimize the expected total time which it takes to rescue the patient and detect
COVID-19. Before we introduce the optimal search plan, we need to clear that the total time it takes to rescue the patient
consists of two parts:

1- Search Time: The time taken to detect the AC ji in which COVID-19 exists in time interval i, including all verification

time C
(3)
ji

spent in a wrong AC ji following a false detection.
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2- Rescue Time: The time used for finding and rescuing the patient after locating the AC ji in which COVID-19 is hidden,
either by partial or perfect detection.

We suppose that the time taken to search COVID-19, by the monitoring system, in any time interval i is less than or
equal the time of existence of COVID-19 in this time interval before it moves to the next time interval i+ 1. Since θi

denotes the AC ji that contains COVID-19 in time interval I, conditional on θi = ji, the rescue time takes on values C
(1)
ji

or C
(2)
ji

depending on whether the detection in AC ji is perfect or partial. Therefore, the conditional expected rescue time is

equal to

r ji

p ji

C
(1)
ji

+
p ji − r ji

p ji

C
(2)
ji
. (3)

Because at the beginning of the search, there is probability π ji that COVID-19 is hidden in AC ji , the expected total
rescue time is

m

∑
i=1

n

∑
j=1

π ji

(

r ji

p ji

C
(1)
ji

+
p ji − r ji

p ji

C
(2)
ji

)

, (4)

which is a constant in the search plane. We can introduce other important objective function, which minimize the expected
search time until correctly detecting the AC ji in which COVID-19 is hidden, either by a partial or a perfect detection. To

simplify the notation, let C ji =C
(3)
ji

.

3 The optimal search plan

A search plan σ i a sequence of actions adapted to the sequence of priors, in which each action depends only on the latest
prior p. m. f. πi. Let Tσ (πi) be the expected search time until detecting the correct AC ji , if πi and the searcher follows
search policy σ . Given two policies σ1 and σ2, we write σ1 ≥ πiσ2, when Tσ1

(πi)≤ T2(πi).
Following Lemma is useful in proving Theorem (3).

Lemma 3.1.
Consider two policies in each time interval

δ1i =

(

ji, ki, a3i
, a4i

, · · ·
ki, Gi, Gi, Gi, · · ·

)

and

δ2i =

(

ki, ji, a3i
, a4i

, · · ·
ji, Gi, Gi, Gi, · · ·

)

For any πi, δ1i ≥ πiδ2i, that is the expected search time with policy δ1i, is shorter than with policy δ2i in time interval
i, if and only if

p jiπ ji

c ji + q jiC ji

≥
pki

πki

cki
+ qki

Cki

.

Lemma (3.1) has been proved in case of COVID-19 in one out of n possible locations and one time interval i = 1, (see
Kress, M., Kyle Y. and Szechtman, R. [18]. By a similar way we can calculate the expected search time until detecting the
correct AC ji with policy δ1i and policy δ2i at time interval i, and it is given by

Tδ1i
(πi) = c ji +π ji [(1− p ji)(cki

+ qki
(TGi

(Π+
ki Π−ji (πi)))+ (1− qki

)T
δ̂
(Π−ki Π−ji (πi)))]+πki

[q ji(C ji + cki
+(1− pki

)T Gi

(Π−ki Π−ji (πi)))+ (1− q ji(cki
+(1− pki

)T
δ̂
(Π−ki Π−ji (πi)))]+ (1−π ji−πki

)[q ji(C ji + cki
+ qki

(Cki
+TGi(Π

+
ki Π+

ji

(πi)))+ (1− qki
)TGi(Π

−
ki Π+

ji (πi))+ (1− a ji)(cki
+ aki

(Cki
+TGi

(Π+
ki Π−ji (πi)))+ (1− qki

)T
δ̂
(Π−ki Π−ji (πi)))].

Where TGi
(·) denotes the expected search time with the greed rule in each time interval i. Interchanging the in-dices j and

k, we get an expression for Tδ2i
(πi).

Now since Π−ki Π−ji (πi) = Π−ji Π−ki (πi), Π+
ki Π−ji (πi) = Π−ji Π+

ki (πi) and Π−ki Π+
ji = Π+

ji Π−ki (πi), and taking the difference,

we have
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Tδi1
(πi)−Tδ2i

(πi) =−π jip ji(cki
+ qki

Cki
)+πki

pki
(c ji + q jiC ji).

Theorem 3.1. Given a prior p. m. f. πi for θi, the optimal search policy follows a greedy rule, where the AC ji to search

next in time interval i is one having the maximal value of

p jiπ ji

c ji + q jiC ji

,

where C
(3)
ji

=C ji , i = 1,2, · · · ,m and j = 1,2, · · · ,n.

To prove Theorem (3.1), we introduce two alternatives to express a feasible policy in any time interval i. First, let

(

a1i
, a2i

, a3i
, a4i

, · · ·
Gi, Gi, Gi, Gi, · · ·

)

denote a feasible policy such that the searcher first follows the order a1i
,a2i

,a3i
,a4i

, · · ·until the first detection takes place,
If the first detection correctly locates COVID-19 (either perfect detection or partial detection), then the problem ends. If
the first detection is a false detection, then the searcher switches to the greedy rule thereafter. Second, let

(

a1i
, a2i

, a3i
, a4i

, · · ·
asi

, Gi, Gi, Gi, · · ·

)

denote a policy similar to the previous one, with the exception that if the first search in Aca1i
results in a false detection,

then the searcher is required to search in ACasi
, immediately before switching to the greedy rule.

Proof of Theorem 3.1. The proof of this theorem on the number of Acs. The theorem is trivially true for n = 1.

Suppose that the greedy rule is optimal if there are n−1 of fewer Acs. Next we show that it is also optimal when there
are nAcs. Let

p1iπ1i

c1i + q1iC1i

= max
i=1,2,··· ,m
j=1,2,···,n

p jiπ ji

ck ji
+ q jiC ji

. (5)

We consider a class of search policies in which AC1 is searched only in each time interval i following [Ti − 1]
no0detection searches elsewhere Ti denotes the detection of the target in each time interval i; that is, a ji 6= 1 for
i = 1,2, · · · ,m, j = 1,2, · · · ,Ti− 1 and aTi

= 1i.

Let ∆Ti denote the set of these policies. In the first, we will discuss the case when Ti < ∞. Let

δ1i =

(

1, a1i
, a2i

, · · ·
G, Gi, Gi, · · ·

)

,

δ2i =

(

a1i
, 1, a2i

, · · ·
Gi, Gi, Gi, · · ·

)

,

and

δTi
=

(

a1i, a2i, · · · , ari−1, 1i, ari+1, · · ·
G, Gi, · · · , Gi, Gi, Gi, · · ·

)

.

From Equation (5) and Lemma 3.1, we have

δ1i ≥πi

(

1i, a1i, a2i, · · ·
G, Gi, Gi, · · ·

)

≥πi
δ2i.

Hence, δ1i ≥ δ2i. By repeating this process, we can see that δ1i ≥πi
δ2i ≥πi

δ3i ≥πi
· · · ≥πi

δTi which leads to δ1i ≥ δTi. In
other words, we show that for any policy in ∆Ti, with Ti < ∞, we can find a better policy that starts with AC1 in each time
interval i.

In previous section, we show that (Tδri
) is a non-decreasing real sequence, so that Tδ1i

≤ Tδ∞i
. Hence, for any policy in

∆∞i
, the expected search time does increasee by starting the search on AC1i.
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4 Algorithm

To find the optimal policy in all time intervals, we use the following algorithm to generate the search order if all the
searches resulted in no detection.

1- enter n;
2- enter m;
3- for i = 1 to m;
4- set wi = 1;

5- choose ai such that
pai

πai
cai

+qai
Cai

= max
j

p ji
π ji

c ji
+q ji

C ji
, and let ewi

= ai;

6- update πi as follows:

πai
←

(1−pai
)πai

1−paai
πai
−qai

(1−πai
) , ji = ai and

π ji ←
(1−qai

)π ji

1−paai
πai
−qai

(1−πai
) , ji 6= ai; and

7- let wi + 1→ wi, and go to 4.

Where e = {ewi
}∞

wi=1 denotes the search order generated by this algorithm.

Remark 3.1. We call the search policy in Theorem 3.1, the greedy rule, because each time we search in the AC ji , it has
the maximal ratio between the probability of finding COVID-19 and the Expected (wasted) cost due to a false detection.

Theorem 3.2. If δ1i =

(

ji, ki, a3i
, a4i

, · · ·
ki, Gi, Gi, Gi, · · ·

)

is the optimal search policy in eachtime interval i, then the total optimal

expected search time Tδi
(πi) with the greedy rule until detecting the correct AC ji with policy δ1i at all-time intervals i,

i = 1,2, · · · ,m; j = 1,2, · · · ,n is

Tδ1
(πi) =

m

∑
i=1

[c ji +π ji [(1− p ji)(cki
+ qki

(TGi(Π
+
ki Π−ji (πi)))+ (1− qki

)T
δ̂
(Π−ki Π−ji (πi)))]+πki

[q ji(C ji + cki
+(1− pki

)

TGi(Π
−
ki Π+

ji (πi)))+ (1− q ji)(cki
+(1− pki

)T
δ̂
(Π−ki Π−ji (πi)))]+ (1−π ji−πki)[q ji(C ji + cki

+ qki
(Cki

+TGi

(Π+
ki Π+

ji (πi)))+ (1− qki
)TGi(Π

−
ki Π+

ji (πi))+ (1− q ji)(cki
+ qki

(Cki
+TGi

(Π+
ki Π−ji (πi)))+ (1− qki

)T
δ̂
(Π−ki

Π−ji )))]].

Proof Let Tδ1i
(πi) = minE(ti), where E(ti) is the expected search time until COVID-19 is found in each time interval i,

i = 1,2, · · · ,m and ti is a positive value. But now we need to prove that:

minE(t1 + t2 + t3 + ...+ tm) = minE(t1)+minE(t2)+minE(t3)+ · · ·+minE(tm).

Since

E(t1 + t2 + t3 + · · ·+ tm) = E(t1)+E(t2)+E(t3)+ · · ·+E(tm) = T0.

Hence,

T0 ≥minE(t1)+E(t2)+E(t3)+ · · ·+E(tm) = T1.

Also,

T1 ≥minE(t1)+minE(t2)+E(t3)+ · · ·+E(tm) = T2.

Also, we find

T2 ≥minE(t1)+minE(t2)+minE(t3)+ · · ·+E(tm) = T3.

By the same logic, we can write

Tn−1 ≥minE(t1)+minE(t2)+minE(t3)+ · · ·+minE(tm) = Tn.

Hence, the minimum of the sequence {T0,T1,T2, · · · ,Tn} is
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Tn = minT1 +minT2 +minT3 + · · ·+minTm,

i. e.,

T0 = minT1 +minT2 +minT3 + · · ·+minTm.

Hence,

Tδ1
(πi) =

m

∑
i=1

Tδi1
(πi).

And according to out search plane

δ1i =

(

ji, ki, a3i
, a4i

, · · ·
ki, Gi, Gi, Gi, · · ·

)

is the optimal search plan in each time interval i. Therefore,

Tδ1
(πi) =

m

∑
i=1

[c ji +π ji [(1− p ji)(cki
+ qki

(TGi(Π
+
ki Π−ji (πi)))+ (1− qki

)T
δ̂
(Π−ki Π−ji (πi)))]+πki

[q ji(C ji + cki
+(1− pki

)

TGi
(Π−ki Π+

ji (πi)))+ (1− q ji)(cki
+(1− pki

)T
δ̂
(Π−ki Π−ji (πi)))]+ (1−π ji−πki)[q ji(C ji + cki

+ qki
(Cki

+TGi

(Π+
ki Π+

ji (πi)))+ (1− qki
)TGi(Π

−
ki Π+

ji (πi))+ (1− q ji)(cki
+ qki

(Cki
+TGi

(Π+
ki Π−ji (πi)))+ (1− qki

)T
δ̂
(Π−ki

Π−ji )))]].

5 Application

Suppose COVID-19 is a randomly moving according to a three states Markov chain with a transition matrix

W =





0.5 0.2 0.3
0.0 0.7 0.3
0.4 0.0 0.6



 .

The initial probabilities are given by: π10=0.3, π20=0.2, π30=0.5, and the time it takes to search COVID-19 by a monitoring
system in each time interval i = 1,2,3,4,5 between 3 cells, j, j = 1,2,3 is less than or equal 5 seconds before COVID-19
moves to another cell, next time interval. We get π ji and suppose the values of p ji, r ji and q ji , where the sum of them in
each cell, which the sensor indicates detection in it, equals 1 as the following:

Table 1: The values of the three kinds of detections in each time interval.

Time π1i π2i π3i p1i p2i p3i r1i r2i r3i q1i q2i q3i

Interval 1

1 0.350 0.20000 0.4500 0.6400 0.5000 0.210 0.2000 0.3000 0.1200 0.1600 0.2000 0.6700

2 0.355 0.21000 0.4350 0.6560 0.2370 0.550 0.1440 0.1140 0.2500 0.2000 0.6490 0.2000

3 0.351 0.21800 0.4305 0.4624 0.4350 0.600 0.2000 0.2320 0.2000 0.3376 0.3330 0.2000

4 0.347 0.22290 0.4291 0.6432 0.2289 0.500 0.3568 0.1158 0.2500 0.0000 0.6553 0.2500

5 0.345 0.13918 0.4287 0.2313 0.6000 0.425 0.1153 0.1000 0.2369 0.6530 0.3000 0.3379

Also, we suppose C
(
ji1) and C

(
ji2) according to the previous constraints as the following:
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Table 2: The values of rescue team time in each time interval.

Time Interval 1 C1
1i C1

2i C1
3i C2

1i C2
2i C2

3i

1 2.0 1.3 1.0 2.6 3.2 3.5

2 1.7 0.5 1.5 3.2 2.5 3.5

3 2.0 1.0 1.0 3.5 4.0 2.8

4 1.6 2.0 1.0 3.4 3.0 2.0

5 1.0 1.5 2.2 2.0 3.0 2.8

From relation (4), we can get the expected total rescue time as the following:

E(total rescue time) =
5

∑
i=1

3

∑
j=1

π ji

(

r ji

p ji

C
(1)
ji

+
p ji− r ji

p ji

C
(2)
ji

)

.

Hence,

E(total rescue time) = 11.12428 seconds.
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