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Abstract: In this paper, a novel hybrid glowworm swarm optimization (HGSO) algorithm is proposed. Firstly, the presented algorithm
embeds predatory behavior of artificial fish swarm algorithm (AFSA) into glowworm swarm optimization (GSO) algorithm and
combines the improved GSO with differential evolution (DE) on the basis of a two-population co-evolution mechanism. Secondly,
under the guidance of the feasibility rules, the swarm converges towards the feasible region quickly. In addition, to overcome premature
convergence, the local search strategy based on simulated annealing (SA) is used and makes the search near the true optimum
solution gradually. Finally, the HGSO algorithm is for solving constrained engineering design problems. The results show that HGSO
algorithm has faster convergence speed, higher computational precision, and is more effective for solving constrained engineering
design problems.
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1. Introduction

Generally speaking, in science calculation and engineer-
ing application field, many problems can be transformed
into optimization problems, optimization can be divided
into no constraint and constraints, and among them a con-
strained optimization problem can be described as follows:

maxf(x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , n.
hj(x) = 0, j = 1, 2 · · · , p.
ak ≤ xk ≤ bk, k = 1, 2, · · · , d. (1)

where S = {x | x ∈ Rd, ak ≤ xk ≤ bk, k = 1, 2, · · · , d}
denotes the search space, x = [x1, x2, · · · , xd]

T denotes
the decision solution vector, d is dimension of the deci-
sion variable, F = {x | x ∈ S, gi(x) ≤ 0, hj(x) =
0, i = 1, 2, · · · , n, j = 1, 2, · · · , p} denotes the feasible
region, obviously, x ∈ F ⊆ S. In fact, an equality con-

straint hj(x) = 0 can be replaced by a couple of inequal-
ity constraint hj ≤ δ and hj ≥ −δ ( δ is a small tol-
erant amount). If we find min f(x), we will transform it
into solving max g(x) by g(x) = −f(x). Constrained op-
timization problem is that the objective function is made
find the optimal solution in the feasible region.

For solving constrained optimization design problem,
most of traditional algorithms are based on the concept
of gradient, they request that the objective function and
constraint conditions should be differentiable, and the ob-
tained solution is mostly local optimal solution. Penalty
function methods are simple, convenient and don’t strictly
require problem itself, but how to determine the suitable
penalty factors is more difficult. In addition, in view of
the deficiencies of the low accuracy and the poor stabil-
ity for solving constrained optimization problems, this pa-
per a hybrid glowworm swarm optimization (HGSO) algo-
rithm is proposed. The proposed HGSO introduces preda-
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tory behavior of artificial fish swarm algorithm (AFSA)
into glowworm swarm optimization (GSO) algorithm and
combines the improved GSO with differential evolution
(DE). In the evolutionary process, HGSO uses the con-
straint processing technology based on feasibility rules to
update the optimal location of the population, which makes
the population rapidly convergence to feasible regions and
find better feasible solution. Besides, to avoid premature,
HGSO adopts the local search strategy based on simulated
annealing (SA) to optimize the local optimal value.

The rest of the paper is organized as follows: In Section
2, AFSA, GSO and DE are simply described. In Section 3,
the HGSO hybrid strategy is proposed and explained in
detail. Simulation and comparisons based on engineering
design problems of HGSO are presented in Section 4 and
in the end some conclusions in Section 5.

2. Basic Algorithms

2.1. Artificial Fish Swarm Algorithm (AFSA)
AFSA is a random search algorithm based on simulat-

ing fish swarm behaviors [1]. Assume that Xi is the posi-
tion of artificial fish (AF) i, y = f(X) is the fitness value
at position X , dij = ∥Xi−Xj∥ represents the distance be-
tween the AF i and j, V isual and δ represent the visual
distance and crowd factor of the AF respectively, nf is the
number of its fellows within the visual,stepis the step of
the AF moving, S = {Xj | ∥Xi − Xj∥ < V isual} is
the set of AF i exploring area at the present position. The
typical behaviors of the AF are expressed as follows:

(1) AF-Prey: Suppose that Xi is the AF state at present
Xj(Xj ∈ S) is the state of AF attempt within the visual,
trynumber is the maximum number of AF attempts. The
behavior of prey can be expressed as follows:

prey(Xi) =

{
Xi + step

Xj − Xi

∥Xj − Xi∥
if yj > yi

Xi + (2rand − 1) · step else

(2)

where rand is random function.
(2) AF-Swarm: Suppose that Xi is the AF state at

present, and Xc =
∑

Xi∈S Xi/nf is the center position
of the AF within the visual. The behavior of swarm can be
described as follows:

swam(Xi) =

{
Xi + step

Xc − Xi

∥Xc − Xi∥
if

yc

nf
> δyi

prey(Xi) else

(3)

(3) AF-Follow: Suppose that Xi is the AF state at
present, and ymax = max{f(Xj) | Xj ∈ S}. The behav-
ior of follow can be expressed in the following equation:

follow(Xi) =

{
Xi + step

Xmax − Xi

∥Xmax − Xi∥
if

ymax

nf
> δyi

prey(Xi) else

(4)

2.2. Glowworm Swarm Optimization (GSO)

Glowworm swarm optimization (GSO) proposed by
Krishnanand K. N and Ghose D. in 2005[2] [3]. Each it-
eration of GSO is consists of a luciferin-update phase fol-
lowed by a movement phase based on a transition rule.

Luciferin-update phase: The luciferin update depends
on the function value at the glowworm position. During the
luciferin-update phase, each glowworm adds, to its previ-
ous luciferin level, a luciferin quantity proportional to the
fitness of its current location in the objective function do-
main. Also, a fraction of the luciferin value is subtracted
to simulate the decay in luciferin with time. The luciferin
update rule is given by:

li(t+ 1) = (1− ρ)li(t) + γf(xi(t+ 1)) (5)

where li(t) represents the luciferin level associated with
glowworm i at time t, ρ is the luciferin decay constant
(0 ≤ ρ ≤ 1), γ is the luciferin enhancement constant,
and f(xi(t)) represents the value of the objective function
at agent i′s location at time t.

Movement phase: During the movement phase, each
glowworm decides, using a probabilistic mechanism, to
move toward a neighbor that has a luciferin value higher
than its own. That is, glowworms are attracted to neigh-
bors that glow brighter. The set of neighbors of glowworm
i at time t is calculated as follows:

Ni(t) = {j : ∥xj(t)−xi(t)∥ < rid(t); li(t) < lj(t)} (6)

where the ∥x∥ is the Euclidean norm of x, and rid rep-
resents the variable neighborhood range associated with
glowworm i at time t, which is bounded above by a circu-
lar sensor range rs(0 < rid(t) < rs). For each glowworm
i, the probability of moving toward a neighbor j ∈ Ni(t)
is given by:

Pij =
lj(t)− li(t)∑

k∈Ni(t)
lk(t)− li(t)

(7)

Let glowworm i select a glowworm j ∈ Ni(t) with
Pij(t) given in (7). Then, the discrete-time model of the
glowworm movements can be stated as:

xi(t+ 1) = xi(t) + s
( xj(t)− xi(t)

∥xj(t)− xi(t)∥

)
(8)

where xi(t) ∈ Rd is the location of glowworm i, at time t,
in the d-dimensional real space Rd, and s(> 0) is the step
size.

Neighborhood range update rule: We associate each
agent i with a neighborhood whose radial range rid(t) is
dynamic in nature. Let r0 be the initial neighborhood range
of each glowworm (that is, rid(0) = r0, ∀i). To adaptively
update the neighborhood range of each glowworm, the rule
as follows:

rid(t+ 1) = min{rs,max{0, rid(t) + β(ni − |Ni(t)|)}} (9)

where β is a constant parameter and nt is a parameter used
to control the number of neighbors.
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2.3. Differential Evolution (DE)
DE is proposed by Storn and K. Price[4] for solving

Chebyshev polynomial, it is a heuristic random search al-
gorithm based on population differences, generates new
individual through mutation and crossover, and retains ex-
cellent individuals according to survival of the fittest. Sup-
pose that Np denotes population size, xi(k) = [x1

i (k), x
2
i (k),

· · · , xd
i (k)] denotes the position of the i-th individual at

the k-th iteration. The procedure of DE is summarized as
follows:

Step 1 Initialization. Randomly initialize the positions
xi(k)(i = 1, 2, · · · , Np) of Np individuals in the search
space, and let the number of iterations k = 0.

Step 2 Mutation. According to the following equation
in (10), DE achieves individual variation through the dif-
ference strategy.

vi(k + 1) = xr1(k) + F × (xr2(k)− xr3(k)) (10)

where F denotes scaling factor, r1, r2, r3 ∈ {1, 2, · · · , Np}
are three random numbers and i ̸= r1 ̸= r2 ̸= r3. If
νji (k+1) < aj , then let νji (k+1) = aj ; If νji (k+1) > bj ,
then let νji (k + 1) = bj ,j = 1, · · · , d.

Step 3 Crossover. According to the following equa-
tion (11), implement crossover operation for the popula-
tion {xi(k)} at the k-th iteration and variable intermediate
vi(k + 1):

uj
i (k + 1) =

{
v
j
i
(k + 1) if randb(j) ≤ CR or j = randr(i),

x
j
i
(k) otherwise

(11)

where randb(j) ∈ [0, 1] denotes the j-th value gener-
ated by the same random generator, CR ∈ [0, 1] denotes
mutation rate, randr(i) ∈ [1, 2, · · · , d] is a random selec-
tion index, which ensures that ui(k + 1) can get at least a
parameter from vi(k + 1).

Step 4 Selection. According to the following equation
(12), DE selects the individuals into the next generation
population by greed strategy:

xi(k + 1) =
{

ui(k + 1) if f(ui(k + 1)) ≥ f(xi(k)),

x
j
i
(k) otherwise

(12)

Step 5 If the maximum number of iterations is met,
then calculate the fitness value f(xi(k+1))(i = 1, · · · , Np)
of each individual, then stop and output the optimal posi-
tion and the optimal value of the population; otherwise, let
k = k + 1, return Step 2.

3. Hybrid Glowworm Swarm Optimization
Strategies (HGSO)

3.1. Improved GSO (IGSO) Based on Predatory Behav-
ior of AFSA

In the basic GSO algorithm, each glowworm only in
accordance with luciferin values of glowworms in its neigh-
bor set, selects the glowworm by a certain probability and
moves towards it. However, if the search space of a prob-
lem is very large or irregular, the neighbor sets of some

glowworms may be empty, which leads these glowworms
to keep still in iterative process. To avoid this case and
ensure that each glowworm keeps moving, we will intro-
duce predatory behavior of AFSA into GSO and propose
an improved GSO (IGSO) algorithm. The idea of IGSO is
as follows: the glowworms whose neighbor sets are empty
are carried out predatory behavior in their dynamic deci-
sion domains. Assume that N represents population size,
xi(t) = [x

(1)
i (t), x

(2)
i (t), · · · , x(d)

i (t)] denotes the position
of the i-th glowworm at the t-th iteration. The procedure
of IGSO can be described as follows:

Step 1 let li(0) = l0, rid(t) = r0, t = 0, here, t de-
notes the number of GSO iterations. Randomly initialize
the position xi(t)(i = 1, 2, · · · , N) of each glowworm in
the search space. Calculate the fitness value f(xi) of each
glowworm. Initialize the current optimal position x∗ and
the current optimal value f∗

x according to the fitness val-
ues.

Step 2 Update the luciferin value li(t) of each glow-
worm according to (5).

Step 3 Calculate Ni(t) and Pij(t) for each glowworm
according to (6) and (7).

Step 4 For each glowworm, if Ni(t) is not empty, then
according to Pij(t) and roulette method, select the j-th
glowworm in Ni(t) and move toward it, calculate xi(t+1)
according to (8), Or else, implement predatory behavior in
rid(t) and get xi(t + 1). If xj

i (t + 1) < aj , then xj
i (t +

1) = aj ; If xj
i (t + 1) > bj , then xj

i (t + 1) = bj , where
j = 1, 2, · · · , d.

Step 5 Calculate the current fitness value f(xi(t)) of
each glowworm, if the optimal position and optimal value
of the current population are better than x∗ and f∗

x , then
update x∗ and f∗

x , or else, don’t update.
Step 6 If the maximum number of iterations is met,

then stop and output x∗ and f∗
x ; or else, calculate rid(t+1)

according to (9) and let t = t+ 1, return Step 2.

3.2. The Feasibility Rules
The penalty function methods are a kind of constraint

processing technology that is the most commonly used,
it achieves balances between the objective function and
constraints by adjusting the penalty factors, but how to
select the suitable penalty factors is one difficulty of us-
ing penalty function methods. However, the constraint pro-
cessing technology based on the feasibility rules will sepa-
rate constraint conditions and objective function; it brings
no additional parameters and is implemented easily. The
rules are described as follows[5]: Assume that xi and xj

denote the positions of the i-th individual and j-th indi-
vidual respectively, if any one happens in the following
cases, we will rule xi is better than xj : (1) xj is infea-
sible, but xi is feasible; (2) Both xi and xj are feasible,
but f(xi) > f(xj); (3) Both xi and xj are infeasible, but
viol(xi) < viol(xj). In the first and the third cases, the
search tends to the feasible region rather than infeasible
region, and in the second case, the search tends to the feasi-
ble region with better solution. In this paper, the constraint
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violation value of an infeasible solution is calculated as
follows:

viol(x) =

N∑
i=1

max[gi(x), 0], (13)

where it is supposed that all equality constraints have al-
ready been transformed into inequality constraints.

3.3. The Local Search Based on SA
Simulated annealing (SA) [5] [6] is a stochastic search-

ing algorithm with jumping property, which can make the
search avoid falling into the local optimum. In the search
process, SA accepts a better solution with probability 1,
but also accepts a worse solution with a certain probability.
Such a probabilistic jumping property can be controlled
by adjusting the temperature, that is to say, the probability
decreases as the temperature decreases. When the temper-
ature tends to zero the probability will also approach to
zero. It has been theoretically proved that under certain
conditions SA is globally convergent in probability 1. As-
sume that ptg denotes the optimal position of the population
at the t-th generation, to avoid premature convergence, we
adopt the local search strategy on the basis of the feasibil-
ity rules and SA for ptg. Its process is described as follows:

Step 1 Let m = 1, p
′

g = ptg .
Step 2 Generate a new solution according to (14):

x
′
= p

′

g + η × (Xmax −Xmin)×N(0, 1) (14)

where, η denotes the step size of the search, N(0, 1) de-
notes a random number normally distributed with mean
0 and variance 1, Xmin and Xmax denote the upper and
lower bounds of the solutions defined by the problem.

Step 3 According to the following criteria computation
pa:

3.1. If x
′

is feasible and p
′

g is infeasible, let pa = 1.
3.2. If x

′
is infeasible and p

′

g is feasible, let pa = 0.
3.3. If both x

′
and p

′

g are feasible, let pa = min{1,
exp[(f(x

′
)− f(p

′

g))/T (k)]}.
3.4. If both X

′
and p

′

g are infeasible, let pa = min{1,
exp[(viol(p

′

g)− viol(x
′
))/T (k)]}.

where T (k) denotes the temperature at the k-th gener-
ation.

Step 4 If pa ≥ U(0, 1), then p
′

g = x
′
, where U(0, 1)

represents a random number uniformly distributed in the
range of [0, 1].

Step 5 Let m = m + 1. If m > 1, stop and output p
′

g

as the new optimal position of the population, where L is
a user-defined maximum number of iterations; else go to
Step 2.

3.4. IGSO-DE Strategy
In this section, a new algorithm called IGSO-DE based

on IGSO and DE is introduced. IGSO-DE is a two-group
co-evolution algorithm, whose principle is described as

follows: in the search space, the entire population is di-
vided equally into two groups randomly, one group evolves
according to IGSO, and the other group evolves according
to DE. After the end of each generation, based on an opti-
mal information sharing mechanism, that is, if the current
optimal solution of IGSO is better than that of DE, then
the current optimal solution of DE is updated by that of
IGSO, which guides DE group towards the direction of
the optimal solution, or else, the current optimal solution
of IGSO is updated by that of DE, which guides IGSO
group towards the direction of the optimal solution. As a
consequence, two groups can obtain information not only
from their own group but also from another group in evo-
lution, which can make two groups achieve co-evolution
and avoid premature.

3.5. HGSO Algorithm
The proposed HGSO takes IGSO-DE as the basic frame-

work, updates the optimum position of the population us-
ing updating strategy on the basis of the feasibility rules
in the search process, and adopts the local search strategy
based on SA for the optimal position of each generation.
In addition, in this paper, the initial temperature is deter-
mined by the following empirical formula:

T (0) = −fmax − fmin

ln(0, 1)
(15)

where fmax and fmin are the maximum and minimum ob-
jective values of the solutions in the initial swarm respec-
tively. Besides, the exponential annealing, i.e. T (k+1) =
λT (k), is used, where the annealing rate satisfies 0 < λ <
1. The procedure of HGSO can be described as follows:

Step 1 Let k = 0, here, k denotes the mark of HGSO
iteration. Randomly initialize the positions of N individ-
uals in the search space, and calculate initial temperature
T (k) according to (15), initialize the optimal position X∗

and the optimal value f(X∗) of the population according
to the feasibility rules.

Step 2 The entire population is divided equally into
two swarms at random: the glowworm swam1 and the dif-
ferential evolution swam2.

Step 3 According to Section 3.1, implement IGSO for
the glowworm swam1, then according to the feasibility
rules, determine the current optimal position Xk

GSO−best
of the glowworm swam1, apply the local search strategy
based on SA to Xk

GSO−best and get the new position
Xk

GSO−newbest.
Step 4 According to Section 2.3, implement DE for

the differential evolution swam2, and according to the fea-
sibility rules, determine the current optimal position
Xk

DE−best of the differential evolution swam2, apply the
local search strategy based on SA to Xk

DE−best and get the
new position Xk

DE−newbest.
Step 5 According to the feasibility rules, if

Xk
GSO−newbest is better than Xk

DE−newbest, and then
Xk

GSO−newbest updates Xk
DE−newbest, otherwise,
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Xk
DE−newbest updates Xk

GSO−newbest. In addition, accord-
ing to the feasibility rules, update the optimal position X∗

and the optimal value f(X∗) of the entire population.
Step 6 If the maximum number of iterations is met,

then stop and output the optimal position X∗ and the op-
timal value f(X∗) of the entire population; or else, let
T (K + 1) = λT (k), k = k + 1, go back to Step 3.

4. Simulation Experiments

4.1. Engineering Optimization Problems
To verify the reliability and validity of HGSO, the fol-

lowing five typical engineering constrained design prob-
lems are used to test the performance of HGSO.

4.2. Experimental Environment
The HGSO are coded in MATLAB R2009a and imple-

mented on 2.00GHz CPU machine with 1.92GB RAM un-
der Windows XP platform. The parameters of the HGSO
are set as follows: population size N = 250, the luciferin
decay constant ρ = 0.4, the luciferin enhancement con-
stant γ = 0.6, the rate of change of the neighbourhood
range β = 0.08, the neighbourhood threshold nt = 5,
step-size of the movement s = 0.03, the initial luciferin
value l0 = 5, the maximum number of attempts of glow-
worms in predatory behavior trynumber = 15, scaling
factor F = 0.4, mutation probability CR = 0.9, annealing
rate λ = 09415, step size of the local search η = 0.00315,
the number of iterations of the local search at each gener-
ation L = 20.

Example 1. A welded beam design problem
This problem is taken from [12], in which a welded

beam is designed for minimum cost (f(x)) subject to con-
straints on shear stress (τ); bending stress in the beam (θ);
buckling load on the bar (Pc); end deflection of the beam
(δ); and side constraints. There are four design variables
as shown in Figure 1, i.e. h(x1), l(x2),t(x3) and b(x3) The

Figure 1:The welded beam design problem

problem can be mathematically formulated as follows:

min f(x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

s.t. g1(x) = τ(x)− 13600 ≤ 0

g2(x) = σ(x)− 30000 ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)

− 5.0 ≤ 0

g5(x) = 0.125− x1 ≤ 0

g6(x) = δ(x)− 0.25 ≤ 0

g7(x) = 6000− Pc(x) ≤ 0

0.1 ≤ x1, x4 ≤ 2; 0.1 ≤ x2, x3 ≤ 10

where

τ(x) =
√
(τ ′)2 + 2τ ′τ ′′x2/(2R) + (τ ′′)2,

τ
′
= 6000/(

√
2x1x2),

τ
′′
= MR/J,

M = 6000(14 + x2/2),

R =
√
[x2

2 + (x1 + x3)2]/4,

J = 2{
√
2x1x2[x

2
2/12 + (x1 + x3)

2/4]},
σ(x) = 504000/(x4x

2
3), δ(x) = 2.1952/(x3

3x4),

Pc(x) = 4.013 · E · (1− 0.0282346x3) · x3x
3
4/(6L

2),

L = 14, E = 30× 106.

The circular sensor range rs and the initial dynamic
decision domain r0 of the glowworms are all set to 5 for
this problem, HGSO-1 represents the maximum number
of generations is set to Tmax = 300, which is in accor-
dance with those of HPSO [5]and DSS-MDE [11], HGSO-
2 denotes the maximum number of generations is set to
Tmax = 400, the other parameters are set to the same as
those of Section 4.2. Simulation results and comparisons
are shown in Table 1 and Table 2.

Table 1 Comparison of the best solution for Example 1 by
different methods

Methods x(h)1 x2(l) x3(t) x4(b) f(x)

Deb[13] 0.2455 6.1960 8.2730 0.2422 2.385937

Ray, Liew[14] 0.2444382760 6.2379672340 8.2885761430 0.2445661820 2.3854347

FSA[7] 0.24435257 6.2157922 8.2939046 0.24435258 2.381065

DSS-MDE[11] 0.2443689758 6.2175197152 8.2914713905 0.2443689758 2.38095658

Coello[15] 0.2088 3.4205 8.9975 0.21 1.748309
Coello,
Montes[16]

0.2060 3.4713 9.0202 0.2065 1.728226

CPSO[8] 0.204381 3.505107 9.033546 0.205878 1.728024
Coello,
Becerra[17]

0.205700 3.470500 9.036600 0.205700 1.724852

HPSO[5] 0.205730 3.470489 9.036624 0.205730 1.724852

CPSOSA[18] 0.20572961513-
4341

3.47048900451-
6055

9.03662445443-
3026

0.205729619072-
119

1.724852

PSO-DE[10] 0.205729640 3.470488666 9.036623910 0.205729640 1.724852309

HGSO-1 0.205729619-
261986

3.47048893-
3856535

9.036624361-
111119

0.20572961-
9262203

1.724852234-
810284

HGSO-2 0.205729619-
262158

3.470488933-
849532

9.036624361-
111766

0.205729619-
262158

1.724852234-
809372
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Table 2 Statistical results of different methods for Example 1
Methods Best Mean Worst Std. Dev.

Deb[13] 2.385937 N/A N/A N/A

Ray, Liew[14] 2.3854347 3.0025883 6.3996785 0.959078

FSA[7] 2.381065 2.404166 2.488967 N/A

DSS-MDE[11] 2.38095658 2.38095658 2.38095658 3.19E-10

Coello[15] 1.748309 1.771973 1.785835 0.011220

Coello, Montes[16] 1.728226 1.792654 1.993408 N/A

CPSO[8] 1.728024 1.748831 1.782143 0.012926

Coello, Becerra[17] 1.724852 1.971809 3.179709 0.443131

HPSO[5] 1.724852 1.749040 1.814295 0.040049

CPSOSA[18] 1.724852 1.724853 1.724861 1.705146210-
873380e-005

PSO-DE[10] 1.724852309 1.724852309 1.724852309 6.7e-016
HGSO-1 1.72485223481-

0284
1.72485223481-
5348

1.72485223482-
5736

3.599302351912-
389e-012

HGSO-2 1.72485223480-
9372

1.72485223480-
9373

1.72485223480-
9374

8.853024971371-
397e-016

From Table 1, it is observed that the best feasible so-
lution obtained by HGSO is competitive to the results ob-
tained in [5], [17] and [18], but better than the results ob-
tained by other methods. From Table 2, it can be seen that
the average searching quality of HGSO is greatly superior
to those of the other methods. In addition, even the worst
solution obtained by HGSO is better than the best solu-
tions reported in [7], [8], [10], [11], [13], [14], [15] and
[16], in 30 independent runs, the standard deviation of the
results by HGSO-1 is very small and its precision reaches
10−12, which is slightly worst than that of PSO-DE [10]
but better than those of the other methods, however, the
maximum number of generations by PSO-DE [10] is un-
known. In addition, the standard deviation of the results by
HGSO-2 is already competitive to that of PSO-DE [10], its
precision reaches 10−16, which shows that the robustness
of HGSO is the best to solve this problem.

Example 2. A tension/compression string design prob-
lem

This problem is described in [19], and the aim is to
minimize the weight ( f(x)) of a tension/compression spring
(as shown in Figure 2) subject to constraints on minimum
deflection, shear stress, surge frequency, limits on outside
diameter and on design variables. The design variables are
the mean coil diameter D(x2), the wire diameter d(x1)
and the number of active coils P (x3).

Figure 2: The tension/compression string design problem

The problem can be mathematically formulated as fol-
lows:

min f(x) = (x3 + 2)x2x
2
1

s.t.g1(x) = 1− x3
2x3/(71785x

4
1) ≤ 0;

g2(x) = (4x2
2 − x1x2)/[12566(x2x

3
1 − x4

1)]

+1/(5108x2
1 − 1 ≤ 0

g3(x) = 1− 140.45x1/(x
2
2x3) ≤ 0;

g4(x) = (x1 + x2)/1.5− 1 ≤ 0;

0.05 ≤ x1 ≤ 2; 0.25 ≤ x2 ≤ 1.3; 2 ≤ x3 ≤ 15.

The circular sensor range rs and the initial dynamic de-
cision domain r0 of the glowworms are all set to 7 for
this problem, the maximum number of generations is set
to Tmax = 300, which is consistent with that of HPSO[5],
the other parameters are set to the same as those of Section
4.2. Simulation results and comparisons are listed in Table
3 and Table 4.

Table 3 Comparison of the best solution for Example 2 by
different methods

Methods x1(d) x2(D) x3(P ) f(x)

Belegundu[20] 0.050000 0.315900 14.250000 0.0128334

Arora[19] 0.053396 0.399180 9.185400 0.0127303

Coello[15] 0.051480 0.351661 11.632201 0.0127048

Coello,Montes[16] 0.051989 0.363965 10.890522 0.0126810

Coello,Becerra[17] 0.050000 0.317395 14.031795 0.0127210

CPSO[8] 0.051728 0.357644 11.244543 0.0126747

Ray, Liew[14] 0.0521602170 0.368158695 10.6484422590 0.01266924934

HPSO[5] 0.051706 0.357126 11.265083 0.0126652
FSA[7] 0.0517425034-

0926
0.35800478-
345599

11.213907362-
78739

0.012665258

DSS-MDE[11] 0.0516890614 0.3567177469 11.2889653382 0.012665233

CPSOSA[18] 0.0516537117-
70636

0.3558679160-
29741

11.338963731-
041684

0.01266525

PSO-DE[10] 0.0516888101 0.3567117001 11.289319935 0.012665233
HGSO 0.051689060-

896103
0.356717735-
308878

11.288966014-
881048

0.012665232-
788319

Table 4 Statistical results of different methods for Example 2
Methods Best Mean Worst Std. Dev.

Belegundu[20] 0.0128334 N/A N/A N/A

Arora[19] 0.0127303 N/A N/A N/A

Coello[15] 0.0127048 0.0127690 0.012822 3.9390e-005

Coello,Montes[16] 0.0126810 0.0127420 0.012973 5.9000e-005

Coello,Becerra[17] 0.0127210 0.0135681 0.015116 8.4152e-004

CPSO[8] 0.0126747 0.0127300 0.012924 5.1985e-004

Ray,Liew[14] 0.01266924934 0.012922669 0.016717272 5.92e-004

HPSO[5] 0.0126652 0.0127072 0.0127191 1.5824e-005

FSA[7] 0.012665258 0.012665299 0.012665338 N/A

DSS-MDE[11] 0.012665233 0.012669366 0.012738262 1.25e-005

CPSOSA[18] 0.01266525 0.012668 0.012671 3.685693653588-
679e-006

PSO-DE[10] 0.012665233 0.012665233 0.012665233 4.9e-012
HGSO 0.0126652327-

88319
0.0126652327-
88321

0.0126652327-
88342

4.350272215639-
758e-015

From Table 3, it can be found that the best feasible so-
lution obtained by HGSO is competitive to that of HPSO
[5], but better than the results obtained by the other meth-
ods. From Table 4, it can be seen that compared with the
results reported by the other methods, the average search-
ing quality of HGSO is the best. Besides, even the worst
solution obtained by HGSO is better than the best solu-
tions obtained by the other methods except HPSO [5]. In
30 independent runs, the standard deviation of the results
by HGSO is also the smallest, its precision reaches 10−15,
which shows that the robustness of HGSO is the best for
solving this problem.
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Example 3. A pressure vessel design problem
This problem is taken from [21], in which the objec-

tive is to minimize the total cost (f(x)), including the cost
of the material, forming and welding. A cylindrical vessel
is capped at both ends by hemispherical heads as shown
in Figure 3. There are four design variables: Ts (x1, thick-
ness of the shell), Th (x2, thickness of the head), R (x3,
inner radius) and L (x4, length of the cylindrical section of
the vessel, not including the head). Among the four vari-
ables, Ts and Th are integer multiples of 0.0625 in, which
are the available thicknesses of rolled steel plates, and R
and L are continuous variables.

Figure 3 Center and end section of pressure vessel design
problem

The problem can be mathematically formulated as fol-
lows:

min f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3

+3.1661x2
1x4 + 19.84x2

1x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0;

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx2
3x4 − 4πx3

3/3 + 1296000 ≤ 0;

g4(x) = x4 − 240 ≤ 0

0 ≤ x1, x2 ≤ 100;

10 ≤ x3, x4 ≤ 200

The circular sensor range rs and the initial dynamic
decision domain r0 of the glowworms are all set to 100 for
this problem, the maximum number of generations is set
to Tmax = 300, which is consistent with that of HPSO[5],
the other parameters are set to the same as those of Section
4.2. Simulation results and comparisons are given in Table
5 and Table 6.

Table 5 Comparison of the best solution for Example 3 by
different methods

Methods x1(Ts) x2(Th) x3(R) x4(L) f(x)

Deb,Gene[22] 1.1250 0.6250 47.7000 117.7010 8129.8000

Kannan,Kramer[21] 1.1250 0.6250 58.2910 43.6900 7198.0428

Sandgren[23] 0.9315 0.5000 48.3290 112.6790 6410.3811

Coello[15] 0.8125 0.4375 40.3239 200.0000 6288.7445
Coello,
Montes[16]

0.8125 0.4375 42.0974 176.6540 6059.9463

CPSO[8] 0.8125 0.4375 42.0913 176.7465 6061.0777

HPSO[5] 0.8125 0.4375 42.0984 176.6366 6059.7143

CPSOSA[18] 0.812500000-
000000

0.437500000-
000000

42.098445593-
492706

176.6365958-
720004

6059.7143

PSO-DE[10] 0.8125 0.4375 42.098445596 176.636595842 6059.714335
HGSO 0.812500000-

000000
0.437500000-
000000

42.0984455-
958549

176.6365958-
424395

6059.7143-
350484

Table 6 Statistical results of different methods for Example 3
Methods Best Mean Worst Std. Dev.

Deb,Gene[22] 8129.8000 N/A N/A N/A

Kannan,Kramer[21] 7198.0428 N/A N/A N/A

Sandgren[23] 6410.3811 N/A N/A N/A

Coello[15] 6288.7445 6293.8432 6308.1497 7.4133
Coello,
Montes[16]

6059.9463 6177.2533 6469.3220 130.9297

CPSO[8] 6061.0777 6147.1332 6363.8041 86.4545

HPSO[5] 6059.7143 6099.9323 6288.6770 86.2022

CPSOSA[18] 6059.7143 6059.7143 6059.7146 2.2641547578664-
23e-006

PSO-DE[10] 6059.714335 6059.714335 6059.714335 1.0e-010
HGSO 6059.71433504-

84
6059.7143350484 6059.7143350484 9.2504274601307-

37e-013

From Table 5, it can be found that the best feasible so-
lution obtained by HGSO is competitive to those of HPSO
[5], PSO-DE [10] and CPSOSA [18], but better than the re-
sults obtained by the other methods. From Table 6, it can
be seen that the mean solution and the worst solution of
HGSO are competitive to those of PSO-DE [10], but bet-
ter than those of the other methods. What is more, the stan-
dard deviation of the results by HGSO is also the smallest,
its precision reaches 10−13, which shows that the robust-
ness of HGSO is the best for solving this problem.

Example 4. A speed reducer design problem
This problem is described in [24]. In this constrained

optimization problem, the weight of speed reducer is to
be minimized subject to constraints on bending stress of
the gear teeth, surface stress, transverse deflections of the
shafts, and stresses in the shafts. The variables x1 ∼ x7

represent the face width, length of the first shaft between
bearings, lengths of the second shaft between bearings,
and the diameter of first and second shafts respectively.
This is an example of a mixed integer programming prob-
lem. The third variable x3 (number of teeth) is of integer
value while all left variables are continuous.

The problem can be mathematically formulated as fol-
lows:

Minimizef(x) = 0.7854x1x
2
2(3.3333x

2
3 + 14.9334x3

− 43.0934)− 1.508x1(x
2
6 + x2

7)

+ 7.4777(x3
6 + x3

7) + 0.7854(x4x
2
6 + x5x

2
7)

subject to

g1(x) =
27

x1x2
2x3

− 1 ≤ 0

g2(x) =
397.5

x1x2
2x

2
3

− 1 ≤ 0

g3(x) =
1.93x3

4

x2x4
6x3

− 1 ≤ 0

g4(x) =
1.93x3

5

x2x4
7x3

− 1 ≤ 0

g5(x) =
[(745x4/x2x3)

2 + 16.9× 106]1/2

110.0x3
6

− 1 ≤ 0
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g6(x) =
[(745x5/x2x3)

2 + 157.5× 106]1/2

85.0x3
7

− 1 ≤ 0

g7(x) =
x2x3

40
− 1 ≤ 0

g8(x) =
5x2

x1
− 1 ≤ 0

g9(x) =
x1

12x2
− 1 ≤ 0

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤
28, 7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤
5.5..

The circular sensor range rs and the initial dynamic
decision domain r0 of the glowworms are all set to 6 for
this problem, the maximum number of generations is set
to Tmax = 300, which is in accordance with that of DSS-
MDE[11], the other parameters are set to the same as those
of Section 4.2. Simulation results and comparisons are shown
in Table 7 and Table 8.

Table 7 Comparison of the best solution for Example 4
by different methods

Design
variables

Akhtar,Tai,
Ray[25]

Montes,
Coello,
Reyes[26]

PSO-
DE[10]

Ray,Liew[14] DSS-
MDE[11]

HGSO

x1 3.506122 3.500010 3.50000-00 3.50000-
681

3.5000000-
000

3.500000000-
000053

x2 0.700006 0.700000 0.7000000 0.70000-
001

0.700000-
0000

0.700000000-
000000

x3 17 17 17.000000 17 17 17.000000000-
000000

x4 7.549126 7.300156 7.30000000-
0013

7.32760-
205

7.3000000-
000

7.300000000-
000000

x5 7.859330 7.800027 7.80000000-
0005

7.71532-
175

7.7153199-
115

7.715319911-
478490

x6 3.365576 3.350221 3.35021466-
6097

3.35026-
702

3.35021-
46661

3.350214666-
096505

x7 5.289773 5.286685 5.28668322-
9758

5.28665-
450

5.28665-
44650

5.286654464-
980233

f(x) 3008.08 2996.356-
689

2996.348-165 2994.744-
241

2994.471-
066

2994.471066-
146868

Table 8 Statistical results of different methods for
Example 4

Methods Best Mean Worst Std. Dev.
Akhtar,
Tai,Ray[25]

3008.08 3012.12 3028.28 N/A

Montes,Coello,
Reyes[26]

2996.356689 2996.367220 N/A 8.2e-003

PSO-DE[10] 2996.348165 2996.348165 2996.348166 1.0e-007

Ray, Liew[14] 2994.744241 3001.758264 3009.964736 4.00914232

DSS-MDE[11] 2994.471066 2994.471066 2994.471066 3.58e-012
HGSO 2994.47106614-

6868
2994.47106614-
7077

2994.47106614-
7409

1.4410164949197-
02e-010

From Table 7, it can be found that the best feasible
solution obtained by HGSO is competitive to that of DSS-
MDE[11], but better than the results obtained by the other
methods. From Table 8, it can be seen that the mean solu-
tion and the worst solution of HGSO are almost the same
as the best solution of HGSO, even the worst solution of
HGSO is better than the best solutions reported in [10],
[14], [25] and [26]. Furthermore, the standard deviation of
the results by HGSO is also very small, and its precision is
10−10. It is a little worst than that of DSS-MDE [11], but
markedly superior to those of the other methods.

Example 5. A three-bar truss design problem
This problem is taken from [27], which deals with the

design of a three-bar truss structure where the volume is to
minimize subject to stress constraints.

The problem can be mathematically formulated as fol-
lows:

Minimizef(x) = (2
√
2x1 + x2)× l

subject to

g1(x) =

√
2x1 + x2√

2x2
1 + 2x1x2

P − σ ≤ 0

g2(x) =
x2√

2x2
1 + 2x1x2

P − σ ≤ 0

g3(x) =
1√

2x2 + x1

P − σ ≤ 0,

0 ≤ x1, x2 ≤ 1

where l = 100cm, P = 2KN/cm2, σ = 2Kn/cm2.
The circular sensor range rs and the initial dynamic

decision domain r0 of the glowworms are all set to 0.5
for this problem, the maximum number of generations is
set to Tmax = 300, which is consistent with that of DSS-
MDE[11], the other parameters are set to the same as those
of Section 4.2. Simulation results and comparisons are shown
in Table 9 and Table 10.

Table 9 Comparison of the best solution for Example 5
by different methods

Methods x1 x2 f(x)

Hernendez[27] 0.788 0.408 263.9

Ray, Saini[28] 0.795 0.395 264.3

Ray, Liew[14] 0.7886210370 0.4084013340 263.8958466

DSS-MDE[11] 0.7886751359 0.4082482868 263.8958434

PSO-DE[10] 0.788675134746 0.408248290037 263.89584338
HGSO 0.788675130017075 0.408248303411660 263.8958433764684

Table 10 Statistical results of different methods for
Example 5

Methods Best Mean Worst Std. Dev.

Hernendez[27] 263.9 N/A N/A N/A
Ray,

Saini[28]
264.3 N/A N/A N/A

Ray,

Liew[14]
263.8958466 263.9033 263.96975 1.26e-002

DSS-
MDE[11]

263.8958434 263.8958436 263.8958498 9.72e-007

PSO-DE[10] 263.89584338 263.89584338 263.89584338 4.5e-010
HGSO 263.8958433764684 263.8958433764684 263.8958433764684 0

From Table 9, it is observed that the best feasible so-
lution obtained by HGSO is the best. From Table 10, it
can be seen that the mean solution and the worst solution
of HGSO are the same as the best solution of HGSO in
30 independent runs, they are better than the best solu-
tions reported in [10], [11], [14], [27] and [28]. In addi-
tion, the standard deviation of the results by HGSO is also
the smallest and its precision is 0, which illustrates that the
robustness of HGSO is the best to solve this problem.

5. Conclusions

In this paper, a new algorithm named HGSO is proposed.
Firstly, predatory behavior of AFSA is introduced to GSO
and the IGSO algorithm is got, then, based on an optimum
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information sharing mechanism, IGSO is integrated with
DE, besides, the constraint processing technology based
on the feasibility rules is used to update the optimum posi-
tion of the population. To escape from the local optimum,
the local search strategy based on SA is applied to the
best solution of the population of each generation. Finally,
HGSO is tested on five benchmark functions and five en-
gineering design problems. The experimental results show
that the HGSO outperforms algorithms in the literature in
terms of efficiency, precision, reliability and robustness,
so, the HGSO is very effective for solving constrained de-
sign problems.
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