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Abstract: The response of elastic porous media under applied loads consists of an instantaneous deformation followed by a time
dependent consolidation process associated with the drainage of the pore fluid. In the simulation of the swelling of elastic cartilagineous
tissues, the permeability tensor of the porous medium depends on the strain, thus resulting in a nonlinear model. In this paper, we present
a nonlinear one dimensional Biot’s model and prove the existence and uniqueness of the solution of this model. Appropriate boundary
conditions required for the uniqueness of the solution are to be introduced. Then, the Galerkin method is used to prove that the model
has a unique weak solution. Finally, two simple numerical examples of 1-D non linear Biot’s model are discussed.
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1. Introduction

By electric charges fixed to the solid and counteracted by
corresponding charges in fluid, many biological porous me-
dia like intervertebral discs exhibit swelling and/or shrink-
ing behavior when, for example, in contact with salt con-
centrations. For instance, cartilagineous tissues are soft tis-
sues with strong swelling and shrinking properties. They
play an important role in joint lubrication and damping
of dynamic forces in the human body. The classical Biot
model, originally developed for soil consolidation, is able
describe the time-dependent interaction between the defor-
mation of an elastic porous material and the fluid flow in-
side it, consisting of equilibrium equations for an element
of soil, stress-strain relations for the soil skeleton and a
continuity equation for the pore fluid (see [21–23]).

This problem was first introduced in the study of soils
by K. Terzaghi in 1943 [27] and later generalized by Mau-
rice Biot in a number of papers [5–7]. The Biot theory
of poroelasticity has been widely used in geomechanics,
hydrogeology and petroleum engineering, e.g. [2,15,32].
Some consolidation models have been presented, so far.
These models have been studied widely by investigators
[5,16,18,13,20,22]. In particular, a lot of effort has been
dedicated to the numerical treatment of this model. Sev-

eral numerical techniques, such as radial point interpola-
tion [29], meshless [14], finite difference [16] and finite el-
ement methods [8,18,19], for Biot’s consolidation model
have been proposed by many investigators. Moreover, the
numerical solution to the algebraic systems of equations
obtained with such methods can be very difficult, requir-
ing ad hoc advanced preconditioners to converge [4].

In the analysis of biological porous media the defor-
mation behavior can be often assumed elastic with the per-
meability tensor depending on the strain. This gives rise
to a non linear Biot model. Ženišek in [31] has proved
the existence and uniqueness for the weak form of Biot’s
consolidation theory. Also, R.E. Showalter has developed
the existence, uniqueness and regularity theory for a gen-
eral initial boundary value problem for a system of par-
tial differential equations which describes the Biot consol-
idation model in poroelasticity as well as a coupled quasi
static problem in thermoelasticity [26]. In [3], existence
and uniqueness of a nonlinear one dimensional wave prop-
agation model in a poro-elastic medium has been studied
that this model generally is described by Biot model. In
this paper, we will study the existence and uniqueness of a
nonlinear one dimensional model for the swelling of carti-
laginous tissues. In this model, we assume that the per-
meability is not constant and it depends on pressure or
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strain. In [21,24], when the coefficient of permeability is
constant, this model for one and two dimensional configu-
ration has been studied.

In Section 2, the governing equations are given for
Biot’s model with the required boundary conditions. In
Section 3, a nonlinear one dimensional version of Biot’s
poroelasticity is presented. Also, some preliminaries about
Sobolev spaces are stated in this section. Finally, in Sec-
tion 4, by Galerkinn’s method, existence and uniqueness
of our model would be proved.

2. Biot’s Problem

We consider Ω as a bounded, open and connected subset
of Rn, n = 1, 2, 3 with a Lipschitz continuous boundary
Γ and unit outward normal n. Let u : Ω → Rn be the
displacement of the porous medium and ϵ be the strain for
each time t ∈ [0, T ] with T > 0. The elastic strain- dis-
placement relationship is defined as:

ϵ = D(u) =
1

2
(∇u + (∇u)T )

We write the stress-strain relation as follows:

σ = G(∇u + (∇u)T ) +
2Gν

1− 2ν
(∇.u)I

where G and ν are the shear modulus and the Poisson ra-
tio of the elastic material in the absence of a pore fluid
and I is the identity matrix. The shear modulus (or modu-
lus of rigidity) is the ratio of applied shear stress to shear
strain; Poisson’s ratio describes the compressibility of the
material and is defined as the ratio of transverse contrac-
tion strain (normal to the applied load) to longitudinal ex-
tension strain (in the direction of the applied load). Now,

letting µs = G and λs =
2Gν

1− 2ν
, we have

σ = 2µsϵ+ λstrϵ(u)I

We assume that the fluid transport in the pore space can be
described by Darcy’s law which relates the fluid flow rate
to the gradient of the pore pressure p : Ω → R2:

q = −K∇p− f. K =
κ

µ

whereK is the coefficient of permeability, κ is the intrinsic
permeability of the porous material, µ is the viscosity of
the fluid and f is a body force term. Another equation is
related to the continuity equation that is:

∇.q +∇.ut = 0, in Ω.

Let the sets ΓD
u and ΓN

u (and similarly ΓD
p and ΓN

p ) be
two open subsets of the total boundary Γ = ∂Ω such that

ΓD
α ∩ ΓN

α = ∅ and Γ
D

α ∩ Γ
N

α = Γ for α = u, p.

y=L

f=force

sample

y=0

x
y

u=0
p=0
filter

piston

Figure 1 Schematic representation of the confined compression
experiment.

Also, assume that meas(ΓD
α ) > 0 for α = u, p.

Now, we consider boundary conditions of the follow-
ing type ([20,22,23]):

u = 0 on ΓD
u × (0, T ],

p = 0 on ΓD
p × (0, T ],

n.(σ(u)− pI) = g(t) on ΓN
u × (0, T ],

n.q = 0 on ΓN
p × (0, T ],

(1)

which I is the identity tensor and g(t) is the applied load.
Also, we consider the initial boundary condition

div(u) = 0 in Ω, t = 0.

3. One Dimensional Model

In this section, we present a one dimensional model of
Biot’s poroelasticity where the permeability of the porous
material is not constant.
Let u(y, t) denotes the vertical solid displacement, p(y, t)
the fluid pressure, µs and λs two material properties and
constant, K(∂u/∂y) the permeability which is assumed
to be dependent on strain ∂u/∂y. We also assume that
K(∂u/∂y) is a bounded function. i.e. 0 < m ≤ K(.) ≤
M inΩ wherem andM are constant real numbers. Through-
out this paper, m and M are considered to be lower and
upper bounds of K(.), respectively.

Figures 1 and 2 (see [21]) depict an example of exper-
imental setup. A homogeneous sample is placed friction-
less in a holder. At the bottom y = 0, the sample is in
contact with a glass filter saturated by a sodium chloride
solution. An impermeable piston is placed on the top of
the sample, y = L, where an external mechanical load is
applied. The sample was made of hydrogel. A bathing so-
lution flowed through a porous glass filter at the bottom of
the sample. We also assume that there is no body force, i.e.
f = 0.
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Figure 2 Schematic representation of the confined compression
experiment.

The one dimensional Biot’s poroelasticity model reads:

(a) 0 = (2µs + λs)
∂2u

∂y2
− ∂p

∂y
in [0, L]× (0, T ],

(b) 0 =
∂2u

∂t∂y
− ∂

∂y
(K(

∂u

∂y
).
∂p

∂y
) in [0, L]× (0, T ],

(c) 0 = u on {y = 0} × (0, T ],

(d) 0 = p on {y = 0} × (0, T ],

(e) g(t) = (2µs + λs)
∂u

∂y
− p on {y = L} × (0, T ],

(f) 0 =
∂p

∂y
on {y = L} × (0, T ].

(2)

where g(t) is the load on the piston. In addition, as an ini-
tial condition is assumed that

p = p0(y) on [0,L]× {t = 0}.

We consider that u and p are sufficiently smooth, then, by
(2a) and (2e),

(2µs + λs)
∂u

∂y
− p = g(t) in [0,L]× (0,T]. (3)

This shows that if the permeability K(.) depends on the

strain
∂u

∂y
, it will also depend on the pressure, i.e.

K(∂u/∂y) = K((p+ g(t))/(2µs + λs)).

In the sequel, for sake of simplicity, we assume that

K(∂u/∂y) = K(p).

Furthermore, by (3),

(2µs + λs)
∂2u

∂t∂y
− ∂p

∂t
=
dg

dt
. (4)

Let f = −dg
dt

and therefore by substituting (4) in (2(b)),

dp

dt
− f = (2µs + λs)

∂

∂y
(K(p).

∂p

∂y
) in [0,L]× (0,T].

Thus, we can state the existence and uniqueness theorems
for the following initial-boundary value problem:

(a) f =
dp

dt
− (2µs + λs)×

× ∂

∂y
(K(p).

∂p

∂y
) in [0, L]× (0, T ],

(b) 0 = p on {y = 0} × (0, T ],

(c) 0 =
∂p

∂y
on {y = L} × (0, T ],

(d) p0(y) = p on [0, L]× {t = 0}.

(5)

We will prove that the variational problem of (5) has a
unique solution and hence by (3) and (2c), the uniqueness
of solution is proved for the problem (2). To this end, we
first introduce the appropriate function spaces. Let L2(Ω)
be the Hilbert space of square integrable scalar-valued func-
tions defined on Ω with inner product

(f, g) =

∫
Ω

fgdx, f, g ∈ L2(Ω).

The symbol Hm(Ω) denotes the usual Sobolev space,

Hm(Ω) = {q|Dαq ∈ L2(Ω), α = (α1, α2, · · · , αn),

αi ∈ Z+, |α| ≤ m}
equipped with the norm

∥q∥2m =
∑

|α|≤m

∥Dαq∥2L2(Ω).

Furthermore, Hm
0 (Ω) is the closure of the space C∞

0 (Ω)
in the norm ∥.∥m. It can be shown that

H1
0 (Ω) = {q ∈ H1(Ω) : q = 0 on ∂Ω}.

Also, we define

|q|2m =
∑

|α|=m

∥Dαq∥2L2(Ω),

as a semi-norm on H1(Ω) that is a norm over the space
Hm

0 (Ω), equivalent to the norm ∥.∥Hm(Ω) ([1]). In addi-
tion, H−1(Ω) is the dual space to the space H1

0 (Ω). We
shall also need to consider functions that vanish on a part
of the boundary; suppose ∂Ω = D ∪N , a partition of ∂Ω
into disjoint, one then defines

H1
0,D(Ω) = {q ∈ H1(Ω) : q = 0 on D},

and one has H1
0 (Ω) ⊂ H1

0,D(Ω) ⊂ H1(Ω)(for more de-
tails see [9] Chapter III). In this paper, we have assumed
that D = {y ∈ ∂Ω|y = 0}. The following lemma en-
sures us to consider a semi-norm over the space H1(Ω) as
a norm over the H1

0,D(Ω):
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Lemma 1.Let Ω be a connected bounded open subset of
Rn. Then the spaceH1

0,D(Ω) is a closed subspace ofH1(Ω).
If the dγ−measure of D is strictly positive, the semi-norm
|.|21 is a norm over the space H1

0,D(Ω), equivalent to the
norm ∥.∥H1(Ω).

Proof.: See [11].

We denote by H−1
D (Ω) the dual space to the space

H1
0,D(Ω). If ℓ ∈ H−1

D (Ω), we define the norm

∥ℓ∥H−1
D (Ω) = sup{< ℓ, v >: v ∈ H1

0,D(Ω), ∥v∥H1
0,D(Ω) ≤ 1},

where< ., . > denotes the duality pairing betweenH−1
D (Ω)

and H1
0,D(Ω).

When considering space-time functions v(x, t), in which
(x, t) ∈ QT := (0, T ) × Ω, it is natural to introduce the
space

Lp(0, T ;X) = {v : (0, T ) → X| v is measurable and∫ T

0
∥v(t)∥Lp(0,T ;X) <∞},

1 ≤ p <∞, endowed with the norm

∥v(t)∥Lp(0,T ;X) = [

∫ T

0

∥v(t)∥pXdt]
1/p,

where X is a Banach space. With these preliminaries, the
variational form of (5) reads:
For a given f in L2(0, T ;H−1

D (Ω)) and a given element
p0 of L2(Ω), find p(t) ∈ L2(0, T ;H1

0,D(Ω)) such that:
d

dt
(p(t), ϕ) + (2µs + λs)(K(p(t))

∂p(t)

∂y
,
dϕ

dy
) = (f, ϕ),

p(0) = p0,

(6)

for all ϕ ∈ H1
0,D(Ω). We note that the initial condition

makes sense only if the solution p is continuous at t = 0.
In fact, it is shown in the following lemma that p is contin-
uous on [0, T ].

Lemma 2. Let p ∈ L2(0, T ;H1
0,D(Ω)) be a solution of

(6). Then
dp

dt
∈ L2(0, T ;H−1

D (Ω)).

Proof. Let us first consider a function ϕ ∈ H1
0,D(Ω) so

that ∥ϕ∥H1
0,D(Ω) ≤ 1. Take

< ℓ, ϕ >= (2µs + λs)(K(p(t))
∂p(t)

∂y
,
dϕ

dy
).

Then,

| < ℓ, ϕ > | ≤ M(2µs + λs)|p|H1
0,D(Ω)|ϕ|H1

0,D(Ω)

≤ M(2µs + λs)∥p∥H1
0,D(Ω)∥ϕ∥H1

0,D(Ω)

holds for a.e. 0 ≤ t ≤ T . Hence,

∥ℓ∥H−1
D (Ω) ≤M(2µs + λs)∥p∥H1

0,D(Ω).

Then∫ T

0
∥ℓ∥2

H−1
D (Ω)

dt ≤ (M(2µs + λs))
2×

×
∫ T

0
∥p∥2

H1
0,D(Ω)

dt <∞,

Since p belongs to L2(0, T ;H1
0,D(Ω)). Hence,

ℓ ∈ L2(0, T ;H−1
D (Ω)).

On the other hand, f ∈ L2(0, T ;H−1
D (Ω)) which imply

dp

dt
belongs to L2(0, T ;H−1

D (Ω)).

The following lemma yields an important result:

Lemma 3. Suppose p ∈ L2(0, T ;H1
0,D(Ω)) with

dp

dt
∈ L2(0, T ;H−1

D (Ω)).

(i) Then p ∈ C([0, T ];L2(Ω)) (after possibly being rede-
fined on a set of measure zero).
(ii) The mapping t 7→ ∥p(t)∥2L2(Ω) is absolutely continu-
ous, with

d

dt
∥p(t)∥2L2(Ω) = 2(

dp(t)

dt
, p(t))

for a.e. 0 ≤ t ≤ T.

Proof. see [12].

According to the Lemmas 2 and 3, p ∈ C([0, T ];L2(Ω)).
Then, it is perfectly allowable to prescribe p at t = 0.

4. Existence - Uniqueness Theorems

Up to now, existence and uniqueness theorems has been
verified for some classes of Biot’s consolidation models
with different dimensions. For instance, theorems of exis-
tence and uniqueness for linear Biot’s poroelasticity mod-
els have been given in [31]. Moreover, discussion on ex-
istence and uniqueness of the solution for time-dependent
initial-boundary value problems like (6) whichK(.) is con-
stant has been given in [12,17,25]. Furthermore, a non-
linear model concerning propagation of elastic waves in a
fluid-saturated porous solid has been given in [3]. In this
model, the permeability of porous solid was assumed to be
depends on space (i.e. points of domain). In this section,
we investigate existence and uniqueness of the solution for
the problem (6) which the permeability of material is as-
sumed to be depends on strain. The Galerkin’s method is
used to prove the existence and uniqueness of solutions for
the variational problem (6). First, we need the following
lemmas:
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Lemma 4.(Gronwall’s inequality)
(i) Let η(.) be a nonnegative, absolutely continuous func-
tion on [t0, T ] which satisfies for a.e. t, the differential in-
equality

η
′
(t) ≤ ξ(t)η(t) + ψ(t)

where ϕ(t) and ψ(t) are nonnegative, summable functions
on [t0, T ]. Then

η(t) ≤ e
∫ t
t0

ξ(s)ds
[η(t0) +

∫ t

t0

ψ(s)ds]

for all t0 ≤ t ≤ T .
(ii) In particular, if

η
′
(t) ≤ ξ(t)η(t)

on [t0, T ], then η ≡ 0 provided that η(t0) = 0.

Lemma 5. Consider an initial value problem

y
′

= f(x, y(x)),
y(a) = y0,

where f : [a, b]× Rn → Rn is continuous in its first vari-
able and satisfies a Lipschitz condition in its second vari-
able. Then, there exists a unique solution to this problem.

Proof. See [10].

Now, one can find an approximation solution for the
variational problem (6) (with initial condition given in the
following lemma) in the space L2(0, T ;Vh) which finite
dimensional space

Vh = span{ϕ1, ϕ2, · · · , ϕm} ⊂ H1
0,D(Ω),

for some m ∈ Z+.

Lemma 6. For each integerm = 1, 2, ... there exists unique
function pm : [0, T ] → H1

0,D(Ω) of the form

pm(t) =
m∑
j=1

αj
m(t)ϕj , (7)

satisfying

αj
m(0) = (p0, ϕj) (j = 1, · · · ,m) (8)

and

(p
′

m, ϕj) + (2µs + λs)(K(pm)
∂pm
∂y

,
dϕj
dy

) = (f, ϕj), (9)

where ′ =
d

dt
.

Proof. Assuming pm(t) has the structure (7), we note by
(6)

(f, ϕj) = (
d

dt
pm, ϕj) + (2µs + λs)(K(pm)

∂pm
∂y

,
dϕj
dy

)

=
d

dt

∑m
i=1 α

i
m(ϕi, ϕj) + (2µs + λs)

×
∑m

i=1 α
i
m(K(

∑m
l=1 α

l
mϕl)

dϕi
dy

,
dϕj
dy

)

(10)

for j = 1, · · · ,m. On the other hand, Since every Hilbert
space has an orthogonal basis, then we can assume the
functions ϕk = ϕk(y) (k = 1, · · · ) are smooth, {ϕk}∞k=1
is an orthogonal basis of H1

0,D(Ω) and an orthonormal ba-
sis of L2(Ω). Hence, this and (10) yield:

(f, ϕj) = (αj
m)

′
(t)+(2µs+λs)α

j
m(K(

m∑
l=1

αl
mϕl)

dϕj
dy

,
dϕj
dy

).

This is a m × m nonlinear differential equations system
of first order. By the initial condition (8), this system has a
unique solution under some conditions that stated in Lemma
5.

Now, we turn to the convergence of the sequence pm
when m tends to infinity. For this purpose, let us to state
the following lemma.

Lemma 7. There exists a constant C, depending on only
Ω, T and the coefficient of K(.), such that

max
0≤t≤T

∥pm(t)∥L2(Ω) + ∥pm∥L2(0,T ;H1
0,D(Ω))+

+∥p′

m∥L2(0,T ;H−1
D (Ω)) ≤ C(∥f∥L2(0,T ;L2(Ω)) + ∥p0∥L2(Ω))

(11)

for m = 1, 2, · · ·

Proof. Multiply (9) by αj
m(t) and sum over j from 1 to m.

In view of (7), we get:

(p
′

m(t), pm) + (2µs + λs)(K(pm)
∂pm
∂y

,
∂pm
∂y

) = (f, pm)(12)

for a.e. 0 ≤ t ≤ T . We have

|(f, pm)| ≤ 1

2ϵ
∥f∥2L2(Ω) +

ϵ

2
∥pm∥2L2(Ω),

for any ϵ > 0 and furthermore

(p
′

m, pm) =
d

dt
(
1

2
∥pm∥2L2(Ω)).

On the other hand,

(K(pm)
∂pm
∂y

,
∂pm
∂y

) ≥ mCΩ∥pm∥2H1
0,D(Ω)

holds for all 0 ≤ t ≤ T and m = 1, · · · where CΩ de-
notes the constant of Poincare’s inequality. Consequently,
by these relations, (12) yields the inequality

d

dt
(∥pm∥2L2(Ω)) +m(2µs + λs)∥pm∥2

H1
0,D(Ω)

≤

C1∥pm∥2L2(Ω) + C2∥f∥2L2(Ω)

(13)

for a.e. 0 ≤ t ≤ T and appropriate constants C1 and C2.
By (13),

d

dt
(∥pm∥2L2(Ω)) ≤ C1∥pm∥2L2(Ω) + C2∥f∥2L2(Ω)
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holds and thus the differential form of Gronwall’s inequal-
ity yields the estimate

∥pm(t)∥2L2(Ω) ≤ eC1t(∥pm(0)∥2L2(Ω))+

+ C2

∫ t

0
∥f(s)∥2L2(Ω)ds. (0 ≤ t ≤ T )

(14)

Since ∥pm(0)∥2L2(Ω) ≤ ∥p0∥2L2(Ω) by the initial condition
(8),

max
0≤t≤T

∥pm(t)∥2L2(Ω) ≤ C(∥p0∥2L2(Ω) + ∥f∥2L2(0,T ;L2(Ω))).

Thus,

max
0≤t≤T

∥pm(t)∥L2(Ω) ≤ C(∥p0∥L2(Ω) + ∥f∥L2(0,T ;L2(Ω))).(15)

Now, if we integrate (13) from 0 to T and apply the in-
equality (15), then

∥pm∥2
L2(0,T ;H1

0,D(Ω))
=

∫ T

0
∥pm∥2

H1
0,D(Ω)

dt

≤ C(∥p0∥2L2(Ω) + ∥f∥2L2(0,T ;L2(Ω))).
(16)

In the last step, fix any q ∈ H1
0,D(Ω) with ∥q∥H1

0,D(Ω) ≤ 1

and write q = q1 + q2 where q1 ∈ span{ϕj}mj=1 and
(q2, ϕj) = 0 (j = 1, · · · ,m). By (9), we have

(p
′

m, q
1) + (K(pm)

∂pm
∂y

,
∂q1

∂y
) = (f, q1). (17)

On the other hand, (p
′

m, q) = (p
′

m, q
1). Hence, since

∥q1∥H1
0,D(Ω) ≤ 1,

then, by (17)

|(p′

m, q)| = |(f, q1)− (K(pm)
∂pm
∂y

,
∂q1

∂y
)|

≤ ∥f∥L2(Ω) +M∥pm∥H1
0,D(Ω),

holds by Holder’s inequality for a.e. 0 ≤ t ≤ T . Then,

∥p
′

m∥H−1
D (Ω) ≤ C(∥f∥L2(Ω) + ∥pm∥H1

0,D(Ω)),

which implies

∥p
′

m∥2
H−1

D (Ω)
≤ 2C(∥f∥2L2(Ω) + ∥pm∥2H1

0,D(Ω)). (18)

Thus by (16) and (18),

∥p′

m∥2
L2(0,T ;H−1

D (Ω))
≤ 2C(∥f∥2L2(0,T ;L2(Ω))

+ ∥pm∥2
L2(0,T ;H1

0,D(Ω))
)

≤ C
′
(∥f∥2L2(0,T ;L2(Ω))

+ ∥p0∥2L2(Ω)).

(19)

Then, (15), (16) and (19) complete the proof.

Now, we are ready to state the existence theorem.

Theorem 1 There exists a solution of (6).

Proof. According to the energy estimate (11), the sequence
{pm}∞m=1 is bounded inL2(0, T ;H1

0,D(Ω)) and {p′

m}∞m=1

is bounded in L2(0, T ;H−1
D (Ω)). Hence, we can select a

subsequence {pmi}∞i=1 and a function

p ∈ L2(0, T ;H1
0,D(Ω))

with p
′ ∈ L2(0, T ;H−1

D (Ω)) such that

pmi
→ p weakly in L2(0, T ;H1

0,D(Ω)),

p
′

mi
→ p

′
weakly in L2(0, T ;H−1

D (Ω)),
(20)

(see e.g. [30], p. 126). Take a function Ψ in

C1([0, T ];H1
0,D(Ω)),

with Ψ(T ) = 0, multiply (9) with Ψ(t), integrate over
[0, T ] and use Green’s formula. This gives

−
∫ T

0
(pm(t), ϕj)Ψ(t)dt+ (2µs + λs)×

×
∫ T

0
(K(pm)

∂pm
∂y

,
dϕj
dy

)Ψ(t)dt =

∫ T

0
(f(t), ϕj)Ψ(t)dt+ (pm(0), ϕj)Ψ(0), 1 ≤ j ≤ m.

(21)

Now, let us fix an arbitrary integerN and choose a function
q in

QN = span{ϕ1, ϕ2, · · · , ϕN}.

We choose m ≥ N and then (21) implies:

−
∫ T

0
(pm(t), q)Ψ

′
(t)dt+ (2µs + λs)×∫ T

0
(K(pm)

∂pm
∂y

,
∂q

∂y
)Ψ(t)dt =

∫ T

0
(f(t), q)Ψ(t)dt+ (pm(0), q)Ψ(0).

(22)

We set m = mi and by virtue of (20), the following limit
holds:

lim
mi→∞

∫ T

0

(pmi(t), q)Ψ
′
(t)dt =

∫ T

0

(p(t), q)Ψ
′
(t)dt.

Finally, by hypothesis pmi(0) → p0 in L2(Ω). Hence, as
mi tends to infinity, the relation ( 22) becomes:

−
∫ T

0
(p(t), q)Ψ

′
(t)dt+ (2µs + λs)×∫ T

0
(K(

∂u

∂y
)
∂p

∂y
,
∂q

∂y
)Ψ(t)dt =

∫ T

0
(f(t), q)Ψ(t)dt+ (p(0), q)Ψ(0),

(23)

for all q ∈ QN and Ψ ∈ C1([0, T ];H1
0,D(Ω)) with Ψ(T ) =

0. But,N is arbitrary and
∪

m≥1Qm is dense inH1
0,D(Ω).
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Therefore, (23) is also valid for all q ∈ H1
0,D(Ω). Hence,

in particular,

(p
′
(t), q) + (K(p(t))

∂p(t)

∂y
,
∂q

∂y
) = (f(t), q),

for all q ∈ H1
0,D(Ω). From Lemma 3, we also see that

p ∈ C([0, T ];L2(Ω)).
It remains only to show that p(0) = p0. For this, we

multiply (6) by a function Ψ like in (23), integrate over
[0, T ] and use Green’s formula. Comparing with (23), we
obtain

(p(0), q) = (p0, q), ∀q ∈ H1
0,D(Ω).

Hence, p(0) = p0 in the dual space of H1
0,D(Ω) and also

in L2(Ω), since p0 ∈ L2(Ω).

Now, it remains to show the uniqueness of solution for
the problem (6).

Theorem 2 A solution of (6) is unique.

Proof. Let p1 and p2 be two different solutions of the vari-
ational form (6). Then by (6),

(a) (
d

dt
(p1 − p2), q) + (2µs+ λs)(K(p1)

∂p1
∂y

−

K(p2)
∂p2
∂y

,
∂q

∂y
) = 0,

(b) (p1 − p2)(0) = 0,

(24)

for each q ∈ H1
0,D(Ω) and a.e. 0 ≤ t ≤ T . Setting q =

p1 − p2 in (24) and using Lemma (3) yields

d

dt
(
1

2
∥p1 − p2∥2L2(Ω)) + (2µs + λs)(K(p1)

∂p1
∂y

−

K(p2)
∂p2
∂y

,
∂(p1 − p2)

∂y
) = 0. (25)

Then, by (25),

d

dt
(
1

2
∥p1 − p2∥2L2(Ω)) = (2µs + λs)(−K(p1)

∂p1
∂y

+

+ K(p2)
∂p2
∂y

,
∂(p1 − p2)

∂y
)

≤ (2µs + λs)(2M)|(∂p1
∂y

−

− ∂p2
∂y

,
∂(p1 − p2)

∂y
)| = (2µs+

+ λs)(2M)|p1 − p2|2H1
0,D(Ω)

(26)

According to the Lemmas 2 and 3, u ∈ C([0, T ];L2(Ω)).
Moreover, p1 and p2 are the different solutions and

(p1 − p2)(0) = 0.
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Figure 3 Pore pressure in time at y = L.

Then, there exists obviously an interval (tk, tl) ⊂ [0, T ]
such that (p1 − p2)(t) ̸= 0 on this interval and

(p1 − p2)(tk) = 0.

On the other hand, by setting

ξ(t) := 4M(µs + λs)|p1 − p2|2H1
0,D(Ω)/∥p1 − p2∥2L2(Ω)

and also (26) we have:
d

dt
(∥p1 − p2∥2L2(Ω)) ≤ ξ(t)∥p1 − p2∥2L2(Ω) on [tk, tl],

(p1 − p2)(tk) = 0.

(27)

Now, Gronwall’s inequality yields (p1 − p2)(t) = 0 on
[tk, tl]. This contradiction shows that p1−p2 ≡ 0 on [0, T ].
This establishes the proof.

5. Numerical Examples

In this section, we present two numerical examples of non
linear Biot’s model. In both cases, we set µs = 0.4, λs =
0.267 and L = 1.

Example 1 We consider the problem (6) with K(p) =
1 + p. We use the Euler scheme for time discretisation.
Let ∆t be the time step and pn the approximation of the
solution p at t = tn = n∆t. Then the system (6) resulting
from backward Euler is:
Find pn ∈ H1

0,D(Ω) such that

(pn, ϕ) + (2µs + λs)∆t(K(pn)d(pn)/dy) =

∆t(f(tn), ϕ)− (pn−1, ϕ).

By letting ∆t = .01, the interval [0, L] is divided to
m = 100 subintervals and piecewise linear functions con-
sidered as nodal basis functions on the m − 1 first nodes
and fixed function on the last node. We also put f(t) =
−.01∆t(L/m). Then, by Newton’s method the solution of
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Figure 4 Pore pressure in time at y = L.

nonlinear system resulted by discretisation is determined.
Figure 3 shows the pore pressure evolution at y = L for
0.5 second.

Example 2 We consider the problem (5) with K(p) =
1. Then, by (5(a)):

f(t) =
dp

dt
− (2µs + λs)

∂

∂y
(K(p)

∂p

∂y
). (28)

By the method of separation of variables, we seek a solu-
tion in the form p(t, y) = Q(t)R(y). Introducing it into
(28), we find out that

dQ

dt
Q

= c = K(2µs + λs)

d2R

dy2
+ 1

R
(29)

for some constant c and all y ∈ R, t ≥ 0. Of course, we
assumed f(t) = Q(t). By the initial and boundary condi-
tions, the exact solution is as follows:

p(t, y) = .001eK(2µs+λs)t(1 + e2L − ey − e2L−y). (30)

Figure 4 shows the pore pressure evolution at y = L for
0.5 second.

6. Conclusions

We have presented a class of Biot’s consolidation nonlin-
ear model. This class is of interest for many of real world
applications, including the simulation of the swelling of
cartilagineous tissues. The main feature of this model is
that the permeability tensor depends on the strain, thus
giving rise to a nonlinear model. By Galerkin’s method
we have shown existence and uniqueness of weak form
solution for the nonlinear one dimensional Biot’s model.
For future works, the existence-uniqueness results can be
extended to the solution of two and three dimensional non-
linear Biot’s models.
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