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Abstract: The aim of this paper is to present some properties about the arithmetic functions which use exponential divisors.Among

these properties we study the equation 7(n) = () (n)t* (n), we show that /n <

these multiplicative arithmetic functions.
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1. Introduction

The present paper contains some results regarding the in-
equalities related to several multiplicative arithmetic func-
tions which use exponential divisors and exponential uni-
tary divisors. But, first, we present several classes of divi-
sors, which we will use in this paper.

Let n be a positive integer number. Starting from the
set of divisors of n were defined two main multiplicative
arithmetic functions, namely, ¢ (n) is the sum of the divi-
sors of n and 7(n) is the number of divisors of n.

In [2], E. Cohen changed the notion of block-factor
which was introduced by R. Vaidyanathaswamy in [14], by
the notion of unitary divisor, which means that: a divisor d

n
of n is a unitary divisor when (d7 E) — 1. In this case, we
note by 6*(n) the sum of the unitary divisors of n and by
7*(n) the number of unitary divisors of n, which is, in fact,
the number of the square-free divisors of n. Several in-

equalities inequalities between these arithmetic functions
are given below.

S. Sivaramakrishnan and C. S. Venkataraman (see e.g.
(81), show that

(o)
vn < ﬁ, for every n > 1. J. Sandor and L. Téth in
n

[8] studied the same type of inequality for the unitary di-

c(® (n)
(o) (n)

, for all n > 1 and other inequalities related to

For other arithmetic inequalities see the books [1], [7], [8],
[9].

Therefore, we will show, in this paper, the same type
of the inequality for the arithmetic functions which use ex-
ponential divisors.

The class of exponential divisors was introduced by M.
V. Subbarao in [10], in the following way: d is said to be
an exponential divisor (or e-divisor) of n = pﬁ” P>,
ifd = plf‘ ...p"r > 1, where b;|a;, forany 1 <i <r.

A variety of results related to the exponential divisors are
given in many sources, such as: [9, 10, 11, 12].

N. Minculete and L. Té6th in [13] presented some prop-
erties of the arithmetic functions which use exponential
unitary divisors or e-unitary divisors of n = p{'...p% > 1,
ifd= pllJl ...p!r’" > 1, where b; is an unitary divisor of a;, so
<b,~,zi) =l,forany 1 <i<vr.

i

Studying the various relations of the multiplicative arith-
metic functions defined by different types of the divisors,
we remarked a series of inequalities established between
these ones. Among these, we have, from [4] and [5], the
following

() +(n) < 7(n) + 1, (1)
(n) +n, 2)

* (e) (e)
o o\“(n T\ (n)+1
visors, thus, they proved that y/n < T*((Z)) for any n > 1. 9 ((n)) > 1(n) (2) > y(n). (3)
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It is easy to see that, we have
0" (n) <o (n) < a(n), “

for any n > 1.

2. Main results

We will give below other inequalities for the above arith-
metic functions to get a better characterization of the con-
nections between them.

Theorem 2.1. a) Equation
7(n) = 79 (n)7* (n), 5)

has solution n = 1 and an infinity of solutions of the form
n= H pe.
pln
ac{1,3}

b) There are an infinite number n so that we have
t(n) > 79 ()7 (n), ©®)

for n = [ p*, where a & {2,4,6} and at least one prime

pln
number p of the decomposition of n has a exponent un-

equal to 1 and 3;
¢) There are an infinite number n so that we have

t(n) < 79 (n)7*(n), )

for n = Hp“, where a € {1,2,3,4,6} and at least one

pln
prime number p of the decomposition of n has a exponent

unequal to 1 and 3.

Proof. a) For n = 1 we can see, immediately, that the equa-
tion is verified. For n = p“, where p is a prime number, the
equation becomes 7(p?) = 7(¢) (p®)7*(p?), which is equiv-
alent to the equation

at+1
=

(a), ®)

foreverya > 1.

This atypical equation leads to the idea search an upper
limit or lower, as a function of variable a, which may be
easier to handle. In [9], Sierpinski showed that 7(a) <
2+/a, for any a > 1, which means that the equation (8)
becomes a+ 1 < 44/a, it follows that a € (7 — 43,7+
4/3)NN={1,2,3,...,13}.

Substituting these values in equation (8), we deduce a €
{1,3}, and considering the fact that the functions 7, 7(¢)
and T* are multiplicative, we have

t(n) =1 IT ("= IJ (a+1)=

pln P
ac{1,3} ac{1,3}

[T r|=

pln
ac{1,3}

= H 2t(a)=1" H Pl KA H Pl =
pln pln pln
ac{1,3} ac{1,3} ac{1,3}
()7 (n).

b) To prove these requirements we will study the values of
1

a, for which the inequality % > 7(a) holds, the idea is

based on equality (8).

1
From Langford’s inequality (see e.g. [7]), we have at

, for any a > 1, which means that,using relation (8),

o(a)

we have to say under what conditions
T(a

> 1(a), so, we

must find the values of a for which the inequality
o(a) = 7%(a) holds.

But, G. Mincu and L. Panaitopol studied in [3] the
equation ¢ (a) = 72(a), obtaining solutions 1 and 3. How
can we use this result in our approach is easy to see.

In demonstration of this equation we see, from [3], that

c 13
(a) > — > 1, for a > 5 and odd, it follows the inequal-
2(a) — 9

.oa+1
ity — > 7(a).

o 1
For a =2™, with m > 4, we have z(a) >1,soaJr >
7%(a) 2
o(a)

7(a).If a € {2,4,8}, then implies Tt < 7(a). But, fora=

1
8, weget T(8) =4 < 3,50 % > 7(a), and fora € {2,4},

a+1

we will obtain < t(a).
Case remains to be studied is @ = 2™ - 3. Therefore,
o(2™-3 o(2™
we have the relation 12((2’" : 3)) = 12(( 2'")) > 1, for every
m > 4. By checking for m € {1,2,3}, we deduce that only
a+1
a =6, we have < 1(a).

Coa+1
In other words, we obtain

> 1(a), for any a #
a+1

1,2,3,4,6, and for a € {2,4,6} we deduce < 7(a).

In conclusion, if we take n = Hp“, where a & {2,4,6}

pln
and at least one prime number p of the decomposition of n

has a exponent unequal to 1 and 3, then we find
t(n) > 1) (n)7" (n),
and if we take n = Hp“, where a € {1,2,3,4,6} and at
pln

least one prime number p of the decomposition of n has a
exponent unequal to 1 and 3, then we obtain

7(n) < 1 (n)7* (n).
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Remark 2.2. If we combine the two forms of n, then we
deduce that there are situations when () > () (n)7*(n)
and there are situtions when the reverse inequality holds.

easily show that p¢ > p* ! + p=2 4+ . 4+ p, foralla > 1
and for every prime number p.
We note that among the numbers 1,2,3,...,a — 2 are the

Therefore, for n = p?q® we have 7(n) = 18 > 16 = 1(¢) (n)7*(n),numbers a — ds_,a — ds_3, ...,a — dp, wich means that

and for n = p? p3q° we get T(n) = 54 < 64 = () (n)7*(n).
Proposition 2.3. For any n > 1, the inequality

>t (n) + y(n) - 1, )

holds.

Proof. Case n = 1, implies equality in the relation (9). For

every number n > 2, we deduce the inequality (7(¢)(n) —

1)(y(n) —2) > 0, which is equivalent to () (n)y(n) +2 >

22 (n) +(n), 50 £ () () + ¥(n) > 2¢)n) + 2y(n) —
(e)

(T (l’l) + 1)’)/(”) > ,L.(e) (n) + ’)/(n) _

1. According to inequality (3), it follows inequality (9).

2, which means that

Theorem 2.4. For every n > 1, there is the following in-
equality
¥ (n) <n+nlntl®(n). (10)

Proof. For n = 1, the inequality is true.

If n > 1, then the smallest exponential divisor of
n=p{'p5*..p% > 1is pips...p, = Y(n). Next, we will re-
place the exponential exponential divisors of n with similar
values, but higher than they. If the largest exponential divi-
sor of n is n, the next exponential divisor of #, in descend-
ing order, is less than 5. Therefore, if y(n) = d1,da, ...,ds =
n are the exponential divisors of n, then it is easy to see that
d; < ;, for all i = 1,s, where s = ‘L'(e)(n). Consequently,

we obtain

n n n
0¥ (n)=dy+ds_1+dyo+...+d) < Pttt =

1 1 1
n<1+2+3+...+s> <n(l+Ins),

so, we deduce inequality (10).

Theorem 2.5. For any n > 1, there is the following in-
equality

6 (n)
T(e)(n) '

Vn < 1)

Proof. If n = 1, we get equality in (11). Let’s consider n >
2. For n = p, where p is a prime number, we have VP D,
which is true.

Next, we consider the case when n = p?, with a > 2,
because, we are interested in the number of divisor a. If a is
a prime number, then the number a has only two divisors,
so inequality (11) becomes 2+/p? < p® + p, which is true,
because 0 < (y/p?—1)2+ p— 1. If a is a compose number,
then a > 4 and we will write the divisors of a in ascending
order, in following way, | =d| < dp < ... < d;_| < d; =a,
where s = 7(a) > 3, dy > 2 and d;_; < a—2. One can

) (p") = p Pt T p >
PP T pS i ptr L p B p >
pa—1+pa—d2+".+pa—dj,2 +pa—ds,1+p+pdx,l+pdx,2+

...+pd2 +p>2(s—1)y/p?>s/p*=1(a)\/p*=
(@ (p™)+/ p“, because, we know that s > 2.

Hence 6'¢)(p?) > (¢ (p®),/p@, for every prime num-
ber p and foralla > 1.

By using the fundamental theorem of arithmetic, for
n > 1, we have the decomposition in prime factors of n
given as n = p{' p5?...p¢%, from where, making the product
for all prime factors in the above inequality, and according
to the functions 6 (n), 7¢)(n) and /n are multiplicative,
we deduce the inequality from the statement.

O
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