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Abstract: The aim of this paper is to present some properties about the arithmetic functions which use exponential divisors.Among

these properties we study the equation τ(n) = τ(e)(n)τ∗(n), we show that
√

n ≤ σ (e)(n)
τ(e)(n)

, for all n ≥ 1 and other inequalities related to

these multiplicative arithmetic functions.
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1. Introduction

The present paper contains some results regarding the in-
equalities related to several multiplicative arithmetic func-
tions which use exponential divisors and exponential uni-
tary divisors. But, first, we present several classes of divi-
sors, which we will use in this paper.

Let n be a positive integer number. Starting from the
set of divisors of n were defined two main multiplicative
arithmetic functions, namely, σ(n) is the sum of the divi-
sors of n and τ(n) is the number of divisors of n.

In [2], E. Cohen changed the notion of block-factor
which was introduced by R. Vaidyanathaswamy in [14], by
the notion of unitary divisor, which means that: a divisor d
of n is a unitary divisor when

(
d,

n
d

)
= 1. In this case, we

note by σ∗(n) the sum of the unitary divisors of n and by
τ∗(n) the number of unitary divisors of n, which is, in fact,
the number of the square-free divisors of n. Several in-
equalities inequalities between these arithmetic functions
are given below.

S. Sivaramakrishnan and C. S. Venkataraman (see e.g.
[8]), show that
√

n ≤ σ(n)
τ(n)

, for every n ≥ 1. J. Sándor and L. Tóth in

[8] studied the same type of inequality for the unitary di-

visors, thus, they proved that
√

n ≤ σ∗(n)
τ∗(n)

, for any n ≥ 1.

For other arithmetic inequalities see the books [1], [7], [8],
[9].

Therefore, we will show, in this paper, the same type
of the inequality for the arithmetic functions which use ex-
ponential divisors.

The class of exponential divisors was introduced by M.
V. Subbarao in [10], in the following way: d is said to be
an exponential divisor (or e-divisor) of n = pa1

1 ...par
r > 1,

if d = pb1
1 ...pbr

r > 1, where bi|ai, for any 1 ≤ i ≤ r.
A variety of results related to the exponential divisors are
given in many sources, such as: [9, 10, 11, 12].

N. Minculete and L. Tóth in [13] presented some prop-
erties of the arithmetic functions which use exponential
unitary divisors or e-unitary divisors of n = pa1

1 ...par
r > 1,

if d = pb1
1 ...pbr

r > 1, where bi is an unitary divisor of ai, so(
bi,

ai

bi

)
= 1, for any 1 ≤ i ≤ r.

Studying the various relations of the multiplicative arith-
metic functions defined by different types of the divisors,
we remarked a series of inequalities established between
these ones. Among these, we have, from [4] and [5], the
following

τ(e)(n)+ τ∗(n)≤ τ(n)+1, (1)

σ (e)(n)+σ∗(n)≤ σ(n)+n, (2)

and
σ (e)(n)
τ(e)(n)

≥ γ(n) · τ(e)(n)+1
2

≥ γ(n). (3)
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It is easy to see that, we have

σ (e)∗(n)≤ σ (e)(n)≤ σ(n), (4)

for any n ≥ 1.

2. Main results

We will give below other inequalities for the above arith-
metic functions to get a better characterization of the con-
nections between them.
Theorem 2.1. a) Equation

τ(n) = τ(e)(n)τ∗(n), (5)

has solution n = 1 and an infinity of solutions of the form
n = ∏

p|n
a∈{1,3}

pa.

b) There are an infinite number n so that we have

τ(n)> τ(e)(n)τ∗(n), (6)

for n = ∏
p|n

pa, where a ̸∈ {2,4,6} and at least one prime

number p of the decomposition of n has a exponent un-
equal to 1 and 3;
c) There are an infinite number n so that we have

τ(n)< τ(e)(n)τ∗(n), (7)

for n = ∏
p|n

pa, where a ∈ {1,2,3,4,6} and at least one

prime number p of the decomposition of n has a exponent
unequal to 1 and 3.
Proof. a) For n= 1 we can see, immediately, that the equa-
tion is verified. For n = pa, where p is a prime number, the
equation becomes τ(pa)= τ(e)(pa)τ∗(pa), which is equiv-
alent to the equation

a+1
2

= τ(a), (8)

for every a ≥ 1.
This atypical equation leads to the idea search an upper
limit or lower, as a function of variable a, which may be
easier to handle. In [9], Sierpinski showed that τ(a) <
2
√

a, for any a ≥ 1, which means that the equation (8)
becomes a+ 1 < 4

√
a, it follows that a ∈ (7− 4

√
3,7+

4
√

3)∩N= {1,2,3, ...,13}.
Substituting these values in equation (8), we deduce a ∈
{1,3}, and considering the fact that the functions τ,τ(e)
and τ∗ are multiplicative, we have

τ(n) = τ

 ∏
p|n

a∈{1,3}

pa

= ∏
p|n

a∈{1,3}

τ(pa) = ∏
p|n

a∈{1,3}

(a+1) =

= ∏
p|n

a∈{1,3}

2τ(a) = τ∗

 ∏
p|n

a∈{1,3}

pa

τ(e)

 ∏
p|n

a∈{1,3}

pa

=

τ∗(n)τ(e)(n).

b) To prove these requirements we will study the values of

a, for which the inequality
a+1

2
> τ(a) holds, the idea is

based on equality (8).

From Langford’s inequality (see e.g. [7]), we have
a+1

2
≥

σ(a)
τ(a)

, for any a ≥ 1, which means that,using relation (8),

we have to say under what conditions
σ(a)
τ(a)

≥ τ(a), so, we

must find the values of a for which the inequality
σ(a) = τ2(a) holds.

But, G. Mincu and L. Panaitopol studied in [3] the
equation σ(a) = τ2(a), obtaining solutions 1 and 3. How
can we use this result in our approach is easy to see.

In demonstration of this equation we see, from [3], that
σ(a)
τ2(a)

≥ 13
9

> 1, for a ≥ 5 and odd, it follows the inequal-

ity
a+1

2
> τ(a).

For a= 2m, with m≥ 4, we have
σ(a)
τ2(a)

> 1, so
a+1

2
>

τ(a). If a∈{2,4,8}, then implies σ(a)
τ(a) < τ(a). But, for a=

8, we get τ(8)= 4< 9
2 , so

a+1
2

> τ(a), and for a∈{2,4},

we will obtain
a+1

2
< τ(a).

Case remains to be studied is a = 2m · 3. Therefore,

we have the relation
σ(2m ·3)
τ2(2m ·3)

=
σ(2m)

τ2(2m)
> 1, for every

m ≥ 4. By checking for m ∈ {1,2,3}, we deduce that only

a = 6, we have
a+1

2
< τ(a).

In other words, we obtain
a+1

2
> τ(a), for any a ̸=

1,2,3,4,6, and for a ∈ {2,4,6} we deduce
a+1

2
< τ(a).

In conclusion, if we take n=∏
p|n

pa, where a ̸∈ {2,4,6}

and at least one prime number p of the decomposition of n
has a exponent unequal to 1 and 3, then we find

τ(n)> τ(e)(n)τ∗(n),

and if we take n = ∏
p|n

pa, where a ∈ {1,2,3,4,6} and at

least one prime number p of the decomposition of n has a
exponent unequal to 1 and 3, then we obtain

τ(n)< τ(e)(n)τ∗(n).

�
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Remark 2.2. If we combine the two forms of n, then we
deduce that there are situations when τ(n) > τ(e)(n)τ∗(n)
and there are situtions when the reverse inequality holds.
Therefore, for n= p2q5 we have τ(n)= 18> 16= τ(e)(n)τ∗(n),
and for n = p2

1 p2
2q5 we get τ(n) = 54 < 64 = τ(e)(n)τ∗(n).

Proposition 2.3. For any n ≥ 1, the inequality

σ (e)(n)
τ(e)(n)

≥ τ(e)(n)+ γ(n)−1, (9)

holds.
Proof. Case n = 1, implies equality in the relation (9). For
every number n ≥ 2, we deduce the inequality (τ(e)(n)−
1)(γ(n)−2)≥ 0, which is equivalent to τ(e)(n)γ(n)+2 ≥
2τ(e)(n)+γ(n), so τ(e)(n)γ(n)+γ(n)≥ 2τ(e)(n)+2γ(n)−

2, which means that
(τ(e)(n)+1)γ(n)

2
≥ τ(e)(n)+ γ(n)−

1. According to inequality (3), it follows inequality (9).
Theorem 2.4. For every n ≥ 1, there is the following in-
equality

σ (e)(n)≤ n+n lnτ(e)(n). (10)

Proof. For n = 1, the inequality is true.
If n > 1, then the smallest exponential divisor of
n = pa1

1 pa2
2 ...par

r > 1 is p1 p2...pr = γ(n). Next, we will re-
place the exponential exponential divisors of n with similar
values, but higher than they. If the largest exponential divi-
sor of n is n, the next exponential divisor of n, in descend-
ing order, is less than n

2 . Therefore, if γ(n)= d1,d2, ...,ds =
n are the exponential divisors of n, then it is easy to see that
d j ≤

n
j
, for all i = 1,s, where s = τ(e)(n). Consequently,

we obtain

σ (e)(n)= ds+ds−1+ds−2+...+d1 ≤ n+
n
2
+

n
3
+ ...+

n
s
=

= n
(

1+
1
2
+

1
3
+ ...+

1
s

)
< n(1+ lns) ,

so, we deduce inequality (10).
Theorem 2.5. For any n ≥ 1, there is the following in-
equality

√
n ≤ σ (e)(n)

τ(e)(n)
. (11)

Proof. If n = 1, we get equality in (11). Let’s consider n ≥
2. For n = p, where p is a prime number, we have

√
p ≤ p,

which is true.
Next, we consider the case when n = pa, with a ≥ 2,

because, we are interested in the number of divisor a. If a is
a prime number, then the number a has only two divisors,
so inequality (11) becomes 2

√
pa ≤ pa + p, which is true,

because 0 ≤ (
√

pa−1)2+ p−1. If a is a compose number,
then a ≥ 4 and we will write the divisors of a in ascending
order, in following way, 1 = d1 < d2 < ... < ds−1 < ds = a,
where s = τ(a) ≥ 3, d2 ≥ 2 and ds−1 ≤ a− 2. One can

easily show that pa ≥ pa−1 + pa−2 + ...+ p, for all a ≥ 1
and for every prime number p.

We note that among the numbers 1,2,3,...,a−2 are the
numbers a−ds−1,a−ds−2, ...,a−d2, wich means that

σ (e)(pa) = pa + pds−1 + pds−2 + ...+ pd2 + p ≥

pa−1 + pa−2 + ...+ p+ pds−1 + pds−2 + ...+ pd2 + p ≥
pa−1+ pa−d2 + ...+ pa−ds−2 + pa−ds−1 + p+ pds−1 + pds−2+

...+ pd2 + p ≥ 2(s−1)
√

pa ≥ s
√

pa = τ(a)
√

pa =

τ(e)(pa)
√

pa,because, we know that s ≥ 2.

Hence σ (e)(pa) ≥ τ(e)(pa)
√

pa, for every prime num-
ber p and for all a ≥ 1.

By using the fundamental theorem of arithmetic, for
n > 1, we have the decomposition in prime factors of n
given as n = pa1

1 pa2
2 ...par

r , from where, making the product
for all prime factors in the above inequality, and according
to the functions σ (e)(n), τ(e)(n) and

√
n are multiplicative,

we deduce the inequality from the statement.
�
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versity of Braşov, Romania. He
received the PhD degree in ”Math-
ematics” at ”Simion Stoilow”
Institute of Mathematics of the
Romanian Academy. His main
research interests are: theory of
multiplicative arithmetic func-
tions, real functions and inequal-
ities, Euclidian geometry.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


