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Abstract: The fully developed flow of an incompressible, thermodynamically compatible non-Newtonian magnetohydrodynamics
(MHD) fluid in a pipe with porous space and partial slip is studied in this paper. Two illustrative models of viscosity namely (i)
Constant model and (ii) Variable model are considered. Series solutions for nonlinear coupled partial differential equations are first
developed and then convergence of the obtained series solutions has been discussed explicitly. The recurrence formulae for finding the
coefficients are also given in each case. Finally the role of pertinent parameters is illustrated graphically.
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1. Introduction

The flows of non-Newtonian fluids are encountered in vari-
ous industrial and technological applications [1-7]. A num-
ber of industrially important fluids such as molten plastics,
polymers, pulps, foods and slurries display non-Newtonian
fluid behavior. Moreover, the analysis of heat transfer due
to the flow of non-Newtonian fluids has been an active re-
search topic nowadays. The thermal boundary layer flows
of non-Newtonian fluids have practical importance in var-
ious engineering systems such as the design of thrust bear-
ing and radial diffusers, transpiration cooling, drag reduc-
tion, thermal recovery of oil, etc. Furthermore blood flow
( with shear rate below100S−1) in the coronary arteries
represents a mathematical model of non-Newtonian MHD
fluid in a porous medium. It is also well accepted now
that slip effects may appear for two types of fluids ( i.e.,
rare field gases [8] and fluids having much more elastic
character). It is noticed through experiment observations
[9, 10] that the occurrence of slippage is possible in the
non-Newtonian fluids such as polymer solution and molten
polymer as well. The fluids that exhibit slip effect have
many applications, for instance, the polishing of artificial

heart valves and internal cavities [11]. In addition, porous
media is used to transport and store energy in many in-
dustrial applications, such as heat pipe, solid matrix heat
exchangers, electronic cooling, and chemical reactors. An
important characteristic for the combination of the fluid
and the porous medium is the tortuosity which represents
the hindrance to flow diffusion imposed by local bound-
aries or local viscosity [12].

Despite the overwhelming importance and frequent oc-
currence of non-Newtonian fluid behavior in industry and
technology, Massoudi and Christie [13] numerically ex-
amined the pipe flow of non-Newtonian fluid for viscosity
models. Hayat et al. [14] presented the homotopy solution
of the problem considered in ref. [13] up to second order
deformation. A very little efforts [15, 16] have been re-
ported yet in the literature to present series solution for
non Newtonian magnetohydrodynamics (MHD) fluid with
slip and porosity parameters simultaneously.

Motivated by these facts, the aim of present investiga-
tions is to examine the effects of slip, MHD and poros-
ity parameters for steady flow of an in compressible non-
Newtonian fluid in a pipe. It is well known that the non-
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linear equations are usually solved by numerical methods.
Here we intend to solve the relevant nonlinear coupled
equations for velocity and temperature profiles by using
homotopy analysis method (HAM) [17-22]. Convergence
of the obtained solutions is explicitly shown. The effects
of the various parameters of interest on the velocity and
temperature are pointed out. The heat transfer analysis is
also examined. The paper is organized as follows. Section
2 contains the problem description. In Section 3 solution
of the problem is found using HAM. Section 3.1 contains
the case-I for constant viscosity whereas, Section 3.2 is
devoted to obtain the solution for variable viscosity. Con-
vergence is carefully analyzed in Section 4. Results and
discussion are given in Section 5 and finally our conclu-
sion is presented in Section 6.

2. Formulation of the problem

In the present analysis, we consider the steady unidirec-
tional flow of third grade fluid and heat transfer through
a porous pipe. The fluid is electrically conducting under
the application of a constant magnetic field. The flow is
induced by a constant pressure gradient. The velocity field
is of the form

V = [0, 0, v(r)] . (1)

The Cauchy stress tensorT in third grade fluid is written
as

T = −p1I + µA1 + α1A2 + α2A2
1 + β1A3 (2)

+β2(A1A2 + A2A1) + β3(trA2
1)A1,

with p1 as the hydrostatic pressure,µ the dynamic viscos-
ity, I the identity tensor andαi(i = 1, 2) andβj(j = 1−3)
the material constants. The Rivlin-Ericksen tensors are

A1 = ∇V + (∇V)t, (3)

An =
dAn−1

dt
+An−1∇V+(∇V)t

An−1, n > 1, (4)

in which∇ is the gradient operator. Moreover, thermody-
namics imposes the following constraints [23]

µ ≥ 0, α1 ≥ 0, |α1 + α2| ≤
√

24µβ3, (5)

β1 = β2 = 0, β3 ≥ 0.

Keeping in mind the constitutive equation, the following
law is proposed [24]:

Rz = −φ

k

[
µ + Λ

(
dv

dr

)2
]

v, (6)

whereRz is thez−components of Darcy’s resistanceR.
The governing momentum and energy equations after

employing Eqs. (5) and (6) can be expressed as

1
r

d

dr

(
rµ

dv

dr

)
+

2β3

r

d

dr

[
r

(
dv

dr

)3
]
−Rz (7)

= −∂p̂

∂z
+ σB2

0 v,

µ

(
dv

dr

)2

+ 2β3

(
dv

dr

)4

+ k

[
1
r

d

dr

(
r
dθ

dr

)]
= 0. (8)

The corresponding slip conditions are

v(R)− γ

[
dv

dr
(R) +

Λ

µ

(
dv

dr
(R)

)3
]

= 0; (9)

θ(R) = 0,
dv

dr
(0) =

dθ

dr
(0) = 0.

Let us introduce the following non-dimensional parame-
ters

Λ =
2β3v

2
0

µ0R2
, c =

∂p1
∂z R2

µ0v0
, r =

r

R
,

v =
v

v0
, µ =

µ̄

µ0
, θ =

θ − θ0

θ1 − θ0
,

Γ =
µ2

0v0

k(θ1 − θ0)
, p =

φ

k1R2
, γ =

γ

R
, (10)

M2 =
σB2

0 R2

µ0
, Γ =

µ2
0v0

k(θ1 − θ0)
.

Hereφ is porosity,k1 is the permeability,σ is the electri-

cal conductivity,B0 is the magnetic field strength,k is the
thermal conductivity. andR, v0, µ0, θ0, θ, θ1 Λ, p, Γ , M,
c denote the radius, reference velocity, reference viscos-
ity, reference temperature, pipe temperature, fluid temper-
ature, third grade parameter, porosity parameter, viscous
dissipation parameter, MHD parameter, pressure gradient
respectively. The modified pressurep̂ is given by

p̂ = p1 − α2

(
dv

dr

)2

. (11)

Substituting Eq. (2) in the balance of linear momentum
and using the non-dimensional quantities given in Eq. (10),
the dimensionless form of governing equations from Eqs.
(7) to (9), after dropping bars for simplicity, lead to the
following non-dimensional coupled equations

dµ

dr

dv

dr
+

µ

r

dv

dr
+ µ

d2v

dr2

+
Λ

r

(
dv

dr

)3

+ 3Λ

(
dv

dr

)2
d2v

dr2

−p

[
µ + Λ

(
dv

dr

)2
]

v −M2v = c, (12)

d2θ

dr2
+

1
r

dθ

dr
+Γ

(
dv

dr

)2
[
µ(r) + Λ

(
dv

dr

)2
]

= 0, (13)

v(1)− γ

[
dv

dr
(1) +

Λ

µ

(
dv

dr
(1)

)3
]

= 0;

θ(1) = 0,
dv

dr
(0) =

dθ

dr
(0) = 0. (14)
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3. Solution of the problem

In this section the HAM solutions will be determined for
the velocity and temperature by using constant and vari-
able viscosity models.

3.1. Case 1: Constant viscosity model

For constant viscosity model take

µ = 1. (15)

For HAM solution we select

v0(r) =
cr2 + 2cr + 2c3Λγ − c

2
,

θ0 =
c2Γ (1− r4)

64
, (16)

as initial approximations ofv and θ respectively, which
satisfy the corresponding boundary conditions. We use the
method of higher order differential mapping, [25] to choose
the linear operator1 which is defined by

1 =
d2

dr2
+

1
r

d

dr
, (17)

such that
1(C1 + C2 ln r) = 0, (18)

whereC1 andC2 are the arbitrary constants.
The zeroth−order deformation problems are of the

form:

(1− q)1[v∗(r, q)− v0(r)]

= q~N1[v∗(r, q), θ∗(r, q)], (19)

(1− q)1[θ∗(r, q)− θ0(r)]

= q~N2[v∗(r, q), θ∗(r, q)], (20)

v∗(r, q)− γ

[
∂v∗ (r, q)

∂r
+ Λ

(
∂v∗ (r, q)

∂r

)2
]∣∣∣∣∣

r=1

= 0,

∂v∗(r, q)
∂r

∣∣∣∣
r=0

= 0, (21)

θ∗(r, q)|r=1 = 0,
∂θ∗(r, q)

∂r

∣∣∣∣
r=0

= 0,

where the nonlinear operatorsN1 andN2 are

N1[v∗(r, q), θ∗(r, q)] =
1
r

dv∗

dr
+

d2v∗

dr2

+
Λ

r

(
dv∗

dr

)3

+ 3Λ

(
dv∗

dr

)2
d2v∗

dr2

−p

[
1 + Λ

(
dv∗

dr

)2
]

v∗ −M2v − c, (22)

N2[v∗(r, q), θ∗(r, q)] =
1
r

dθ∗

dr

+
d2θ∗

dr2
+ Γ

(
dv∗

dr

)2

+ ΓΛ

(
dv∗

dr

)4

. (23)

If ~ is convergence parameter and0 ≤ q ≤ 1 is an embed-
ding parameter then forq = 0 andq = 1, we have

v∗(r, 0) = v0(r), θ∗(r, 0) = θ0(r),

v∗(r, 1) = v(r), θ∗(r, 1) = θ(r). (24)

Whenq increases from0 to1, v∗(r, q), θ∗(r, q) varies from
v0(r), θ0(r) to v(r), θ(r), respectively. By Taylor’s theo-
rem and Eq.(24) we have

v∗(r, q) = v0(r) +∞m=1

(
1
m!

∂mv∗(r, q)
∂qm

∣∣∣∣
q=0

)
qm,

θ∗(r, q) = θ0(r) +∞m=1

(
1
m!

∂mθ∗(r, q)
∂qm

∣∣∣∣
p=0

)
qm. (25)

The convergence of the series given in Eq.(25) depends
upon the choice of~, such that series converges atq = 1,
then Eq.(25) becomes

v(r) = v0(r) +∞m=1
1

m!
∂mv∗(r,q)

∂qm

∣∣∣
q=0

θ(r) = θ0(r) +∞m=1
1

m!
∂mθ∗(r,q)

∂qm

∣∣∣
q=0



 ., (26)

Themth order deformation problems are given by

1[vm(r)− χmvm−1(r)] = ~<1m(r), (27)

1[θm(r)− χmθm−1(r)] = ~<2m(r), (28)

vm(1)− γ

[
∂vm (1)

∂r
+ Λ

(
∂vm (1)

∂r

)3
]

= θm(1) = 0, v′m(0) = θ′m(0) = 0, (29)

where

<1m(r) =
1
r

dvm−1

dr
+

d2vm−1

dr2

+
Λ

r

m−1

k=0

k
i=0

(
dvm−1−k

dr

)
dvk−1

dr

dvi

dr

+3Λm−1
k=0

k
i=0

(
dvm−1−k

dr

)
dvk−1

dr

d2vi

dr2

−(1− χm)c− qvm−1 − pΛm−1
k=0

k∑

i=0

(
dvm−1−k

dr

)

×dvk−1

dr
vi −M2vm−1, (30)

<2m(r) =
1
r

dθm−1

dr
+

d2θm−1

dr2
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+Γ

m−1∑

k=0

(
dvm−1−k

dr

)
dvk

dr
+

ΛΓ

m−1∑

k=0

k∑

j=0

j
i=0

(
dvm−1−k

dr

)
dvk−j

dr

dvj−i

dr

dvi

dr
(31)

are recurrence formulae, in which

χm =
{

0, m ≤ 1,
1, m > 1.

3.2. Case II: Variable viscosity model

In this case we choose

v0(r) =
cr2 + 2cr + 2c3Λγ − c

2
, (32)

µ = r, θ0 =
c4Γ (1− r2)

64
(33)

and the operator

2 =
d2

dr2
+

2
r

d

dr
, (34)

such that

2(C3 +
C4

r
) = 0, (35)

whereC3 andC4 are the arbitrary constants.
Thezeroth− andmth−order order deformation prob-

lems in this case are developed as

(1− q)2[v∗(r, q)− v0(r)]

= q~N3[v∗(r, q), θ∗(r, q)], (36)

(1− q)1[θ∗(r, q)− θ0(r)]

= q~N4[v∗(r, q), θ∗(r, q)], (37)

v∗(r, q)− γ

[
∂v∗ (r, q)

∂r
+

Λ

r

(
∂v∗ (r, q)

∂r

)3
]∣∣∣∣∣

r=1

= 0,

∂v∗(r, q)
∂r

∣∣∣∣
r=0

= 0,

θ∗(r, q)|r=1 = 0,
∂θ∗(r, q)

∂r

∣∣∣∣
r=0

= 0, (38)

2[vm(r)− χmvm−1(r)] = ~<3m(r), (39)

2[θm(r)− χmθm−1(r)] = ~<4m(r), (40)

vm(1)− γ

[
∂vm (1)

∂r
+

Λ

r

(
∂vm (1)

∂r

)2
]

= 0,

θm(1) = 0, v′m(0) = θ′m(0) = 0, (41)

where

N3[v∗(r, q), θ∗(r, q)] =
2
r

dv∗

dr
+

d2v∗

dr2

+
Λ

r2

(
dv∗

dr

)3

+
3Λ

r

(
dv∗

dr

)2
d2v∗

dr2

−p

[
1 +

Λ

r

(
dv∗

dr

)2
]

v∗ − M2v∗

r
− c

r
, (42)

N4[v∗(r, q), θ∗(r, q)] =
1
r

dθ∗

dr
+

d2θ∗

dr2

+Γ

(
dv∗

dr

)2

+ ΓΛ

(
dv∗

dr

)4

+ Γr

(
dv∗

dr

)2

(43)

and the corresponding recurrence formulae are

<3m(r) = 2r
dvm−1

dr
+ r2 d2vm−1

dr2

+Λ

m−1∑

k=0

k∑

i=0

(
dvm−1−k

dr

)
dvk−1

dr

dvi

dr

+3Λr

m−1∑

k=0

k∑

i=0

(
dvm−1−k

dr

)
dvk−1

dr

d2vi

dr2

−(1− χm)cr −M2rvm−1 − qr2vm−1

−pΛr

m−1∑

k=0

k∑

i=0

(
dvm−1−k

dr

)
dvk−1

dr
vi,

<4m(r) =
1
r

dθm−1

dr
+

d2θm−1

dr2

+Γr

m−1∑

k=0

(
dvm−1−k

dr

)
dvk

dr

+ΛΓ

m−1∑

k=0

k∑

j=0

j∑

i=0

(
dvm−1−k

dr

)
dvk−j

dr

dvj−i

dr

dvi

dr
. (44)

4. Convergence of the solution

The most important aspect of series solution is to discuss
the convergence of solution. In homotopy analysis method
the convergence of series is ensured by using a auxiliary
parameter~. By means of the so−called ~−curve, it is
straightforward to choose an appropriate range for~which
ensures the convergence of the solution series. As pointed
out by Liao [26], the appropriate region for~ is a horizon-
tal line segment. Figures1 and2 provide the~−curves for
constant viscosity model. The admissible values of veloc-
ity are−1.8 ≤ ~ ≤ 0 and for temperature are−1.8 ≤
~ ≤ −0.2. Figures3 and 4 represent the~−curves for
variable viscosity model. The admissible ranges for both
velocity and temperature profiles are−1.8 ≤ ~ ≤ −0.6
and−1.4 ≤ ~ ≤ −0.5, respectively.
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Figure 1 ~−curve for velocity profile in case of constant viscos-
ity.

Figure 2 ~−curve for temperature in case of constant viscosity.

Figure 3 ~−curve for velocity profile in case of variable viscos-
ity.

Figure 4 ~−curve for temperature in case of constant viscosity.

5. Results and discussion

Body Math To explore the effects of emerging parameters
on the velocity and temperature profiles figures5 to 14
have been displayed. The investigation of the effects of slip
parameterγ and MHD parameterM and porosity parame-
terp for constant viscosity model are shown in figures5 to
9. Figure5 illustrates the variation ofγ on the velocity pro-
file for constant viscosity. The values of theγ are chosen 0,
0.03, 0.05 and 0.08. It is found that the velocity decreases
with an increase in the values ofγ. Figure6 has been pre-
pared to explain the variation ofM on the velocity distri-
bution. The chosen values ofM are 0, 1, 2 and 3. Here,
it is revealed that velocity decrease when large values of
M have been taken into account. Obviously, the bound-
ary layer thickness decreases by increasing the MHD pa-
rameterM . Figure7 brings out the influence of porosity
parameterp on the velocity distribution. The selected val-
ues ofp are -1,-2 1 and 2. It can easily be observed that
velocity decreases by enhancing injection (p > 0). This
is in accordance with the fact that suction causes reduc-
tion in the boundary layer and as a result injection controls
the boundary layer thickness. For the case of blowing, it
is well known that in the case of Newtonian fluids, there
is no solution to the Navier-Stokes equations for blowing.
However, a solution to the equations of motion in the case
of fluid injected into the domain is possible in the case of
non-Newtonian fluids and the results established here are
in keeping with the results of Rajagopal and Gupta [27].
As expected, the blowing causes thickening of the velocity
boundary layer and this boundary layer thickness is greater
when compared to the case of suction. In order to see the
variations ofM andp on temperature distribution figures
8 and9 are plotted. The figures elucidate that the tempera-
ture decreases by increasingM andp. The figures10 to 14
have been prepared to explain the effects of slip parame-
terγ and MHD parameterM and porosity parameterp for
variable viscosity model. It is found that the velocity and
temperature profiles behave in same manner in both con-
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stant and variable viscosity models. But the velocity and
temperature profiles in case of constant viscosity model
are smaller than for variable viscosity model. This is not
surprising: it is well known that in variable viscosity model
the velocity and temperature distributions are qualitatively
larger than the constant model.

Figure 5 Profiles of velocity for various values of slip for con-
stant viscosity model whenM = 1 andp = 1 are fixed.

Figure 6 Profiles of velocity for various values of MHD for con-
stant viscosity model whenγ = 0.05 andp = 1 are fixed.

6. Conclusion

In this paper, the effects of MHD, porosity and slip pa-
rameter on a constant and variable viscosity for steady
flow in a pipe are investigated. The series solutions have
been developed and their convergence is carefully ana-
lyzed. These solutions are not only valid for small but also

Figure 7 Profiles of velocity for various values of suction and
blowing for constant viscosity model whenγ = 0.05 andM = 1
are fixed.

Figure 8 Profiles of temperature for various values of MHD for
constant viscosity model whenp = 1 is fixed.

Figure 9 Profiles of temperature for various values of slip pa-
rameter for constant viscosity model whenM = 1 is fixed.
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Figure 10 Profiles of velocity for various values of slip for vari-
able viscosity model whenM = 1 andp = 1 are fixed.

Figure 11 Profiles of velocity for various values of MHD for
variable viscosity model whenγ = 0.05 andp = 1 are fixed.

Figure 12 Profiles of velocity for various values of suction and
blowing for variable viscosity model whenγ = 0.05 andM = 1
are fixed.

Figure 13 Profiles of temperature for various values of MHD for
variable viscosity model whenp = 1 is fixed.

Figure 14 Profiles of temperature for various values of slip pa-
rameter for constant viscosity model whenM = 1 andp = 1 are
fixed.

for large values of all the emerging parameters. The solu-
tions valid for the no-slip condition for all values of the
non-Newtonian parameters can be derived as special cases
of the present analysis atγ = 0. The space occupying the
fluid is porous. The reduced system of coupled non-linear
differential equations is solved using homotopy analysis
method (HAM). The effects of emerging parameters have
been seen and discussed through graphs. To the best of our
knowledge, no such analysis is available in the literature
which can describe the MHD, slip and porosity effects on
velocity and temperature profiles for constant and variable
viscosity simultaneous. The following observations have
been made:

–The velocity decreases by increasing the values ofγ.
–The velocity and temperature decrease with an increase
in the values ofM.

–Increasing the values of the suction velocity profile de-
creases (p < 0).
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–The increase in injection velocity increases (p > 0).
–The velocity and temperature distributions are quali-
tatively larger than when compare with the constant
model.

–The results obtained are compared with those reported
earlier. It is interesting to note that whenγ = p =
M = 0 then one recovers the case [14]. The problem
reduces to the case [15] forγ = M = 0. The case
of [16] can also be recovered byγ = p = 0. This
provides the useful check

Acknowledgment: R. Ellahi thanks to CIES USA to
honored him by Fullbright Fellowship for the year 2011-
2012.
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