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Abstract: In this paper, the theory of complex numbers is formalized and the theorem library of complex numbers is embedded in
HOL4, the theorem prover of High Order Logics. The theorem library introduces a data typeC by anR × R type abbreviation, and
defines arithmetic operations of complex numbers in terms of group and field theories. Moreover, the polar and exponential forms are
provided for simplifying the applications in control theory and signal analysis. We define the scalar multiplication of complex numbers
and prove some properties aboutR-module of complex numbers. The theorem library extends the scope of application of HOL4. The
developed complex number theory has been released in HOL4 Kananaskis-7.
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1. Introduction

Theorem proving has been considered as one of effective
formal verification methods [1]. Systems need to be mod-
eled formally before they are verified by theorem provers,
and theorem provers work based on logic theorem libraries
of mathematics. The more the mathematic theorem libraries
are, the wider the scope of application of the theorem provers
becomes. The complex number theory is the basis of con-
trol theory, signal analysis, quantum mechanics, relativ-
ity, fluid dynamics and so on. It is significant to construct
the logic theorem library of complex numbers for theorem
provers.

Almost all the theorem provers have natural numbers
and real numbers [3,4]. The complex numbers have been
constructed in several theorem provers. Mizar is the earli-
est prover of constructing complex numbers [6] and many
research results related to complex numbers have been pub-
lished [7,8]. A completely constructive proof has also been
formalized in Coq [5]. Moreover, the PVS dump file pro-
vides a complex numbers library [10]. John Harrison intro-
duced the complex numbers in HOL-Light [2]. There are
definitions of the complex numbers and their arithmetic
operators in ProofPower-HOL [9] and Isabelle/HOL [11].

HOL4 is the latest version of High Order Logic (HOL),
featuring a number of novelties compared to its predeces-
sors. HOL4 is also the version of the system supported by
the international HOL community. The system provides
a wide collection of theorem libraries: Booleans, pairs,
sums, options, numbers (N, Z, Q, R, fixed point, floating
point, n-bit words), lists, lazy lists, character strings, par-
tial orders, monad instances, predicate sets, multisets, fi-
nite maps, polynomials, probability, abstract algebra, ellip-
tic curves, lambda calculus, program logics (Hoare logic,
separation logic), machine models (ARM, PPC, and IA32),
temporal logics (ω-automata, CTL,µ-calculus, PSL) and
so on [1].

However, until now, there hasn’t been any theorem li-
brary of complex numbers, which affects the scope of ap-
plication of HOL4. Moreover, the polar and exponential
forms are provided for simplifying the applications in con-
trol theory and signal analysis. Actually both the forms
are presented as multiplying a real number with a complex
number. Thus we define the scalar multiplication of com-
plex numbers for the theorem prover. To the best of our
knowledge, it is the first time to have this result.
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In this paper, we construct the theorem library of com-
plex numbers in HOL4. We start from defining the com-
plex data type. Then we systematically give the formal
logic description and proof of relevant theorems follow-
ing group, field and module algebraic systems. And then
we discuss the concept of conjugate complex and the re-
lated properties. And also we introduce the polar form and
the exponential form of complex numbers, which are par-
ticularly common in some areas.

2. the Basic Definitions of Complex Numbers

A complex number is in the form ofx + iy, wherex and
y are real numbers andi is a constant postulated to satisfy
i2 = −1. Thus, the complex numbers are isomorphic to
the pairs of real numbers. Pair and real theories have al-
ready been developed in HOL4, so it is easy to define the
complex number typeC by just using anR × R type ab-
breviation. A complex numbera + ib can be represented
as a pair of (a, b).

val = type abbrev (complex,′′:real # real′′);

The real part and the imaginary part are the basic el-
ements of a complex number. Their definitions are as fol-
lows:

Definition 1. ∀z ∈ C, RE z = FST z

Definition 2. ∀z ∈ C, IM z = SND z

The projection functions return the corresponding com-
ponents of a pair. The functionFST returns the first com-
ponent, andSND returns the second. ThusRE andIM
are both the type:C→ R.

Real numbers are subset of complex numbers, i.e., any
real number can be transformed into a complex number,
the imaginary part of which equals0.

Definition 3. ∀x ∈ R, complexof real x = (x, 0r)

Note: The suffix r meansR. The type of this function is
C→ R.

Specifically the imaginary uniti is defined as

Definition 4. i = (0r, 1r)

Two complex numbers are equal if and only if both the
real parts and the imaginary parts are equal respectively,
which is the most basic decision theorem.

Theorem 1. COMPLEXRE IM EQ:∀z, w ∈ C,
(z = w) ⇔ (RE z = RE w) ∧ (IM z = IM w)

Theorem 1 can be proven using the definitions ofRE
andIM .` val COMPLEX RE IM EQ = storethm(

COMPLEX RE IM EQ ,
′′!z w. (z=w)¡=¿(RE z=RE w)∧(IM z=IM w) ′′,
REWRITE TAC [RE, IM, PAIR FST SND EQ ]);

(We start a theorem with“ ` ” symbol in rectangles.)

3. The Field of Complex Numbers

In this section, the complex numbers are characterized as
the field algebraic structure.

3.1. The Definitions of Basic Operation

We overload the common operators forC andR.
Addition:

Definition 5. ∀z, w ∈ C,
z + w = (RE z + RE w, IM z + IM w)

Additive inverse (negation):

Definition 6. ∀z ∈ C,−z = (−RE z,−IM z)

Multiplication:

Definition 7. ∀z, w ∈ C,
z ∗ w = (RE z ∗ RE w − IM z ∗ IM w, RE z ∗

IM w + IM z ∗RE w)

Multiplicative inverse (reciprocal):

Definition 8. ∀z ∈ C,
inv z = (RE z/((RE z)2+(IM z)2),−IM z/((RE z)2+

(IM z)2))

Note: In the existing realTheory library of HOL4,inv 0r =
0r, so here we setinv 0c = 0c. The suffixc meansC.

3.2.〈C, +〉 is an Abelian Group

Based on the definition of addition of complex numbers,
we verify properties of the Abelian Group.

Theorem 2. COMPLEXADD CLOSURE:
∀z, w ∈ C, z + w ∈ C

Theorem 3. COMPLEXADD ASSOC:∀z, w, v ∈ C,
z + (w + v) = (z + w) + v

Theorem 4. COMPLEXADD RID:∀z ∈ C, z + 0c = z

Theorem 5. COMPLEXADD LID:∀z ∈ C, 0c + z = z

Theorem 6. COMPLEXADD RINV:∀z ∈ C,
z +−z = 0c

Theorem 7. COMPLEXADD LINV:∀z ∈ C,
−z + z = 0c

The complex number0c is the identical element of ad-
dition. The theorems above show that ¡C, +¿ is a group.
Easy to prove that it also satisfies commutative law, namely:

Theorem 8. COMPLEXADD COMM:∀z, w ∈ C,
z + w = w + z

It shows that ¡C, +¿ is an Abelian group.
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3.3.〈C − {0c}, 〉 is an Abelian Group

Similarly, the following properties of multiplication are es-
tablished:

Theorem 9. COMPLEXMUL CLOSURE:
∀z, w ∈ C, z ∗ w ∈ C

Theorem 10. COMPLEXMUL ASSOC:∀z, w, v ∈ C,
z ∗ (w ∗ v) = (z ∗ w) ∗ v

Theorem 11. COMPLEXMUL RID:∀z ∈ C,
z ∗ 1c = z

Theorem 12. COMPLEXMUL LID: ∀z ∈ C,
1c ∗ z = z

Theorem 13. COMPLEXMUL RINV:∀z ∈ C,
z 6= 0c ⇒ z ∗ inv z = 1c

Theorem 14. COMPLEXMUL LINV: ∀z ∈ C,
z 6= 0c ⇒ inv z ∗ z = 1c

The complex number1c is the unit element of the mul-
tiplication, namely, unitary element. The theorems above
show that ¡C -{0c},*¿ is a group. And easy to prove the
commutative law:

Theorem 15. COMPLEXMUL COMM: ∀z, w ∈ C,
z ∗ w = w ∗ z

So ¡C -{0c},* ¿ is an Abelian group.

3.4. 〈C+, 〉 is a Field

Theorem 16. COMPLEXADD LDISTRIB:
∀z, w, v ∈ C, z ∗ (w + v) = z ∗ w + z ∗ v

Theorem 17. COMPLEXADD RDISTRIB:
∀z, w, v ∈ C, (z + w) ∗ v = z ∗ v + w ∗ v

From what has been mentioned above, ¡C ,+,* ¿ is a
field.

In addition, the subtraction operation of complex num-
bers can be defined using the addition and negation opera-
tors:

Definition 9. ∀z, w ∈ C, z − w = z + (−w)

Similarly, the division operation of complex numbers
can be defined using the multiplication and reciprocal op-
erations:

Definition 10. ∀z, w ∈ C, z/w = z ∗ inv w

Based on these basic definitions and properties, many
other operations and properties can be reduced. As an ex-
ample, here illustrates the property of the addition of two

ratios, z
w + u

v = zv+uw
wv , denoted as COMPLEX

ADD RAT, It is necessary to prove the following theo-
rems before reaching the goal. The distributivity of divi-
sion over addition, denoted as COMPLEXDIV ADD, is

proved by rewriting the definition of division and the dis-
tributivity of multiplication over addition.

` val COMPLEX DIV ADD = store thm(
COMPLEX DIV ADD,
′′!z w v :complex. z / v + w / v = (z + w) / v′′,
REWRITE TAC[complexdiv,
GSYM COMPLEX ADD RDISTRIB]);

The properties about canceling the same factor of the
operands of the division, denoted as COMPLEXDIV RMUL
CANCEL and COMPLEXDIV LMUL CANCEL, can be

implemented as follows.

` val COMPLEX DIV RMUL CANCEL = storethm(
COMPLEX DIV RMUL CANCEL,
′′!v:complex z w.∼(v = 0) ==¿ ((z * v) / (w * v) = z / w)′′,
RW TAC bool ss [complexdiv] THEN
Caseson ′w = 0′ THEN
RW TAC bool ss [COMPLEXMUL LZERO,
COMPLEX INV 0, COMPLEX INV MUL,
COMPLEX MUL RZERO, COMPLEXEQ LMUL,
GSYM COMPLEX MUL ASSOC] THEN
DISJ2TAC THEN
ONCE REWRITE TAC [COMPLEX MUL COMM] THEN
ONCE REWRITE TAC [GSYM COMPLEX MUL ASSOC]
THEN RW TAC bool ss [COMPLEXMUL LINV,
COMPLEX MUL RID]);

` val COMPLEX DIV LMUL CANCEL = storethm(
COMPLEX DIV LMUL CANCEL,
′′!v:complex z w.∼(v = 0) ==¿ ((v * z) / (v * w) = z / w)′′,
METIS TAC [COMPLEX DIV RMUL CANCEL,
COMPLEX MUL COMM]);

So, the property COMPLEXADD RAT can be proved
using these theorems.

` val COMPLEX ADD RAT = storethm (
COMPLEX ADD RAT,
′′!z:complex w u v.
∼(w=0)∧ ∼(v=0)==¿(z/w+u/v=(z*v+w*u)/(w*v))′′,
RW TAC bool ss [GSYM COMPLEXDIV ADD,
COMPLEX DIV RMUL CANCEL,
COMPLEX DIV LMUL CANCEL]);

4. R-module

Practically, real numbers often act as coefficients of com-
plex numbers such asr(cos θ+i sin θ) andreiθ. This is the
scalar multiplication of complex numbers. The operands
areR andC, and the result isC. The scalar multiplication
of complex numbers has two styles, the left coefficient and
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the right coefficient. The symbol “*” is overloaded to rep-
resent the operation.

Definition 11. ∀k ∈ R, z ∈ C,
k ∗ z = (k ∗RE z, k ∗ IM z)

Definition 12. ∀k ∈ R, z ∈ C,
z ∗ k = (RE z ∗ k, IM z ∗ k)

Based on the definitions 11 and 12, the following the-
orems are verified:

Theorem 18. COMPLEXADD SCALARLMUL:
∀a ∈ R, z, w ∈ C, a ∗ (z + w) = a ∗ z + a ∗ w

Theorem 19. COMPLEXSCALARLMUL ADD:
∀a, b ∈ R, z ∈ C, (a + b) ∗ z = a ∗ z + b ∗ z

Theorem 20. COMPLEXSCALARLMUL:
∀a, b ∈ R, z ∈ C, a ∗ (b ∗ z) = (a ∗ b) ∗ z

Theorem 21. COMPLEXSCALARLMUL ONE:
∀z ∈ C, 1r ∗ z = z

Because the real number setR is a ring containing uni-
tary element1, and the Section 3.2 shows (C, +) is an
Abelian group, the theorems presented above educe that
the complex number setC is a left R-module. The two
operands of the scalar multiplication are commutative, namely:

Theorem 22. COMPLEXSCALARMUL COMM:
∀k ∈ R, z ∈ C, z ∗ k = k ∗ z

So the complex setC is a rightR-module. Therefore,
C isR-module.

The scalar multiplication of complex numbers is the
base of the polar form of complex numbers, and many ap-
plications will occur in the later chapters. Now, we talk
about an interesting property about the reciprocal of the
scalar multiplication.

` val COMPLEX INV SCALAR LMUL = store thm(
COMPLEX INV SCALAR LMUL,
′′!k:real z:complex.
∼(k = 0)∧ ∼(z = 0) ==¿ (inv (k*z) = inv k * inv z)′′,
REWRITE TAC [COMPLEX 0 THM, complex inv,
complexscalarlmul,RE,IM, POWMUL,
GSYM REAL ADD LDISTRIB, real div,
REAL INV MUL] THEN
REPEAT STRIPTAC THEN
′ ∼(k pow 2 = 0)′ by RW TAC real ss[POW2,
REAL ENTIRE] THEN
RW TAC real ss[REAL INV MUL] THEN
′inv (k pow 2) = inv k * inv k′ by
RW TAC real ss[POW2,REAL INV MUL] THEN
ASM REWRITE TAC[REAL MUL ASSOC] THEN
REWRITE TAC[REAL ARITH
′′!a b c:real. a * b * c * c = c * a * b * c′′] THEN
RW TAC real ss[REAL MUL LINV,
REAL MUL COMM]);

5. Complex Conjugate

If the real parts of two complex numbers are equal and
the imaginary parts are opposite, then the two complex
numbers are mutually conjugate complex numbers. Con-
jugate is an important concept as to complex numbers.
Complex conjugate is used in the rationalization of com-
plex numbers and for finding the amplitude of the polar
form of a complex number. Also it is involved when dis-
cussing many important properties of complex numbers.
For example, conjugate complex numbers always are used
to solve the dot product of complex vector and the unitary
transformations. Complex conjugate is defined as follows:

Definition 13. ∀z ∈ C, conj z = (RE z,−IM z)

Complex conjugate represents that two coordinates of
the complex plane are symmetric to the real axis. There
are many interesting properties about complex conjugate.
First several computing properties of complex conjugate
are given.

Theorem 23. CONJADD:
∀z, w ∈ C, conj (z + w) = conj z + conj w

Theorem 24. CONJNEG:
∀z ∈ C, conj (−z) = −conj z

Theorem 25. CONJSUB:
∀z, w ∈ C, conj (z − w) = conj z − conj w

Theorem 26. CONJMUL:
∀z, w ∈ C, conj (z ∗ w) = conj z ∗ conj w

Theorem 27. CONJ INV:
∀z ∈ C, conj (inv z) = inv (conj z)

Theorem 28. CONJDIV:
∀z, w ∈ C, conj (z/w) = conj z/conj w

Theorem 29. CONJSCALARLMUL:
∀k ∈ R, z ∈ C, conj (k ∗ z) = k ∗ conj z

The theorems above represent that for all of algebra
operating f, the conjugate value is commutative, i.e.f(conj z)
= conj f(z).

Other two complex conjugate properties are fairly im-
portant, which will be used frequently in some problems
of proof.

Theorem 30. CONJCONJ:∀z ∈ C, conj (conj z) = z

Theorem 31. COMPLEXMUL RCONJ:∀z ∈ C,
z ∗ conj z = complex of real((RE z)2 + (IM z)2)

Their implementations in HOL4 are as follows.

` val CONJCONJ = storethm(
”CONJ CONJ”, ′′!z:complex. conj (conj z) = z′′,
REWRITE TAC[conj, RE,IM,REAL NEGNEG]);

` val COMPLEX MUL RCONJ = storethm(
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”COMPLEX MUL RCONJ”,
′′!z:complex. z*conj z =
complexof real ((RE z) pow 2+(IM z) pow 2)′′,
REWRITE TAC [complexmul, conj, RE, IM,
complexof real, REAL MUL RNEG,
REAL SUB RNEG] THEN
PROVETAC [POW 2,
REAL MUL COMM, REAL ADD LINV]);

6. Polar Form of Complex Numbers

6.1. Modulus and Argument

Periodically varying signals can be described with com-
plex numbers conveniently in signal analysis and other
fields. In this case, the polar forms of complex numbers
have many advantages. For example, multiplication, di-
vision and power of complex numbers are simpler in the
polar form. The polar form of a complex number is repre-
sented with a modulus and an argument.

The modulus (absolute value) of a complex number
means the distance between the origin point and the point
corresponding to the complex number in the complex plane.
Obviously it is a non-negative real number.

Definition 14. ∀z ∈ C,
modu z = sqrt ((RE z)2 + (IM z)2)

wheresqrt is the function of square root of real.
There are also some properties of the modulus dealing

with complex numbers.

Theorem 32. MODU NEG:∀z ∈ C,modu (−z) = modu z

Theorem 33. MODU CONJ:
∀z ∈ C, modu (conj z) = modu z

Theorem 34. MODU MUL:
∀z, w ∈ C,modu (z ∗ w) = modu z ∗modu w

Theorem 35. MODU INV:
∀z ∈ C, z 6= 0 ⇒ modu (inv z) = inv (modu z)

Theorem 36. MODU DIV:
∀z, w ∈ C, w 6= 0 ⇒ modu (z/w) = modu z/modu w

Theorem 37. MODU SCALARLMUL:
∀k ∈ R, z, w ∈ C,modu (k ∗ z) = abs k ∗modu z

whereabs k is the absolute value of real numberk.
An interesting property is that the modulus of the sum

of two arbitrary complex numbers is not bigger than the
sum of their modulus, and if and only if the principal value
of their argument are equal, the equality holds. This prop-
erty is the famous triangle inequality.

Theorem 38. MODU TRIANGLEINEQUALITY:
∀z, w ∈ C,modu (z + w) ≤ modu z + modu w

The argument or phase ofz is the angle to the real
axis, and is written asarg(z). The value of an argument
keeps the same angle when adding multiples of2π (note
that radians are being used). Hence, thearg function is
sometimes considered as multivalued. Normally, as given
above, the principal value is chosen in the interval[0, 2π).
So the inverse cosine function is used to define the princi-
pal value of the argument of complex number.

Definition 15. ∀z ∈ C,

argz =





arccos RE z
modu z , 0 ≤ IM z

− arccos RE z
modu z + 2π, IM z < 0

Note: In the traditional definition of mathematics, the ar-
gument of complex number0 is arbitrary; but according to
this definition,arg 0c is π

2 .
The follow properties reflect the translation between

the polar form and the rectangular coordinate form. By
calling the theorems about inverse trigonometric functions
in transcTheory in HOL4, we can prove the follow proper-
ties.

Theorem 39. RE MODU ARG:
∀z ∈ C, RE z = modu z ∗ cos(arg z)

Theorem 40. IM MODU ARG:
∀z ∈ C, IM z = modu z ∗ sin(arg z)

Theorem 41. COMPLEXTRIANGLE:
∀z ∈ C, modu z ∗ (cos(arg z), sin(arg z)) = z

The following is the decision theorem that two com-
plex numbers are equal in the polar form.

Theorem 42. COMPLEXMODU ARGEQ:∀z, w ∈ C,
(z = w) ⇔ ((modu z = modu w) ∧ (arg z =

arg w))

The distance from any points on the unit circle to the
center of the circle is1.

Theorem 43. MODU UNIT:
∀x ∈ R,modu (cos x, sin x) = 1

The following two theorems are the multiplication and
division rules of complex numbers in polar form. They
are of important significance in geometry and are useful
in dealing with the geometric issues about rotation.

Theorem 44. COMPLEXMUL ARG:∀x, y ∈ R,
(cos x, sin x)∗(cos y, sin y) = (cos(x+y), sin(x+y))

Theorem 45. COMPLEXDIV ARG:∀x, y ∈ R,
(cos x, sin x)/(cos y, sin y) = (cos(x−y), sin(x−y))

Now, we prove DE MOIVRE Theorem, as an example,
and demonstrate the application of complex numbers in
polar form in HOL4. At first, we define the operation of
nature numbers power of complex numbers, and overload
the operator pow. The induction definition is used here:
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Definition 16. ∀n ∈ N, z ∈ C,
z pow 0 = 1c ∧ z pow (n + 1) = z ∗ (z pow n))
Next, we prove the following two theorems using the

method of mathematical induction:

Theorem 46. COMPLEXPOWSCALARLMUL:
∀n ∈ N, k ∈ R, z ∈ C, (k ∗ z) pow n = (k pow n) ∗

(z pow n)

Theorem 47. DE MOIVRELEMMA:∀n ∈ N, k ∈ R,
(cos x, sin x) pow n = (cos(&n ∗ x), sin(&n ∗ x))

` val COMPLEX POW SCALAR LMUL = store thm(
”COMPLEX POW L”,
′′!n:num k:real z:complex.
(k * z) pow n = (k pow n) * (z pow n)′′,
INDUCT TAC THEN
REWRITE TAC[complexpow, pow,
COMPLEX SCALAR LMUL ONE] THEN
REPEAT GENTAC THEN
ASM REWRITE TAC[] THEN
REWRITE TAC[COMPLEX MUL SCALAR LMUL2]);

` val DE MOIVRE LEMMA = store thm(
”DE MOIVRE LEMMA”,
′′!x:real n:num.
(cos x, sin x) pow n = (cos (&n * x), sin(&n * x))′′,
GEN TAC THEN INDUCT TAC THEN
ASM REWRITE TAC [complexpow, COS0,
REAL MUL LZERO, SIN 0,
complexof num, complexof real,
COMPLEX MUL ARG] THEN
ONCE REWRITE TAC [REAL ADD COMM] THEN
REWRITE TAC[REAL, REAL ADD RDISTRIB,
REAL MUL LID]);

DE MOIVRE THM can be proved with the two theo-
rems above:

Theorem 48. DE MOIVRETHM: ∀n ∈ N, z ∈ C,
(modu z ∗ (cos(argz), sin(argz))) pow n =
(modu z) pow n ∗ (cos(n ∗ argz), sin(n ∗ argz))

` val DE MOIVRE THM = store thm(
”DE MOIVRE THM”,
′′!z:complex n:num.
(modu z * (cos (arg z),sin (arg z))) pow n
= modu z pow n * (cos (&n * arg z),sin(&n * arg z))′′,
REWRITE TAC[COMPLEX POW SCALAR LMUL,
DE MOIVRE LEMMA]);

6.2. Exponential Form of Complex Numbers

With the definitions of the modulus and the principal val-
ues of arguments of complex numbers, in practice, we of-
ten express complex numbers in exponential form. The ex-
ponential form is the basic of many mathematical meth-
ods in digital signal processing so that the multiplication,

division and power operations of complex numbers be-
come very simple. Overloading theexp operator symbols
in HOL4 is to define theez.

Definition 17. ∀z ∈ C,
exp(z) = exp(RE z) ∗ (cos(IM z), sin(IM z))

Euler formula can be proved using previous definition
of imaginary uniti.

Theorem 49. EXP IMAGINARY:
∀x ∈ R, exp(i ∗ x) = (cos x, sin x)

Especially, for x=π, holdsexp(i ∗ π) = −1c, thus the
two transcendental numbersπ ande are linked together.

The exponential form of complex numbers can be proved:

Theorem 50. EULERFORMULE:
∀z ∈ C,modu z ∗ exp(i ∗ arg z) = z

The following rules of the operations of the complex
numbers in exponential form are also trivial to prove:

Theorem 51. COMPLEXEXP ADD:
∀z, w ∈ C, exp(z + w) = exp(z) ∗ exp(w)

Theorem 52. COMPLEXEXP NEG:
∀z ∈ C, exp(−z) = inv (exp(z))

Theorem 53. COMPLEXEXP SUB:
∀z, w ∈ C, exp(z − w) = exp(z)/ exp(w)

Theorem 54. COMPLEXEXP N:
∀n ∈ N, z ∈ C, exp(n ∗ z) = exp(z)pow n

7. A Case Study About Sine Wave Signals

In this section, an example is presented to show appli-
cation of complex number in verification of signal sys-
tems. A sine wave signal, v(t), has the general form:v(t) =
Asin(ωt + θ) , where A is amplitude of wave,ω is fre-
quency, t is time and is phase shift. The sum of two sine
waves of the same frequency results in another sine wave
of the same frequency but having a different amplitude and
phase shift. There arent enough trigonometric functions to
prove the property in HOL4, but it is easy to prove this
in complex number polar forms and exponential forms.
Given two sine wave signals

v1(t) = A1 sin(ωt + θ1)
v2(t) = A2 sin(ωt + θ2)

, the goal is to prove that the sum of the two signals has the
form:

v3(t) = v1(t) + v2(t) = A3sin(ωt + θ3)

Euler’s Identity (Theorem EULERFORMULE) describes
a relationship between polar form complex numbers and
sine wave signals ,

Aeiθ = A cos(θ) + iA sin(θ)
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,thus
v1(t) = IM{A1ei(ωt+θ1)}
v2(t) = IM{A2ei(ωt+θ2)}

v3(t) = IM{A1ei(ωt+θ1)}+ IM{A2ei(ωt+θ2)}
= IM{A1ei(ωt+θ1) + A2ei(ωt+θ2)}
= IM{ei(ωt)(A1eiθ1 + A2eiθ2}

The sum of two complex numbers results in another com-
plex number. Let

z3 = A3eiθ3 = A1eiθ1 + A2eiθ2

then

v3(t) = IM{eiωtA3eiθ3} = IM{A3ei(ωt+θ3)}
= A3 sin(ωt + θ3)

The goal is proved. The proof goal and process in HOL4
are as follows:

This case study shows that the HOL library of com-
plex number theory, especially the polar forms, can sim-
plify modeling and verification of some signal processing
problems.

`val SIN ADD SIN=storethm(”MODU UNIT EXP”,
′′!t omega thet1 thet2 V1 V2 V3 A1:real A2:real.
(V1(t) = A1 * sin(omega * t + thet1))∧
(V2(t) = A2 * sin(omega * t + thet2))∧
(V3(t) = V1(t) + V2(t))
=¿?A3:real thet3. V3(t) = A3 * sin(omega * t + thet3)′′,
REPEAT GENTAC THEN
REWRITE TAC[prove(′′!x. sin x = IM (exp (i * x))′′,
REWRITE TAC [EXP IMAGINARY,IM])] THEN
DISCH TAC THEN ASM REWRITE TAC[] THEN
REWRITE TAC [prove(′′!x:real z. x * IM z = IM (x * z) ′′,
REWRITE TAC[COMPLEX SCALAR LMUL, IM]),
prove(′′!z w. IM z + IM w = IM(z + w) ′′,
REWRITE TAC[COMPLEX ADD, IM]),
COMPLEX SCALAR RMUL ADD,
COMPLEX EXP ADD] THEN
ONCE REWRITE TAC[COMPLEX MUL COMM] THEN
REWRITE TAC[GSYM
COMPLEX LMUL SCALAR LMUL] THEN
MAP EVERY EXISTSTAC [
′′modu(A1:real * exp (i * thet1:real) +
A2:real * exp (i * thet2:real))′′,
′′arg((A1:real * exp (i * thet1:real) +
A2:real * exp (i * thet2:real)))′′]
THEN AP TERM TAC THEN
REWRITE TAC[GSYM COMPLEX ADD RDISTRIB]
THEN REWRITETAC[COMPLEX MODU ARG EQ]
THEN CONJTAC THEN
REWRITE TAC[EULER FORMULE]);

8. Conclusion

In this paper, we have formalized complex numbers in
logic and produced the theorem library of complex num-

bers in HOL4. The theorem library includes the data type
of complex numbers, the basic operations of complex num-
bers and the proof of fundamental theorems of complex
numbers. The polar form and exponential form are ex-
pressed more directly based on the definition of the scalar
multiplication of complex numbers. It becomes more con-
venient to solve many problems. In addition, we also have
implemented many other properties in HOL4 which were
not mentioned in this paper. In the light of the power of the
theory of complex number, the theorem library is expected
to extend the scope of application of HOL4. The devel-
oped complex number theory has been released in HOL4
Kananaskis-7.

Acknowledgement

First and foremost we thank Shengzhen Jin for his guid-
ance and encouragement to this work. We also thank Michael
Norrish for his reviewing our complex theory library and
giving many good suggestions.

This work is supported by the International S&T Co-
operation Program of China (2010DFB10930, 2011DFG13000);
the National Natural Science Foundation of China(60873006,
61070049, 61170304, 61104035); the Beijing Natural Sci-
ence Foundation and S&R Key Program of BMEC(4122017,
KZ201210028036). Open Projects of State Key Labora-
tory of Computer architecture and Guangxi Key Labora-
tory trusted software.

References

[1] K. Slind and M. Norrish, TPHOLs ’08 Proceedings of
the 21st International Conference on Theorem Proving in
Higher Order Logics Springer-Verlag Berlin, Heidelberg 28
(2008).

[2] J. Harrison, TPHOLs 2001. LNCS, Springer, Heidel-
berg,2152, 159 (2001).

[3] J. Harrison, Formal Methods in System Design,5, 35
(1994).

[4] H. Geuvers and M. Niqui, TYPES ’00 Selected papers from
the International Workshop on Types for Proofs and Pro-
grams. Springer-Verlag London, UK. 79 (2002).

[5] H. Geuvers, R. Pollack, F. Wiedijk and J. Zwanenburg, Jour-
nal of Symbolic Computation - Integrated reasoning and al-
gebra systems.34, 271 (2002).

[6] C. Bylinski, Formalized Mathematics,1, 507 (1990).
[7] A. J. Milewska, Formalized Mathematics,9, 265 (2001); A.

Y. Mahmoud and Alexander G. Chefranov, Inf. Sci. Lett.1,
91 (2012).

[8] R. Milewski, Formalized Mathematics,9, 455 (2001).
[9] R. Authan, Mathematical Case Studies: the Complex Num-

bers, Technology report, December (2006).
[10] R. W. Butler, http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-

library/complex-details.htht
[11] Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Is-

abelle/HOL A Proof Assistant for Higher-Order Logic. Lec-
ture Notes in Computer Science, Springer Verlag2283.

c© 2013 NSP
Natural Sciences Publishing Cor.



286 Zhiping Shi et al : Formalization of the Complex Number ...

Dr. Zhiping Shi received
the Ph.D. degree in computer
software and theory from In-
stitute of Computing Technol-
ogy, Chinese Academy of Sci-
ences, China, in 2005. Currently
he is an associate professor at
the Capital Normal University,
Beijing, China. His research in-
terests include formal verifica-

tion and visual information analysis. He has been a re-
search staff at Institute of Computing Technology, Chinese
Academy of Sciences from 2005 to 2010.

Liming Li is a postgradu-
ate at Capital Normal Univer-
sity, China. His research focus
is theorem proving in formal
verification.

Prof. Yong Guan received
the Ph.D. degree in computer
science from China University
of Mining and Technology, in
2004. Currently, he is a pro-
fessor of Capital Normal Uni-
versity, China. His research in-
terests include formal verifica-
tion, PHM for power and em-
bedded system design. Dr. Guan

is a member of Chinese Institute of Electronics Embedded
Expert Committee, and a member of Beijing Institute of
Electronics Professional Education Committee, and Stand-
ing Council Member of Beijing Society for Information
Technology in Agriculture.

Prof. Xiaoyu Songreceived
the Ph.D. degree from the Uni-
versity of Pisa, Italy, 1991. From
1992 to 1999, he was on the
faculty at the University of Mon-
treal, Canada. In 1998, he worked
as a Senior Technical Staff in
Cadence, San Jose. In 1999, he
joined the faculty at Portland
State University. He is currently

a Professor in the Department of Electrical & Computer
Engineering at Portland State University, Portland, Ore-
gon. His current research interests include formal methods,

design automation, embedded system design, and emerg-
ing technologies. He has been awarded as the Intel Fac-
ulty Fellow during 2000C2005. He served as an associate
editor of IEEE Transactions on Circuits and Systems and
IEEE Transactions on VLSI Systems.

Prof.Minhua Wu received
the Master degree in computer
architecture from China Uni-
versity of Nanjing,in 1989. Cur-
rently, she is a professor of Cap-
ital Normal University, China.
Her research interests include
formal verification and embed-
ded system design.

Jie Zhangreceived the Mas-
ter degree in computer science
from China University of Min-
ing and Technology, in 1999.
Currently, she is an associate
professor of Beijing University
of Chemical Technology, China.
Her research interests include
formal verification, PHM for
power and embedded system

design. She is a member of Chinese Institute of Electronics
Embedded Expert Committee.

c© 2013 NSP
Natural Sciences Publishing Cor.


