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Abstract: In this paper, we define a new type ofN-group action, calledN-group soft union (SU) action on a soft set. This new concept
illustrates how a soft set effects on anN-group structure in the mean of union and inclusion of sets and it functions as a bridge among
soft set theory, set theory andN-group theory. Furthermore, we derive its basic propertieswith illustrative examples, investigate the
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concepts forN-groupSU-action. Finally, we give the applications ofN-groupSU-actions toN-group theory.
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1 Introduction

Molodtsov [23] introduced soft set theory in 1999 for
dealing with uncertainties and it continues to experience
tremendous growth and diversification in the mean of
algebraic structures as in [1,2,10,14,15,16,18,19,26,28,
29,30,31,34].

Operations of soft sets have been studied by some
authors. Maji et al. [20] presented some definitions on
soft sets and based on the analysis of several operations
on soft sets Ali et al. [3] introduced several operations of
soft sets and Sezgin and Atagün [27] studied on soft set
operations as well. Moreover, soft set relations and
functions [4] and soft mappings [22] with many related
concepts were discussed. The theory of soft set also has a
wide range of applications especially in soft decision
making as in the following studies: [5,6,13,21,24].

Sezgin et al. [32] introduced a new concept to the
literature of N-group, calledN-group soft intersection
action and abbreviated as “N-group SI-action”. In this
paper, we define a new type ofN-group action on a soft
set, which we call N-group soft union actionand
abbreviate as “N-group SU-action”. While N-group
SI-action is based on the inclusion relation and
intersection of sets,N-group SU-action is based on the
inclusion relation and union of sets. SinceN-group

SU-action gathers soft set theory, set theory andN-group
theory, it is useful in improving the soft set theory with
respect toN-group structures. Based on this new concept,
we then introduce the concepts ofN-ideal SU-action and
we show that ifN is a zero-symmetric near-ring, then
everyN-idealSU-action overU is anN-groupSU-action
over U . Moreover, we investigate these notions with
respect to soft pre-image, soft anti image andα-inclusion
of soft sets and obtain a significant relationship between
N-group SI-action andN-group SU-action. Finally, we
give some applications ofN-groupSU-action toN-group
theory.

2 Preliminaries

In this section, we recall some basic notions relevant to
N-groups and soft sets. By anear-ring, we shall mean an
algebraic system(N,+, .), where

N1)(N,+) forms a group (not necessarily abelian)
N2)(N, .) forms a semigroup and
N3)(a+b)c= ac+bc for all a,b,c∈ N (i.e. we study on

right near-rings.)

Throughout this paper,N will always denote a right near-
ring. A normal subgroupI of N is called a left ideal ofN
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if n(s+ i)−ns∈ I for all n,s∈ N andi ∈ I and denoted by
I ⊳ℓ N.
Let (Γ ,+) be a group and

µ : N×Γ → Γ
(n,γ) → nγ

(Γ ,µ) is called anear-ring moduleorN-groupif ∀x,y∈N,
∀γ ∈ Γ ,

i)x(yγ) = (xy)γ and
ii)(x+ y)γ = xγ + yγ.

It is denoted byΓ . Clearly N itself is an N-group by
natural operation. LetG be a group, written additively but
not necessarily abelian, and letM(G) be the set
{ f | f : G→ G} of all functions fromG to G. An addition
operation can be defined onM(G): given f , g in M(G),
then the mappingf + g from G to G is given by
( f +g)(x) = f (x)+g(x) for all x in G. Then(M(G),+) is
also a group, which is abelian if and only ifG is abelian.
Taking the composition of mappings as the product ,
M(G) becomes a near-ring. LetG be a group. Then, under
the operation below:

µ : M(G)×G → G

( f ,a) → f (a)

G is an M(G)-group. For a near-ring N, the
zero-symmetric part ofN denoted byN0 is defined by
N0 = {n∈ N | n0= 0}. A subgroup∆ of Γ with N∆ ⊆ ∆
is said to be anN-subgroupof Γ and denoted by∆ ≤N Γ .
A normal subgroup∆ of Γ is called anN-idealof Γ and
denoted by ∆ ✂N Γ , if ∀γ ∈ Γ , ∀δ ∈ ∆ , ∀n ∈ N,
n(γ + δ )− nγ ∈ ∆ . Let N be a near-ring,Γ andΨ two
N-groups. Then, h : Γ → Ψ is called an
N-homomorphismif ∀γ,δ ∈ Γ , ∀n∈ N,

i)h(γ + δ ) = h(γ)+h(δ ) and
ii)h(nγ) = nh(γ).

For all undefined concepts and notions we refer to [25].
From now on,U refers to an initial universe,E is a set of
parameters,P(U) is the power set ofU andA,B,C⊆ E.

Definition 1.[6,23] A soft set fA over U is a set defined by

fA : E → P(U) such that fA(x) = /0 if x /∈ A.

Here, fA is also called approximate function. A soft set
over U can be represented by the set of ordered pairs

fA = {(x, fA(x)) : x∈ E, fA(x) ∈ P(U)}.

It is clear to see that a soft set is a parametrized family of
subsets of the setU . It is worth noting that the setsfA(x)
may be arbitrary. Some of them may be empty, some may
have nonempty intersection. If we define more than one
soft set in a subsetA of the set of parametersE, then the
soft sets will be denoted byfA, gA, hA etc. If we define
more than one soft set in some subsetsA, B, C etc. of
parametersE, then the soft sets will be denoted byfA, fB,
fC etc., respectively. We refer to [6,11,12,20,23] for
further details.

Definition 2.[6] Let fA and fB be soft sets over U. Then, fA
is a soft subset of fB, denoted by fA⊆̃ fB, if fA(x) ⊆ fB(x)
for all x ∈ E.

Complement of the soft set fA over U, denoted by fc
A,

is defined as fcA(α) =U \ fA(α) for all α ∈ E.

Definition 3.[6] Let fA and fB be soft sets over U. Then,
union of fA and fB, denoted by fA∪̃ fB, is defined as
fA∪̃ fB = fA∪̃B, where fA∪̃B(x) = fA(x) ∪ fB(x) for all
x∈ E.

Intersection of fA and fB, denoted by fA∩̃ fB, is defined
as fA∩̃ fB = fA∩̃B, where fA∩̃B(x) = fA(x)∩ fB(x) for all
x∈ E.

Definition 4.[6] Let fA and fB be soft sets over U. Then,
∨-product of fA and fB, denoted by fA∨ fB, is defined as
fA ∨ fB = fA∨B, where fA∨B(x,y) = fA(x)∪ fB(y) for all
(x,y) ∈ E×E.

∧-product of fA and fB, denoted by fA∧ fB, is defined
as fA∧ fB = fA∧B, where fA∧B(x,y) = fA(x)∩ fB(y) for all
(x,y) ∈ E×E.

Definition 5.[7] Let fA and fB be soft sets over the
common universe U andΨ be a function from A to B.
Then, soft image of fA underΨ , denoted byΨ( fA), is a
soft set over U by

(Ψ( fA))(b) =

{⋃
{ fA(a) | a∈ A and Ψ(a) = b}, if Ψ−1(b) 6= /0,

/0, otherwise

for all b∈B. And soft pre-image (or soft inverse image)
of fB underΨ , denoted byΨ−1( fB), is a soft set over U by
(Ψ−1( fB))(a) = fB(Ψ (a)) for all a ∈ A.

Definition 6.[8] Let fA and fB be soft sets over the
common universe U andΨ be a function from A to B.
Then, soft anti image of fA underΨ , denoted byΨ⋆( fA),
is a soft set over U by

(Ψ⋆( fA))(b) =

{⋂
{ fA(a) | a∈ A and Ψ(a) = b}, if Ψ−1(b) 6= /0,

/0, otherwise
for

all b ∈ B.

Theorem 1.[8] Let fA and fB be soft sets over U, fc
A, f c

B be
their complements, respectively andΨ be a function from
A to B. Then,

i)Ψ−1( f c
B) = (Ψ−1( fB))c.

ii)Ψ ( f c
A) = (Ψ⋆( fA))c andΨ ⋆( f c

A) = (Ψ( fA))c.

Definition 7.[9] Let fA be a soft set over U andα be a
subset of U. Then, upperα-inclusion of fA, denoted by
f⊇α
A , and lowerα-inclusion of fA, denoted by f⊆α

A , are
defined as

f⊇α
A = {x∈A | fA(x)⊇α} and f⊆α

A = {x∈A | fA(x)⊆α},

respectively.

3 N-group SU-actions andN-ideal SU-actions

In this section, we first defineN-group soft union actions,
abbreviated as N-group SU-actions and N-ideal
SU-actions with illustrative examples. We then study their
basic properties with respect to soft set operations.

c© 2016 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.5, No. 3, 63-69 (2016) /www.naturalspublishing.com/Journals.asp 65

Definition 8.LetΓ be an N-group and fΓ be a soft set over
U. Then, fΓ is called a N-group SU-action over U if it
satisfies the following properties:

i) fΓ (x+ y)⊆ fΓ (x)∪ fΓ (y),
ii) fΓ (−x) = fΓ (x),
iii) f Γ (nx)⊆ fΓ (x)

for all x,y∈ Γ and n∈ N.

Example 1.Let N = {0,1,2,3} be the (right) near-ring due
to [25] (Near-rings of low order (D-5)) with the following
tables:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

. 0 1 2 3
0 0 0 0 0
1 0 1 1 0
2 0 2 2 0
3 0 3 3 0

Let Γ = N be the sets of parameters and

U =

{[
x 0
x 0

]
| x,y∈ Z4

}
, 2× 2 matrices withZ4 terms,

is the universal set. We construct a soft setfΓ overU by

fΓ (0) =

{[
2 0
2 0

]}

fΓ (1) = fΓ (2) = fΓ (3) =

{[
1 0
1 0

]
,

[
2 0
2 0

]
,

[
3 0
3 0

]}
.

Then, one can easily show that the soft setfΓ is an N-
groupSU-action overU .

Example 2.In Example1, assume thatΓ is again the set
of parameters andU = S4 is the universal set. We define a
soft setfΓ by

fΓ (0) = {e}, fΓ (1) = {e,(13)(24)},
fΓ (2) = {e,(12)(34),(1234),(2134)} and

fΓ (3) = {e,(13)(24),(134)}.

SincefΓ (2·1) = fΓ (2)* fΓ (1), fΓ is not anN-groupSU-
action overU .

It is known that ifN = N0, thenn0Γ = 0Γ for all n ∈ N.
Therefore, ifN is a zero-symmetric near-ring and if we
takeΓ = {0Γ }, then fΓ is anN-groupSU-action overU
no matter howfΓ is defined and no matter whatU is.

Proposition 1.Let fΓ be an N-group SU-action over U.
Then, fΓ (0Γ )⊆ fΓ (x) for all x ∈ Γ .

Proof.Assume thatfΓ is an N-group SU-action overU .
Then, for all x ∈ Γ , fΓ (0Γ ) = fΓ (x − x) ⊆
fΓ (x)∪ fΓ (−x) = fΓ (x)∪ fΓ (x) = fΓ (x).

Theorem 2.LetΓ be an N-group and fΓ be a soft set over
U. Then, fΓ is an N-group SU-action over U if and only if

i) fΓ (x− y)⊆ fΓ (x)∪ fΓ (y)
ii) fΓ (nx)⊆ fΓ (x)

for all x,y∈ Γ and n∈ N.

Proof.Suppose thatfΓ is an N-group SU-action over.
Then, by Definition 8, fΓ (xy) ⊆ fΓ (y) and
fΓ (x − y) ⊆ fΓ (x) ∪ fΓ (−y) = fΓ (x) ∪ fΓ (y) for all
x,y∈ Γ .
Conversely, assume thatfΓ (xy) ⊆ fΓ (y) and fΓ (x− y) ⊆
fΓ (x)∪ fΓ (y) for all x,y∈ Γ . If we choosex= 0Γ , then

fΓ (0Γ − y) = fΓ (−y)⊆ fΓ (0Γ )∪ fΓ (y) = fΓ (y)

by Proposition 1. Similarly,
fΓ (y) = fΓ (−(−y)) ⊆ fΓ (−y), thus fΓ (−y) = fΓ (y) for
all y ∈ Γ . Also, by assumption
fΓ (x+ y) ⊆ fΓ (x) ∪ fΓ (−y) = fΓ (x) ∪ fΓ (y). Thus, the
proof is completed.

Theorem 3.Let fΓ be an N-group SU-action over U. If
fΓ (x− y) = fΓ (0Γ ) for any x,y∈ Γ , then fΓ (x) = fΓ (y).

Proof.Assume thatfΓ (x− y) = fΓ (0Γ ) for any x,y ∈ Γ .
Then,

fΓ (x) = fΓ (x− y+ y)
⊆ fΓ (x− y)∪ fΓ (y)
= fΓ (0Γ )∪ fΓ (y)
= fΓ (y)

and accordingly

fΓ (y) = fΓ ((y− x)+ x)
⊆ fΓ (y− x)∪ fΓ (x)
= fΓ (−(y− x))∪ fΓ (x)
= fΓ (0Γ )∪ fΓ (x)
= fΓ (x).

Thus, fΓ (x) = fΓ (y), completing the proof.

It is known that ifΓ is anN-group, then(Γ ,+) is a group
but not necessarily abelian. That is, for anyx,y∈ Γ , x+ y
needs not be equal toy + x. However, we have the
following:

Theorem 4.Let fΓ be an N-group SU-action over U and
x∈ Γ . Then, for all y∈ Γ

fΓ (x) = fΓ (0Γ )⇔ fΓ (x+ y) = fΓ (y+ x) = fΓ (y)

Proof.Suppose thatfΓ (x+ y) = fΓ (y+ x) = fΓ (y) for all
y∈ Γ . Then by choosingy= 0Γ , we obtain thatfΓ (x) =
fΓ (0Γ ). Conversely, assume thatfΓ (x) = fΓ (0Γ ). Then,
by Proposition1, we have

fΓ (0Γ ) = fΓ (x)⊆ fΓ (y), ∀y∈ Γ . (1)

Since fΓ is anN-groupSU-action overU , then

fΓ (x+ y)⊆ fΓ (x)∪ fΓ (y) = fΓ (y), ∀y∈ Γ .

Furthermore, for ally∈ Γ
fΓ (y) = fΓ ((−x)+ x)+ y)

= fΓ (−x+(x+ y))

⊆ fΓ (−x)∪ fΓ (x+ y)

= fΓ (x)∪ fΓ (x+ y)

= fΓ (x+ y)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


66 A. Sezgin et al.:N-GroupSU-Action and its...

Because, by (1), fΓ (x) ⊆ fΓ (y) for all y∈ Γ andx,y∈ Γ
implies thatx+ y ∈ Γ . Thus, fΓ (x) ⊆ fΓ (x+ y) and sit
follows that fΓ (x+y)= fΓ (y) for all y∈Γ . Now, letx∈Γ .
Then, for ally∈ Γ

fΓ (y+ x) = fΓ (y+ x+(y− y))

= fΓ (y+(x+ y)− y)

⊆ fΓ (y)∪ fΓ (x+ y)∪ fΓ (y)

= fΓ (y)∪ fΓ (x+ y)

= fΓ (y),

since fΓ (x+ y) = fΓ (y). Moreover, for ally∈ Γ ,

fΓ (y) = fΓ (y+(x− x))

= fΓ ((y+ x)− x)

⊆ fΓ (y+ x)∪ fΓ (x)

= fΓ (y+ x)

by (1). It follows that fΓ (y+ x) = fΓ (y), so fΓ (x+ y) =
fΓ (y+ x) = fΓ (y) for all y∈ Γ .

In [32], Sezgin et al. showed that∧-product of two
N-group SI-actions overU is an N-group SI-action.
However, we have the following forN-groupSU-actions:

Theorem 5.If fΓ and f∆ are N-group SU-actions over U,
then so is fΓ ∨ f∆ over U.

Proof.By Definition 4, let fΓ ∨ f∆ = fΓ∨∆ , where
fΓ∨∆ (x,y) = fΓ (x)∪ f∆ (y) for all (x,y) ∈ E×E. SinceΓ
and∆ areN-groups, thenΓ ×∆ is anN×N-group. So,
let (x1,y1),(x2,y2) ∈ Γ ×∆ and(n1,n2) ∈ N×N. Then,

fΓ∨∆ ((x1,y1)− (x2,y2)) = fΓ∨∆ (x1−x2,y1−y2)

= fΓ (x1−x2)∪ f∆ (y1−y2)

⊆ ( fΓ (x1)∪ fΓ (x2))∪ ( f∆ (y1)∪ f∆ (y2))

= ( fΓ (x1)∪ f∆ (y1))∪ ( fΓ (x2)∪ f∆ (y2))

= fΓ∨∆ (x1,y1)∪ fΓ∨∆ (x2,y2)

fΓ∨∆ ((n1,n2)(x1,y1)) = fΓ∨∆ (n1x1,n2y1)

= fΓ (n1x1)∪ f∆ (n2y1)

⊆ fΓ (x1)∪ f∆ (y1)

= fΓ∨∆ (x1,y1)

Thus, fΓ ∨ f∆ is anN-groupSU-action overU .

In [32], Sezgin et al. showed that iffΓ and hΓ are two
N-group SI-actions overU , then so is fΓ ∩̃hΓ over U .
However, we have the following forN-groupSU-actions:

Theorem 6.If fΓ and hΓ are two N-group SU-actions over
U, then so is fΓ ∪̃hΓ over U.

Proof.Let x,y∈ Γ andn∈ N, then

( fΓ ∪̃hΓ )(x− y) = fΓ (x− y)∪hΓ (x− y)

⊆ ( fΓ (x)∪ fΓ (y))∪ (hΓ (x)∪hΓ (y))

= ( fΓ (x)∪hΓ (x))∪ ( fΓ (y)∪hΓ (y))

= ( fΓ ∪̃hΓ )(x)∪ ( fΓ ∪̃hΓ )(y),

( fΓ ∪̃hΓ )(nx) = fΓ (nx)∪hΓ (nx)

⊆ fΓ (x)∪hΓ (x)

= ( fΓ ∪̃hΓ )(x)

Therefore,fΓ ∪̃hΓ is anN-groupSU-action overU .

Definition 9.Let Γ be an N-group and fΓ be an N-group
SU-action over U. Then, fΓ is called an N-ideal SU-action
of Γ over U if it satisfies the following properties:

i) fΓ (x+ y)⊆ fΓ (x)∪ fΓ (y),
ii) fΓ (−x) = fΓ (x),
iii) f Γ (x+ y− x)⊆ fΓ (y),
iv) fΓ (n(x+ y)−nx)⊆ fΓ (y),

for all x,y ∈ Γ and n ∈ N. Here, note that
fΓ (x+ y) ⊆ fΓ (x) ∪ fΓ (y) and fΓ (−x) = fΓ (x) imply
fΓ (x− y)⊆ fΓ (x)∪ fΓ (y).

Example 3.Let N = {0,1,2,3} be the (right) near-ring due
to [25] (Near-rings of low order (D-10)) with the following
tables:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

. 0 1 2 3
0 0 0 0 0
1 0 1 2 1
2 0 2 0 2
3 0 3 2 3

Let Γ = N be the sets of parameters andU = D3, dihedral
group, be the universal set. We define a soft setfΓ overU
by

fΓ (0) = {e,x}, fΓ (1) = fΓ (3) = {e,x,yx,yx2}, fΓ (2) = {e,x,yx2}.

Then, one can show thatfΓ is anN-idealSU-action ofΓ
overU .

Example 4.Let N = {0,a,b,c} be the (right) near-ring per
scheme 2 ([25], p. 408) under the operations defined by the
following tables:

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

. 0 a b c
0 0 0 0 0
a 0 0 a a
b 0 a b b
c 0 a c c

Let Γ = N be the sets of parameters andU = Z− be the
universal set. We define a soft setfΓ over U by
fΓ (0) = {−3}, fΓ (a) = {−3,−5,−9}, fΓ (b) = {−3,−5,−9,−11,−15},

fΓ (c) = {−3,−11,−15}.

Since fΓ (a(c+ c)− ac) = fΓ (a0− ac) = fΓ (0− a) =
fΓ (0 + a) = fΓ (a) * fΓ (c), fΓ is not an N-ideal
SU-action ofΓ overU .

It is known that ifN is a zero-symmetric near-ring, then
everyN-ideal ofΓ is also anN-subgroup ofΓ [25]. Here,
we have an analog for this case:

Theorem 7.Let N be a zero-symmetric near-ring. Then,
every N-ideal SU-action over U is an N-group SU-action
over U.

c© 2016 NSP
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Proof.Let fΓ be anN-idealSU-action ofΓ overU . Since
fΓ (n(x+ y)− nx) ⊆ fΓ (y), for all x,y ∈ Γ andn ∈ N, in
particular forx= 0Γ , it follows that fΓ (n(0Γ +y)−n0Γ )=
fΓ (ny−0Γ ) = fΓ (ny)⊆ fΓ (y). Since the other conditions
is satisfied by Definition9, fΓ is an N-groupSU-action
overU .

In [32], Sezgin et al. showed that∧-product of twoN-ideal
SI-actions overU is anN-idealSI-action overU . However,
we have the following forN-idealSU-action:

Theorem 8.If fΓ is an N-ideal SU-action ofΓ and f∆ is
an N-ideal SU-action of∆ over U, then fΓ ∨ f∆ is an N-
ideal SU-action ofΓ ×∆ over U.

Proof.Let (x1,y1),(x2,y2) and (n1,n2) ∈ N × N. Then
fΓ∨∆ ((x1,y1) − (x2,y2)) ⊆ fΓ∨∆ (x1,y1) ∪ fΓ∨∆ (x2,y2)
can be shown similar to Theorem5. Now,

fΓ ∨∆ ((x1,y1)+ (x2,y2)− (x1,y1)) = fΓ∨∆ (x1+ x2− x1,y1+ y2− y1)
= fΓ (x1+ x2− x1)∪ f∆ (y1+ y2− y1)
⊆ fΓ (x2)∪ f∆ (y2)
= fΓ∨∆ (x2,y2),

and

fΓ∨∆ ((n1,n2)((x1,y1)+ (x2,y2))− (n1,n2)(x1,y1))
= fΓ∨∆ (n1(x1+ x2)−n1x1,n2(y1+ y2)−n2y1)
= fΓ (n1(x1+ x2)−n1x1)∪ f∆ (n2(y1+ y2)−n2y1)
⊆ fΓ (x2)∪ f∆ (y2)
= fΓ∨∆ (x2,y2).

Therefore,fΓ ∨ f∆ is anN-idealSU-action ofΓ ×∆ over
U .

In [32], Sezgin et al. showed that iffΓ andhΓ are twoN-
ideal SI-actions ofΓ overU , then so isfΓ ∩̃hΓ overU .
However, we have the following forN-idealSU-actions:

Theorem 9.If fΓ and hΓ are two N-ideal SU-actions ofΓ
over U, then fΓ ∪̃hΓ is an N-ideal SU-action ofΓ over U.

Proof.Let x,y∈ Γ andn∈ N. Then,

( fΓ ∪̃hΓ )(x− y)⊆ ( fΓ ∪̃hΓ )(x)∪ ( fΓ ∪̃hΓ )(y)

can be shown similar to Theorem6. Now,

( fΓ ∪̃hΓ )(x+ y− x) = fΓ (x+ y− x)∪hΓ (x+ y− x)
⊆ fΓ (y)∪hΓ (y)
= ( fΓ ∪̃hΓ )(y)

( fN∪̃hN)(n(x+ y)−nx) = fN(n(x+ y)−nx)∪hN(n(x+ y)−nx)
⊆ fN(y)∪hN(y)
= ( fN∪̃hN)(y)

Therefore,fΓ ∪̃hΓ is anN-idealSU-action ofΓ overU .

4 Applications of N-group SU-actions and
N-ideal SU-actions

In this section, first we obtain the relation between
N-ideal SI-action andN-ideal SU-action of anN-group
overU and then give the applications of soft pre-image,
soft anti image, lowerα-inclusion of soft sets and
N-homomorphism toN-group theory with respect to
N-groupSU-actions andN-idealSU-actions.

Theorem 10.Let fΓ be a soft set over U. Then, fΓ is an N-
ideal SU-action ofΓ over U if and only if fcΓ is an N-ideal
SI-action ofΓ over U.

Proof.Let fΓ be anN-idealSU-action ofΓ overU . Then,
for all x,y∈ Γ andn∈ N,

f c
Γ (x− y) = U \ fΓ (x− y)

⊇ U \ (( fΓ (x)∪ fΓ (y))

= (U \ fΓ (x))∩ (U \ fΓ (y))

= f c
Γ (x)∩ f c

Γ (y),

Also,

f c
Γ (x+ y− x) = U \ fΓ (x+ y− x)

⊇ U \ ( fΓ (y))

= f c
Γ (y)

Furthermore,

f c
Γ (n(x+ y)−nx) = U \ fΓ (n(x+ y)−nx)

⊇ U \ ( fΓ (y))

= f c
Γ (y)

which shows thatf c
Γ is anN-idealSI-action ofΓ overU .

The converse can be shown similarly.

Theorem 11.If fΓ is an N-ideal SU-action ofΓ over U,
thenΓf = {x∈ Γ : fΓ (x) = fΓ (0Γ )} is an N-ideal ofΓ .

Proof.It is obvious that 0Γ ∈Γf ⊆Γ . We need to show that
(i) x−y∈Γf , (ii) γ+x−γ ∈Γf and (iii) n(γ+x)−nγ ∈Γf
for all x,y ∈ Γf and n ∈ N and γ ∈ Γ . If x,y ∈ Γf , then
fΓ (x) = fΓ (y) = fΓ (0Γ ). By Proposition1,

fΓ (0Γ )⊆ fΓ (x− y), fΓ (0Γ )⊆ fΓ (γ + x− γ) and fΓ (0Γ )⊆ fΓ (n(γ + x)−nγ)

for all n ∈ N, x,y ∈ Γf andγ ∈ Γ . Since fΓ is anN-ideal
SU-action ofΓ overU , then for alln ∈ N, x,y ∈ Γf and
γ ∈ Γ

(i) fΓ (x− y)⊆ fΓ (x)∪ fΓ (y) = fΓ (0Γ ),
(ii) fΓ (γ + x− γ)⊆ fΓ (x) = fΓ (0Γ ) and
(iii ) fΓ (n(γ + x)−nγ)⊆ fΓ (x) = fΓ (0Γ ).

Hence,
fΓ (x− y) = fΓ (0Γ ), fΓ (γ + x− γ) = fΓ (0Γ ) and fΓ (n(γ + x)−nγ) = fΓ (0Γ )

for all n ∈ N, x,y ∈ Γf and γ ∈ Γ . Therefore,Γf is an
N-ideal ofΓ .

Theorem 12.[32] Let fΓ be a soft set over U andα be a
subset of U such that/0⊆ α ⊆ fΓ (0Γ ). If fΓ is an N-ideal
SI-action over U, then f⊇α

Γ is an N-ideal ofΓ .

Theorem 13.Let fΓ be a soft set over U andα be a subset
of U such that/0 ⊆ fΓ (0Γ ) ⊆ α. If fΓ is an N-ideal SU-
action ofΓ over U, then f⊆α

Γ is an ideal ofΓ .

Proof.SincefΓ (0Γ )⊆α, then 0Γ ∈ f⊆α
Γ and /06= f⊆α

Γ ⊆Γ .
Let x,y∈ f⊆α

Γ , then

fΓ (x)⊆ α and fΓ (y)⊆ α.
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We need to show that
(i) x− y∈ f⊆α

Γ , (ii) γ + x− γ ∈ f⊆α
Γ and(iii ) n(γ + x)−nγ ∈ f⊆α

Γ for
all x,y ∈ f⊆α

Γ , n ∈ N and γ ∈ Γ . Since fΓ is anN-ideal
SI-action ofΓ overU , it follows that

fΓ (x− y)⊆ fΓ (x)∪ fΓ (y)⊆ α ∪α = α,
fΓ (γ + x− γ)⊆ fΓ (x)⊆ α and
fΓ (n(γ + x)−n)⊆ fΓ (x)⊆ α.

Thus, the proof is completed.

Theorem 14.[32] Let fΓ and f∆ be soft sets over U and
Ψ be an N-isomorphism fromΓ to ∆ . If fΓ is an N-ideal
SI-action ofΓ over U, thenΨ( fΓ ) is an N-ideal SI-action
of ∆ over U.

Theorem 15.Let fΓ and f∆ be soft sets over U andΨ be
an N-isomorphism fromΓ to ∆ . If fΓ is an N-ideal SU-
action ofΓ over U, thenΨ⋆( fΓ ) is an N-ideal SU-action
of ∆ over U.

Proof.Let fΓ be anN-idealSU-action ofΓ overU . Then,
f c
Γ is anN-idealSI-action ofΓ overU by Theorem10and

Ψ( f c
Γ ) is anN-ideal SI-action of∆ overU by Theorem

14. Thus,Ψ( f c
Γ ) = (Ψ⋆( fΓ ))c is anN-idealSI-action of∆

overU by Theorem1 (ii). Therefore,Ψ⋆( fΓ ) is anN-ideal
SU-action of∆ overU by Theorem10.

Theorem 16.[32] Let fΓ and f∆ be soft sets over U and
Ψ be an N-homomorphism from N to∆ . If f∆ is an N-
ideal SI-action of∆ over U, thenΨ−1( f∆ ) is an N-ideal
SI-action ofΓ over U.

Theorem 17.Let fΓ and f∆ be soft sets over U andΨ be
an N-homomorphism fromΓ to ∆ . If f∆ is an N-ideal SU-
action of∆ over U, thenΨ−1( f∆ ) is an N-ideal SU-action
of Γ over U.

Proof.Let f∆ be anN-idealSU-action of∆ overU . Then,
f c
∆ is anN-idealSI-action of∆ overU by Theorem10and

Ψ−1( f c
∆ ) is anN-idealSI-action ofΓ overU by Theorem

16. Thus,Ψ−1( f c
∆ ) = (Ψ−1( f∆ ))

c is anN-idealSI-action
of Γ overU by Theorem1 (i). Therefore,Ψ−1( f∆ ) is an
N-idealSU-action ofΓ overU by Theorem10.

5 Conclusion

In this paper, we have defined a new kind ofN-group
action on a soft set, calledN-groupSU-action. This new
concept is very functional for obtaining results in the
mean ofN-group structure, since it brings the soft sets,
sets andN-groups together. Based on the definition, we
have introduced the concept ofN-ideal SU-action of an
N-group. We have then investigated this notion with
respect to soft pre-image, soft anti image and lower
α-inclusion of soft sets. Finally, we obtain the
relationship betweenN-group SI-action and N-group
SU-action and give some applications of these new
concepts toN-group theory. To extend this study, one can
further study the other algebraic structures such as
algebras in view of theirSU-actions.
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