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Abstract: This paper addresses the controllability of a new class of Hilfer fractional non-autonomous evolution equations with nonlocal
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1 Introduction

In the past two decades, the study of the qualitative properties and applications of fractional differential equations has
captured the interest of many authors due to their applications in different branches of applied science and describing
physical phenomena more realistically (see [1,2,3,4,5]), especially with the emergence of several new definitions of
fractional differentiation (see [6]-[11],[12]). Among these new definitions is the so-called generalized Riemann-Liouville

fractional derivative Dα ,β of order α with 0 < α < 1 and type β with 0 ≤ β ≤ 1. It has been initially presented by
Hilfer [13,14,15], accordingly many authors called it Hilfer fractional derivative. Such derivative includes the Riemann-
Liouville and Caputo fractional derivative by introducing only one additional real parameter β ∈ [0,1] (cf. Definition 3).
Some properties and applications of Hilfer fractional derivative are presented in [15]. Also, because of the singularities
found in the traditional fractional operators which are reckoned to make some difficulties in the modeling process, new
types of non-singular fractional operators were proposed in [16,17].

The notion of controllability plays a decisive role in the advance of modern mathematical control theory. Exact
controllability allows steering the system to arbitrary final state, whereas approximate controllability implies that the
system can steer an arbitrary small neighborhood of final state. There are considerable relationships between
observability, controllability, optimal control, and stabilizability in both finite dimensional and infinite dimensional
control systems. For more contributions relevant to the controllability of evolution fractional differential equations and
inclusions, we refer the interested reader to the recent papers [18,19,20,21,22,23,24,25,26] and the references therein.

Many authors attempted to study approximate controllability of Hilfer fractional evolution equations by supposing
that the operator A is an infinitesimal generator of an analytic semigroup. We will briefly list some of these papers.

Recently, Liu et al. [27] investigated the finite approximate controllability of the Hilfer fractional evolution system in
Hilbert space

{

D
ν,µ
0+

x(t) = Ax(t)+ f (t,x(t))+Bu(t), t ∈ (0,b],

I
(1−ν)(1−µ)
0+

x(0) = x0, 0 < ν < 1, 0 ≤ µ ≤ 1,
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Ahmed et al. [28] studied the existence and established a set of sufficient conditions for controllability for the nonlinear
delay Hilfer fractional differential equation with impulsive condition











D
µ,ν
0+

x(t) = Ax(t)+Bu(t)+ f (t,x(γ1(t)),
∫ t

0 h(t,s)g(s,x(γ2(s)))ds), t ∈ (0,b], t 6= tk

∆x|t=tk = Ik(x(t
−
k )), k = 1,2, · · · ,m

I
(1−ν)(1−µ)
0+

x(0) = x0, 0 < µ < 1, 0 ≤ ν ≤ 1,

Min Yang and Qi-Ru Wang [29] discussed the approximate controllability of the Hilfer fractional differential
inclusions with nonlocal conditions in a Banach space X

{

D
β ,γ
0+

x(t) ∈ Ax(t)+F(t,x(t))+Bu(t), t ∈ (0,b],

I
(1−β )(1−γ)
0+

x(0)+ h(x) = x0,
1
2
< γ < 1, 0 ≤ β ≤ 1,

Jun Du et al. [30] investigated the approximate controllability of the impulsive fractional differential inclusions involving
Hilfer fractional derivative











D
q,p
0+

x(t) ∈ Ax(t)+F(t,x(t))+Bu(t), t ∈ (0,b], t 6= tk

∆ I1−ν
0+

x(t)|t=tk = Gk(tk,x(t
−
k )), k = 1,2, · · · ,m,

I1−ν
0+

x(t)|t=0 = x0,
1
2
< q ≤ 1, 0 ≤ p ≤ 1, ν = p+ q− pq.

In contrast, the controllability of Hilfer fractional differential equations is still in its early stages, especially with regard
to non-autonomous fractional differential evolution equations involving a family {A(t), t ∈ J} of closed linear operators
which generates an evolution operators U(t,s), 0 ≤ s ≤ t ≤ b.

In the present work, we discuss the controllability of a new class of non-autonomous evolution equations with Hilfer
fractional derivative of the form:

{

D
α ,β
0+

x(t) = A(t)x(t)+Bu(t)+ f (t,x(t)), t ∈ J := [0,b], b > 0,

I
1−γ
0+

x(0)+ g(x) = x0, α ≤ γ = α +β (1−α)< 1,
(1)

where D
α ,β
0+

denotes the Hilfer fractional derivative of order α, (0 < α < 1) and type β , (0 ≤ β ≤ 1), I
1−γ
0+

denotes the

Riemann-Liouville fractional integral of order 1− γ , the state x(·) takes values in the Banach space (X ,‖ · ‖) and u0 ∈ X .
Let {A(t), t ∈ J} be a closed linear operator defined on a dense domain D(A) in X into X such that D(A) is independent of
t and A(t) generates an evolution operator U(t,s), 0 ≤ s ≤ t ≤ b in the Banach space X , the control function u(·) is given
in L2(J,U ′), a Banach space of admissible control functions with U ′ as a Banach space, and B is a bounded linear operator
from U to X . Finally, the function f : J ×X → X satisfies the Carathèodory condition, whereas g : C1−γ(J,X) → X is
continuous function.

2 Preliminaries

In this section, we recall some notations, definitions, and lemmas which play a pivotal role throughout the paper.

We set J = [0,b], where b > 0 is a constant. Let C(J,X) be the Banach space of all X−valued continuous functions
from J into X equipped with the norm ‖x‖C = supt∈J ‖x(t)‖, ∀x ∈C(J,X).
Let L1(J,X) be the Banach space of all X-value Bochner integrable functions defined on J with the norm

‖x‖1 =
∫ b

0 ‖x(t)‖dt.

Define a weighted space C1−γ (J,X) of all X−valued continuous functions w by

C1−γ(J,X) := {w : J → X : t1−γw(t) ∈C(J,X)}, 0 ≤ γ < 1.

It is clear that C1−γ(J,X) is a Banach space with the norm

‖w‖C1−γ
= ‖t1−γw(t)‖C = sup

t∈J

‖t1−γw(t)‖.

First, we survey some essential definitions of the Riemann-Liouville fractional integral and derivative which will be
explained to the Hilfer fractional derivative, see [2,31].
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Definition 1. The left-sided Riemann-Liouville fractional integral of order α > 0 of a function y ∈ L1([0,+∞),R) is

defined as

Iα
0+y(t) =

1

Γ (α)

∫ t

0
(t − s)α−1y(s) ds, t > 0, (2)

where Γ (·) is the Gamma function.

Definition 2. The left-sided Riemann-Liouville fractional derivative of order α of a function y : [0,+∞)→R is defined as

Dα
0+y(t) =

1

Γ (n−α)

(

d

dt

)n ∫ t

0
(t − s)n−α−1y(s) ds, t > 0, (3)

where n− 1 < α < n, n ∈N.

Remark. If y is an abstract function with values in X , then the integrals in Definitions 1 and 2 are taken in the sense of
Bochner. That is a measurable function y maps from [0,+∞) to X is Bochner integrable, if ‖y‖ is Lebesgue integrable.

Definition 3. The right-sided Hilfer fractional derivative operator of order α (0 < α < 1) and type β (0 ≤ β ≤ 1) is

defined as

D
α ,β
0+

y(t) =
(

I
β (1−α)
0+

D
(

I
(1−β )(1−α)
0+

y
))

(t), (4)

where D := d
dt

.

This generalization (4) will be reduced to the Riemann-Liouville fractional derivative as β = 0. In addition, it will be
reduced to the Caputo fractional derivative as β = 1.
In the light of the Laplace transform of the Hilfer derivative ([32], formula (1.6))

L [D
α ,β
0+

y](s) = sα
L [y](s)− sβ (α−1)(I

(1−α)(1−β )
0+

y)(0+), (5)

it is obvious that the initial conditions must be taken as (I
(1−α)(1−β )
0+

y)(0+), where 1− γ = (1−α)(1−β ).
For more properties and applications of the generalized Riemann-Liouville fractional derivative, we refer the reader to
[13].

Next, we recall the following renowned definition.

Definition 4.(see [33,34,35]) The family {A(t), t ∈ J} generates a unique linear evolution operator U(t,s), 0 ≤ s ≤ t ≤ b

such that the following statements are satisfied:

(a) U(t,s) ∈ L(X), the space of all linear transformations on X, whenever 0 ≤ s ≤ t ≤ b and for each x ∈ X, the mapping

(t,s)→U(t,s)x is continuous;

(b) U(t,s)U(s,τ) =U(t,τ) for 0 ≤ τ ≤ s ≤ t ≤ b;

(c) U(t, t) = I (identity);

(d) U(t,s) is a compact operator whenever t − s > 0;

(e) ∂U
∂ t
(t,s)x =−A(t)U(t,s) for s < t;

(f) There exists a constant M1 ≥ 1 such that ‖U(t,s)‖ ≤ M1, 0 ≤ s ≤ t ≤ b;

(g) If 0 < h < 1, t − s > h, and 0 < ν < 1, then

‖U(t + h,s)−U(t,s)‖ ≤
M2hν

|t − s|ν
, M2 > 0;

(h) If f (t) is continuous on J, then the mapping t →
∫ t

0 U(t,s) f (s)ds is Hölder continuous with an exponent 0 < ν < 1.

For more facts about evolution family of bounded linear operators, controllability, control function and mild solutions;
we recommend reading the books by Friedman [34], Pazy [35], Bensoussan [36], Tanabe [37] and Yosida [38].

Now, we define of the mild solution of the nonlocal Hilfer fractional system (1).

Definition 5. A function x ∈C1−γ(J,X) is said to be a mild solution of problem (1) if I
1−γ
0+

x(0)+g(x) = x0, then x satisfies

the integral equation

x(t) = U(t,0)(x0 − g(x))
tγ−1

Γ (γ)
+

1

Γ (α)

∫ t

0
(t − s)α−1U(t,s)Bu(s) ds+

1

Γ (α)

∫ t

0
(t − s)α−1U(t,s) f (s,x(s)) ds. (6)
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Definition 6. The nonlocal Hilfer fractional system (1) is said to be controllable on J if, for every x1 ∈ X, there exists a

control u ∈ L2(J,U ′) such that the mild solution x(t) of (1) satisfies x(b)+ g(x) = x1.

For ending this section, we present the following Krasnoselskii’s fixed point theorem.

Theorem 1. (see [39]) Let Ω be a closed, convex, and non-empty subset of a Banach space (E,‖ · ‖). Let A ,B : Ω → E

be two operators such that the following assumptions are satisfied:

(i) A x+By ∈ Ω whenever x,y ∈ Ω ;

(ii) A is a contraction operator;

(iii) B is compact and continuous.

Then, A +B has a fixed point z ∈ Ω .

3 Controllability Results

For investigating the controllability of the nonlocal Hilfer fractional system (1), the following assumptions will be
imposed:

(H1) The function f : J×X → X satisfied the Carathèodory condition, i.e. f (t, ·) is continuous for a.e. t ∈ J and f (·,x)
is measurable for all x ∈ X .
(H2) There exist constants L1 > 0 and L2 > 0 such that

‖ f (t,x)− f (t,y)‖ ≤ L1‖x− y‖, for each t ∈ J, x,y ∈ X ,

and L2 = supt∈J ‖ f (t,0)‖.
(H3) g : C1−γ(J,X)→ X is a continuous function and there exists a constant L3 > 0 such that

‖g(ϕ)− g(ψ)‖ ≤ L3‖ϕ −ψ‖C1−γ
, for all ϕ ,ψ ∈C1−γ(J,X).

(H4) The linear operator W : L2(J,U ′)→ X , defined by

W u =
1

Γ (α)

∫ b

0
(b− s)α−1

U(b,s)Bu(s) ds

possesses motivated inverse W −1 that occupies values in L2(J,U ′)/kerW , where the kernel space of W is realized by
kerW = {x ∈ L2(J,U ′) : W x = 0} and subsists two non-negative constants N1,N2 such that ‖B‖ ≤ N1 and ‖W −1‖ ≤
N2.

Let us define the set Zr = {x ∈C1−γ(J,X) : ‖x‖C1−γ
≤ r}, where

r ≥
ω

1− ℓ
,

where

ℓ :=
M1L3

Γ (γ)
+

M1N1b1−γ+α

Γ (α + 1)
ϒ2 +

M1L1bα B(α,γ)

Γ (α)
< 1,

ω :=
M1

Γ (γ)
(‖x0‖+ ‖g(0)‖)+

M1N1b1−γ+α

Γ (α + 1)
ϒ1 +

M1L2b1−γ+α

Γ (α + 1)
,

and B(·, ·) denotes the beta function defined by

B(α,γ) =

∫ 1

0
(1− y)α−1yγ−1 dy, α > 0, γ > 0.

Clearly, Zr is closed, convex, and non-empty subset of C1−γ(J,X).

Using the assumption (H4), for an arbitrary function x(·) ∈C1−γ (J,X), we define the control

ux(t) = W
−1

[

x1 − g(x)−U(b,0)(x0− g(x))
bγ−1

Γ (γ)
−

1

Γ (α)

∫ b

0
(b− s)α−1U(b,s) f (s,x(s)) ds

]

(t). (7)
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First, we shall prove that ‖ux(t)‖ ≤ϒ1 +ϒ2r, where

ϒ1 := N2

(

‖x1‖+ ‖g(0)‖+
M1bγ−1

Γ (γ)
(‖x0‖+ ‖g(0)‖)+

M1L2bα

Γ (α + 1)

)

,

ϒ2 := N2

(

L3 +
M1L3bγ−1

Γ (γ)
+

M1L1bα+γ−1B(α,γ)

Γ (α)

)

.

For each t ∈ J and x ∈ Zr, we have

‖ux(t)‖ ≤ ‖W −1‖

(

‖x1‖+ ‖g(x)− g(0)‖+ ‖g(0)‖+‖U(b,0)‖
(

‖x0‖+ ‖g(x)− g(0)‖+‖g(0)‖
)bγ−1

Γ (γ)

+
1

Γ (α)

∫ b

0
(b− s)α−1‖U(b,s)‖

(

‖ f (s,x(s))− f (s,0)‖+ ‖ f (s,0)‖
)

ds

)

≤ N2

(

‖x1‖+L3‖x‖C1−γ
+ ‖g(0)‖+

M1bγ−1

Γ (γ)
(‖x0‖+L3‖x‖C1−γ

+ ‖g(0)‖)

+
M1

Γ (α)

∫ b

0
(b− s)α−1(L1‖x(s)‖+L2)ds

)

≤ N2

(

‖x1‖+L3r+ ‖g(0)‖+
M1bγ−1

Γ (γ)
(‖x0‖+L3r+ ‖g(0)‖)

+
M1L2bα

Γ (α + 1)
+

M1L1

Γ (α)
‖x‖C1−γ

∫ b

0
(b− s)α−1sγ−1ds

)

≤ N2

(

‖x1‖+L3r+ ‖g(0)‖+
M1bγ−1

Γ (γ)
(‖x0‖+L3r+ ‖g(0)‖)

+
M1L2bα

Γ (α + 1)
+

M1L1bα+γ−1B(α,γ)

Γ (α)
r

)

= ϒ1 +ϒ2r.

Hence, the desired result follows.
It is convenient, in the sequel, to use the constant 0 ≤ ∆ < 1, where

∆ :=
M1L2

Γ (γ)
+

M1N1N2L2b1−γ+α

Γ (α + 1)
+

M2
1 N1N2L2bα

Γ (γ)Γ (α + 1)
+

M2
1 N1N2L1b2αB(α,γ)

Γ (α + 1)
.

Remark.It is easy to verify that x(b) = x1−g(x). Substituting t = b in (6) with the above control (7) and using the definition
of W in assumption (H4), we get

x(b) = U(b,0)(x0 − g(x))
bγ−1

Γ (γ)
+

1

Γ (α)

∫ b

0
(b− s)α−1U(b,s)Bu(s) ds

+
1

Γ (α)

∫ b

0
(b− s)α−1U(b,s) f (s,x(s)) ds

= U(b,0)(x0 − g(x))
bγ−1

Γ (γ)
+W W

−1

[

x1 − g(x)−U(b,0)(x0− g(x))
bγ−1

Γ (γ)

−
1

Γ (α)

∫ b

0
(b− s)α−1U(b,s) f (s,x(s)) ds

]

+
1

Γ (α)

∫ b

0
(b− s)α−1U(b,s) f (s,x(s)) ds

= x1 − g(x).

Theorem 2. If the assumptions (H1)− (H5) hold. Then, the nonlocal Hilfer fractional system (1) is controllable on J.

Proof. Using the control (7), we define the operator H : C1−γ (J,X)→C1−γ(J,X) by

(Hx)(t) = U(t,0)(x0 − g(x))
tγ−1

Γ (γ)
+

1

Γ (α)

∫ t

0
(t − s)α−1U(t,s)Bux(s) ds+

1

Γ (α)

∫ t

0
(t − s)α−1U(t,s) f (s,x(s)) ds. (8)

By virtue of Definition 5, it is easy to show that the existence of mild solution of the nonlocal Hilfer fractional system (1)
analogous to the fixed point of the operator H.
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We decompose the operator H into two operators H1 and H2 (H = H1 +H2) on Zr, where

(H1x)(t) =U(t,0)(x0 − g(x))
tγ−1

Γ (γ)
+

1

Γ (α)

∫ t

0
(t − s)α−1U(t,s)Bux(s) ds,

and

(H2x)(t) =
1

Γ (α)

∫ t

0
(t − s)α−1U(t,s) f (s,x(s)) ds.

We shall prove that H1 +H2 has a fixed point in Zr. The proof will involve several steps.

Step 1. We show that (H1 +H2)Zr ⊂ Zr.

For every x,y ∈ Zr and t ∈ J, one has

‖t1−γ
(

(H1x)(t)+ (H2y)(t)
)

‖ ≤

∥

∥

∥

∥

1

Γ (γ)
U(t,0)(x0 − g(x))+

t1−γ

Γ (α)

∫ t

0
(t − s)α−1U(t,s)Bux(s) ds

∥

∥

∥

∥

+

∥

∥

∥

∥

t1−γ

Γ (α)

∫ t

0
(t − s)α−1U(t,s) f (s,y(s)) ds

∥

∥

∥

∥

≤
‖U(t,0)‖

Γ (γ)
(‖x0‖+ ‖g(x)− g(0)‖+‖g(0)‖)

+
b1−γ

Γ (α)

∫ t

0
(t − s)α−1‖U(t,s)‖‖B‖‖ux(s)‖ ds

+
b1−γ

Γ (α)

∫ t

0
(t − s)α−1‖U(t,s)‖

(

‖ f (s,x(s))− f (s,0)‖+ ‖ f (s,0)‖
)

ds

≤
M1

Γ (γ)
(‖x0‖+L3r+ ‖g(0)‖)+

M1N1b1−γ+α

Γ (α + 1)
(ϒ1 +ϒ2r)

+
M1L2b1−γ+α

Γ (α + 1)
+

M1L1b1−γ

Γ (α)
‖x‖C1−γ

∫ b

0
(b− s)α−1sγ−1ds

≤
M1

Γ (γ)
(‖x0‖+L3r+ ‖g(0)‖)

+
M1N1b1−γ+α

Γ (α + 1)
(ϒ1 +ϒ2r)+

M1L2b1−γ+α

Γ (α + 1)
+

M1L1bαB(α,γ)

Γ (α)
r

=

(

M1

Γ (γ)
(‖x0‖+ ‖g(0)‖)+

M1N1b1−γ+α

Γ (α + 1)
ϒ1 +

M1L2b1−γ+α

Γ (α + 1)

)

+

(

M1L3

Γ (γ)
+

M1N1b1−γ+α

Γ (α + 1)
ϒ2 +

M1L1bα B(α,γ)

Γ (α)

)

r

≤ r.

Thus, ‖H1x+H2y‖C1−γ
≤ r, which shows that H1x+H2y ∈ Zr for every x,y ∈ Zr.

Step 2. The operator H1 is contraction on Zr.
For each x,y ∈ Zr and t ∈ J, one has
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‖t1−γ
(

(H1x)(t)− (H1y)(t)
)

‖

≤

∥

∥

∥

∥

1

Γ (γ)
U(t,0)(g(x)− g(y))

∥

∥

∥

∥

+

∥

∥

∥

∥

t1−γ

Γ (α)

∫ t

0
(t − s)α−1U(t,s)B(ux(s)− uy(s)) ds

∥

∥

∥

∥

≤
M1L3

Γ (γ)
‖x− y‖C1−γ

+
t1−γ

Γ (α)

∥

∥

∥

∥

∫ t

0
(t − s)α−1U(t,s)BW

−1 [(g(x)− g(y))

+ U(b,0)(g(x)− g(y))
bγ−1

Γ (γ)
+

1

Γ (α)

∫ b

0
(b− τ)α−1U(b,τ)( f (τ,x(τ))− f (τ,y(τ))) dτ

]

(s) ds

∥

∥

∥

∥

≤
M1L3

Γ (γ)
‖x− y‖C1−γ

+
M1N1N2t1−γ

Γ (α)

∫ t

0
(t − s)α−1

[

L3‖x− y‖C1−γ
+

M1L3bγ−1

Γ (γ)
‖x− y‖C1−γ

+
M1L1

Γ (α)

∫ b

0
(b− τ)α−1‖x(τ)− y(τ)‖ dτ

]

ds

≤
M1L3

Γ (γ)
‖x− y‖C1−γ

+
M1N1N2b1−γ

Γ (α)

∫ t

0
(t − s)α−1

[

L3‖x− y‖C1−γ
+

M1L3bγ−1

Γ (γ)
‖x− y‖C1−γ

+
M1L1bα+γ−1B(α,γ)

Γ (α)
‖x− y‖C1−γ

]

ds

≤

(

M1L3

Γ (γ)
+

M1N1N2L3b1−γ+α

Γ (α + 1)
+

M2
1 N1N2L3bα

Γ (γ)Γ (α + 1)
+

M2
1 N1N2L1b2αB(α,γ)

Γ (α + 1)

)

‖x− y‖C1−γ

= ∆‖x− y‖C1−γ
.

Hence, ‖H1x−H1y‖C1−γ
≤ ∆‖x− y‖C1−γ

, 0 ≤ ∆ < 1, which implies that the operator H1 is contraction on Zr.

Step 3. The operator H2 is compact and continuous.

First, we shall show that the operator H2 is continuous.
Let {xn} be a sequence such that xn → x as n → ∞ in Zr. Then, for each t ∈ J, one has

‖t1−γ
(

(H2xn)(t)− (H2x)(t)
)

‖ ≤

∥

∥

∥

∥

t1−γ

Γ (α)

∫ t

0
(t − s)α−1U(t,s)( f (s,xn(s))− f (s,x(s))) ds

∥

∥

∥

∥

≤
t1−γ

Γ (α)

∫ t

0
(t − s)α−1‖U(t,s)‖‖ f (s,xn(s))− f (s,x(s))‖ds

≤
M1b1−γ

Γ (α)

∫ t

0
(t − s)α−1sγ−1‖ f (·,xn(·))− f (·,x(·))‖C1−γ

ds

≤
M1bαB(α,γ)

Γ (α)
‖ f (·,xn(·))− f (·,x(·))‖C1−γ

,

which implies that

‖H2xn −H2x‖C1−γ
≤

M1bα B(α,γ)

Γ (α)
‖ f (·,xn(·))− f (·,x(·))‖C1−γ

.

The R.H.S. of the above inequality tends to zero as n → ∞, which proves the continuity of H2.
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Next, we show that {H2x : x ∈ Zr} is uniformly bounded. For any t ∈ J, one has

‖t1−γ(H2x)(t)‖ ≤

∥

∥

∥

∥

t1−γ

Γ (α)

∫ t

0
(t − s)α−1U(t,s) f (s,x(s)) ds

∥

∥

∥

∥

≤
t1−γ

Γ (α)

∫ t

0
(t − s)α−1‖U(t,s)‖‖ f (s,x(s))‖ds

≤
M1b1−γ

Γ (α)

∫ t

0
(t − s)α−1

(

‖ f (s,x(s))− f (s,0)‖+ ‖ f (s,0)‖
)

ds

≤
M1b1−γ

Γ (α)

∫ t

0
(t − s)α−1(L1‖x(s)‖+L2

)

ds

≤
M1L2b1−γ+α

Γ (α + 1)
+

M1L1bαB(α,γ)

Γ (α)
‖x‖C1−γ

,

which implies that

‖H2x‖C1−γ
≤

M1L2b1−γ+α

Γ (α + 1)
+

M1L1bα B(α,γ)

Γ (α)
r.

Therefore, H2 is uniformly bounded on Zr.
We show that {H2x : x ∈ Zr} is an equicontinuous set.
For t1, t2 ∈ J, t1 < t2 and any x ∈ Zr, using the assumptions (H1)-(H3) jointly with Definition 4, one has

‖t
1−γ
2 (H2x)(t2)− t

1−γ
1 (H2x)(t1)‖

≤

∥

∥

∥

∥

∥

t
1−γ
2

Γ (α)

∫ t2

0
(t2 − s)α−1U(t2,s) f (s,u(s)) ds−

t
1−γ
1

Γ (α)

∫ t1

0
(t1 − s)α−1U(t1,s) f (s,u(s)) ds

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

1

Γ (α)

∫ t2

t1

t
1−γ
2 (t2 − s)α−1U(t2,s) f (s,u(s)) ds

∥

∥

∥

∥

+

∥

∥

∥

∥

1

Γ (α)

∫ t1

0

(

t
1−γ
2 (t2 − s)α−1 − t

1−γ
1 (t1 − s)α−1

)

U(t2,s) f (s,u(s)) ds

∥

∥

∥

∥

+

∥

∥

∥

∥

1

Γ (α)

∫ t1

0
t
1−γ
1 (t1 − s)α−1 (U(t2,s)−U(t1,s)) f (s,u(s)) ds

∥

∥

∥

∥

≤
M1‖ f‖C1−γ

Γ (α + 1)

[

t
1−γ
2 (t2 − t1)

α +
(

(t
1−γ+α
2 − t

1−γ+α
1 )− t

1−γ
2 (t2 − t1)

α
)]

+
M2‖ f‖C1−γ

(α −ν)Γ (α)
t
1−γ+α−ν
1 (t2 − t1)

ν

≤
M1‖ f‖C1−γ

Γ (α + 1)
(t

1−γ+α
2 − t

1−γ+α
1 )+

M2b1−γ+α−ν‖ f‖C1−γ

(α −ν)Γ (α)
(t2 − t1)

ν .

It follows that

‖t
1−γ
2 (H2x)(t2)− t

1−γ
1 (H2x)(t1)‖ ≤

M1‖ f‖C1−γ

Γ (α + 1)
(t

1−γ+α
2 − t

1−γ+α
1 )+

M2b1−γ+α−ν‖ f‖C1−γ

(α −ν)Γ (α)
(t2 − t1)

ν .

Consequently, for α 6= ν , the R.H.S. of the above inequality tends to zero, as t2 → t1. This shows that H2 is
equicontinuous. Therefore, by steps 1-3 and the Arzelà-Ascoli theorem, we infer that H2 is compact and continuous.
Hence, the Krasnoskelskii’s fixed point theorem (Theorem 1) guarantees that the Hilfer fractional system (1) is
controllable on J.
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4 Example

We consider the following Hilfer fractional differential evolution equation with nonlocal condition:























D
1
2 ,

1
2 ω(t,η) = ωηη (t,η)+υ(t,η)ω(t,η)+ψ(t,η)+

e−t

1+ et

(

ω(t,η)

1+ω(t,η)

)

,

ω(t,0) = ω(t,π) = 0, t ∈ [0,1],

I
1
4

0+
ω(0,η)+

m

∑
i=1

ci sin(ω(τi,η)) = ω0(η), η ∈ [0,π ],

(9)

where α = β = 1
2
, then γ = 3

4
, υ ,ψ : [0,1]× [0,π ] → [0,π ] are continuous functions, 0 < τ1 < · · · < τm < 1 and

ci are given real numbers for i = 1, · · · ,m. Let us take X = U ′ = L2([0,1],R+) with the usual norm ‖ · ‖L2 , and define
A(t) : X → X by

A(t)ω = ω
′′
+υ(t,η)ω ,

with domain
D(A) =

{

ω(·) ∈ X : ω ,ω
′′
are absolutely continuous, ω

′′
∈ X , ω(0) = ω(π) = 0

}

.

It is known that A(t) generates an evolution operator U(t,s), see [34], and is given by

U(t,s) = Q(t − s)e
∫ t

s υ(τ,·) dτ ,

where Q(t) is the compact analytic semigroup generated by the operator A with Aω = ω
′′
.

Here,

Q(t)ω =
∞

∑
n=1

e−n2t(ω ,ωn)ωn, ω ∈ X .

where ωn(η) =
√

2
π sin(nη), n = 1,2,3, ... is the orthogonal set of eigenvectors of A, (for more details see [35]).

Next, we write x(t)(η) = ω(t,η) and the bounded linear operator Bu(t)(η) = ψ(t,η). We assume that the operator
W defined by

W u(·) =
1

Γ (α)

∫ 1

0
(1− s)q−1U(1,s)ψ(s, ·) ds,

has a bounded invertible W −1 ∈ L2(J,U ′)/kerW satisfies (H4).
Furthermore, the function f : [0,1]×X → X is given by by

f (t,ω(t,η)) =
e−t

1+ et

(

ω(t,η)

1+ω(t,η)

)

,

where ‖ f (t,ω)‖ ≤ e−t

1+et and ‖ f (t,ω1)− f (t,ω2)‖ ≤ L1‖ω1 −ω2‖ with L1 = L2 = 1
2
. Hence, the assumptions (H1) and

(H2) hold.

Finally, define the function g : C1−γ([0,1],X)→ X by

g(ω)(η) =
m

∑
i=1

ci sin(ω(τi,η)), 0 < τ1 < · · ·< τm < 1, η ∈ [0,π ].

From the fact |sina− sinb| ≤ |a− b|, for all a,b ∈ R, it follows that the condition (H3) is satisfied with L3 = max{|ci| :
i = 1, · · · ,m}.
Therefore, all the assumptions of Theorem 2 are satisfied. Hence, the Hilfer fractional system (9) is controllable on [0,1].
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