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Abstract: In this paper, the existence and stability of solutions for the following fractional problem with Caputo–Exponential fractional

derivative are discussed

e
cD

ζ
0+

ψ(α) = ϑ (α,ψ(α), e
cD

ζ
0+

ψ(α)), for each, α ∈Θ := [0,b], b > 0, 0 < ζ ≤ 1,

ψ(0) = ψ0.

We use Schauder’s fixed point theorem, the nonlinear alternative of Leray–Schauder type and Banach contraction principle to

demonstrate our results. Two examples are provided to demonstrate the relevance of our results.

Keywords: Caputo’s-exponential fractional derivative, implicit fractional differential equations, initial value problem, Gronwall’s

lemma, fractional integral, fixed point, Ulam–Hyers–Rassias stability.

1 Introduction

Recently, there has been a lot of interest in the existence of solutions to initial and boundary value problems for fractional
differential equations; see for instance the books [1,2,3,4,5,6,7] and the articles [8,9,10,11,12,13,14] and references
therein.

In [10], Benchohra and Lazreg studied the following initial value problem for implicit

CDζ ψ(α) = ϑ(α,ψ(α),C Dζ ψ(α)), α ∈Θ , 0 < ζ ≤ 1,

ψ(0) = ψ0,

where CDζ is the Caputo fractional derivative, ψ0 ∈R, Θ = [0,b], b > 0 and ϑ : Θ ×R×R→R is a given function space.
In [9], they studied the following initial value problem

HDζ ψ(α) = ϑ(α,ψ(α),H Dζ ψ(α)), for each α ∈Θ , 0 < ζ ≤ 1,

ψ(1) = ψ1,

where HDζ is the Hadamard fractional derivative, ϑ : Θ ×R×R→ R is a given function space, ψ1 ∈ R and Θ = [1,b],
b > 1,
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92 M. Benchohra et al. : Caputo-exponential fractional differential equations

On the other hand, several articles treat the Ulam stability with different fractional derivatives: Hadamard derivative,
Caputo derivative, Hilfer derivative and Hilfer–Hadamard derivative, etc. (see [15,16,17,18,19,9,10]).

In ([20] p. 99, Section 2.5) Kilbas et al. presented the definitions and some properties of the fractional integrals and
fractional derivatives of a function ϑ with respect to another function γ . Let Θ := [a,b], (−∞ ≤ a < b ≤ ∞) be a finite
interval of the real line R and ζ > 0. Also let γ(α) be an increasing and positive monotone function on (a,b], having a
continuous derivative γ ′(α) on (a,b).

The left-sided fractional integral of a function ϑ with respect to another function γ on [a,b] is defined by

(I
ζ
a+

ϑ)(α) :=
1

Γ (ζ )

∫ α

a
(γ(α)− γ(s))ζ−1γ ′(s)ϑ(s)ds for α > a.

If a = 0 and b = ∞, then

(I
ζ
0+

ϑ)(α) :=
1

Γ (ζ )

∫ α

0
(γ(α)− γ(s))ζ−1γ ′(s)ϑ(s)ds for α > 0.

If a =−∞ and b = ∞, then

(I
ζ
+ϑ)(α) :=

1

Γ (ζ )

∫ α

−∞
(γ(α)− γ(s))ζ−1γ ′(s)ϑ(s)ds for α ∈ R.

1.Taking γ(α) = α we obtain the Riemann–Liouville fractional integral.
2.Taking γ(α) = ln(α) we obtain the Hadamard fractional integral.
3.Taking γ(α) = eα we obtain the exponential fractional integral (see Definition 1).

In [21], the authors studied the following exponential initial value problem

e
cD

ζ
0+

ψ(α) = ϑ(α,ψ(α)), α ∈Θ := [0,b], b > 0, 1 < ζ ≤ 2,

ψ(0) = λ1,
eDψ(0) = λ2,

where ϑ : Θ ×R → R is a given function and λ1,λ2 are given constants and 1 < ζ ≤ 2, and the following exponential
boundary value problem

e
cD

ζ
0+

ψ(α) = ϑ(α,ψ(α)), α ∈Θ := [0,b], b > 0, 0 < ζ ≤ 1, and 1 < ζ ≤ 2,

υ1ψ(0)+υ2ψ(b) = υ3,

where υ1,υ2,υ3 are given constants with υ1 +υ2 6= 0.

Motivated by the works mentioned above, the present paper aims to establish existence and uniqueness results to the
following fractional implicit differential equation (IVP):

e
cD

ζ
0+

ψ(α) = ϑ(α,ψ(α), e
cD

ζ
0+

ψ(α)), α ∈Θ := [0,b], b > 0, 0 < ζ ≤ 1, (1)

ψ(0) = ψ0, (2)

where e
cD

ζ
0+

is the left-sided Caputo–Exponential type fractional derivative, ϑ : Θ ×R×R→ R is a given function and
ψ0 ∈ R. In addition, the aim of this paper is to establish some types of Ulam stability for the fractional implicit
differential equation (1).

Three results for problem (1)-(2) are presented in this paper. To prove the first, we use the Banach contraction principle;
for the second, we use Schauder’s fixed point theorem; and for the third, we use the nonlinear alternative of Leray–
Schauder type. Examples are provided to demonstrate the applicability of our findings.
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2 Preliminaries

By V :=C(Θ ,R), we denote the Banach space of all continuous functions ξ from Θ into R with the norm

‖ξ‖∞ := sup
α∈Θ

|ξ (α)|.

The notation L1([0,b],R) denotes the Banach space of measurable functions ξ : [0,b] → R which are Lebesgue
integrable and normed by

‖ξ‖L1 =

∫ b

0
|ξ (s)|ds, for all ξ ∈ L1(Θ ,R).

Definition 1.([21,22]) The exponential left-sided fractional integral of a function ϑ : R→R of order ζ ≥ 0 is given by

(eI
ζ
a+

ϑ)(α) :=
1

Γ (ζ )

∫ α

a
(eα − es)ζ−1ϑ(s)esds for α > a and ζ > 0, (3)

and

(eI0
(·)ϑ)(α) := ϑ(α). (4)

If a = 0 and b = ∞, then

(eI
ζ
0+

ϑ)(α) :=
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1ϑ(s)esds for α > 0 and ζ > 0. (5)

If a =−∞, then

(eI
ζ
+ϑ)(α) :=

1

Γ (ζ )

∫ α

−∞
(eα − es)ζ−1ϑ(s)esds for α ∈ R and ζ > 0. (6)

Lemma 1.([21,22] Semigroup property.) Let ζ > 0 and υ > 0. Then, for all α ∈ [a,b],

eIζ
a (

eIυ
a ϑ)(α) = eIυ

a (
eIζ

a ϑ)(α) = eIζ+υ
a ϑ(α).

Lemma 2.([21,22]) Let ζ > 0 and υ > 0. The fractional integral formula or the power exponential function is given by

eI
ζ
+eυx =

Γ (υ + 1)

Γ (ζ +υ + 1)
e(ζ+υ)x

.

For n ∈N := {1,2,3, · · ·}, let

ACn
e (Θ) :=

{
ν ∈Cn−1(Θ ,R) : eD(n−1)ν(α) ∈ AC(Θ), eD = e−α d

dt

}
.

In particular, AC1
e (Θ) := ACe(Θ).

Definition 2.([21,22]) The exponential left-sided fractional derivatives of Riemann–Liouville type of order ζ ≥ 0 for a

function ϑ : R→ R is given by

(eD
ζ
a+

ϑ)(α) :=
1

Γ (n− ζ )

(
e−α d

dt

)n ∫ α

a
(eα − es)n−ζ−1ϑ(s)

ds

e−s
, for α > a and ζ > 0, (7)

and

(eD0
(·)ϑ)(α) := ϑ(α). (8)

If a = 0 and b = ∞, then

(eD
ζ
0+

ϑ)(α) :=
1

Γ (n− ζ )

(
e−α d

dt

)n ∫ α

0
(eα − es)n−ζ−1ϑ(s)

ds

e−s
, for α > 0 and ζ > 0. (9)

If a =−∞, then

(eI
ζ
+ϑ)(α) :=

1

Γ (ζ )

∫ α

−∞
(eα − es)ζ−1ϑ(s)esds, for α ∈ R and ζ > 0, (10)

where n = [ζ ]+ 1.
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Lemma 3.([21,22]). The exponential fractional derivative formula of power exponential function is given by

eD
ζ
+eυx =

Γ (υ + 1)

Γ (υ − ζ + 1)
e(υ−ζ )x

.

Remark.For υ = 0 we get

eD
ζ
+1 =

e−ζx

Γ (1− ζ )
6= 0.

Definition 3.[21,22] The exponential left-sided fractional derivatives of Caputo type of order ζ ≥ 0 for a function ϑ :
R→ R is given by

(e
cD

ζ
a+

ϑ)(α) :=
1

Γ (n− ζ )

∫ α

a
(eα − es)n−ζ−1

(
e−s d

ds

)n

ϑ(s)
ds

e−s
, α > a, ζ > 0, (11)

and

(e
cD0

(·)ϑ)(α) := ϑ(α), (12)

where n = [ζ ]+ 1.

Lemma 4.[21,22] If ζ ,υ > 0, then

1.eI
ζ
a (e

α − ea)υ = Γ (υ+1)
Γ (ζ+υ+1

(eα − ea)ζ+υ .

2.eD
ζ
a (e

α − ea)υ = Γ (υ+1)
Γ (υ−ζ+1

(eα − ea)υ−ζ .

Lemma 5.[21,22] Let ζ ≥ 0 and n = [ζ ]+ 1. Then

e
cD

ζ
a+

ϑ(α) = eD
ζ
a+

[
ϑ(s)−

n−1

∑
k=0

eDkϑ(a)

k!
(es − ea)k

]
(α),

where eD = e−α d
dt
.

Theorem 1.[21,22] If 0 < υ < ζ and 1 ≤ p < ∞, then for ϑ ∈ Lp(a,b) we have

eDυ
a (

eIζ
a ϑ)(α) = eIζ−υ

a ϑ(α) and e
cDυ

a (
eIζ

a ϑ)(α) = eIζ−υ
a ϑ(α).

In addition,

eDζ
a (

eIζ
a ϑ)(α) = ϑ(α) and e

cDζ
a (

eIζ
a ϑ)(α) = ϑ(α).

Theorem 2.[21,22] Let ζ ≥ 0 and n = [ζ ]+ 1. Then,

1.eI
ζ
a (

eD
ζ
a ϑ)(α) = ϑ(α)−

n

∑
k=1

(es − ea)ζ−k

Γ (ζ − k+ 1)
eDn−k(eIn−ζ ϑ)(a).

2.eI
ζ
a (

e
cD

ζ
a ϑ)(α) = ϑ(α)−

n−1

∑
k=0

(es − ea)k

k!
eDkϑ(a).

Lemma 6.([23])(Generalized Gronwall’s inequality with respect to another function.) Let ψ ,ν be two integrable functions

and ξ continuous, with domain [a,b]. Let γ ∈C1[a,b] an increasing function such that γ ′(α) 6= 0, for all α ∈ [a,b]. Assume

that the functions ψ , ν are nonnegative, and ξ is nonnegative and nondecreasing. If

ψ(α)≤ ν(α)+ ξ (α)

∫ α

a
γ ′(s)(γ(α)− γ(s))ζ−1ψ(s)ds,

then

ψ(α)≤ ν(α)+
∫ α

a

∞

∑
k=1

[ξ (α)Γ (ζ )]k

Γ (ζk)
γ ′(s)[γ(α)− γ(s)]ζk−1ν(s)ds, for every α ∈ [a,b].
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Definition 4.([20]) The Mittag–Leffler function is given by

Eζ (z) =
∞

∑
k=0

zk

Γ (ζk+ 1)
, ζ ∈ C, ℜ(ζ )> 0.

Thus

Eζ (z) = Eζ ,1(z), E1(z) = E1,1(z) = ez
.

We shall now define the several types of Ulam stability that were used in this study. (see [9,10]).

Definition 5.([9,10]) The equation (1) is Ulam–Hyers stable (U-H) if there exists a real number cϑ > 0 such that for

each ¯̄ε > 0 and for each solution ν ∈C1(Θ ,R) of the inequality

|ecD
ζ
0+

ν(α)−ϑ(α,ν(α), e
cD

ζ
0+

ν(α))| ≤ ε̄, α ∈Θ , (13)

there exists a solution ψ ∈C1(Θ ,R) of equation (1) with

|ν(α)−ψ(α)| ≤ cϑ ε̄, α ∈Θ .

Definition 6.([9,10]) The equation (1) is generalized Ulam–Hyers stable (G.U-H) if there exists γ̃ϑ ∈ C(R+,R+),
γ̃ϑ (0) = 0, such that for each solution ν ∈ C1(Θ ,R) of the inequality (13) there exists a solution ψ ∈ C1(Θ ,R) of the

equation (1) with

|ν(α)−ψ(α)| ≤ γ̃ϑ (ε̄), α ∈Θ .

Definition 7.([9,10]) The equation (1) is Ulam–Hyers–Rassias stable (U-H-R) with respect to χ ∈ C(Θ ,R+) if there

exists a real number cϑ > 0 such that for each ε̄ > 0 and for each solution ν ∈C1(Θ ,R) of the inequality

|ecD
ζ
0+

ν(α)−ϑ(α,ν(α), e
cD

ζ
0+

ν(α))| ≤ ε̄χ(α), α ∈Θ , (14)

there exists a solution ψ ∈C1(Θ ,R) of equation (1) with

|ν(α)−ψ(α)| ≤ cϑ ε̄χ(α), α ∈Θ .

Definition 8.([9,10]) The equation (1) is generalized Ulam–Hyers–Rassias stable (G.U-H-R) with respect to

χ ∈C(Θ ,R+) if there exists a real number cϑ ,χ > 0 such that for each solution ν ∈C1(Θ ,R) of the inequality

|ecD
ζ
0+

ν(α)−ϑ(α,ν(α), e
cD

ζ
0+

ν(α))| ≤ χ(α), α ∈Θ , (15)

there exists a solution ψ ∈C1(Θ ,R) of equation (1) with

|ν(α)−ψ(α)| ≤ cϑ ,χ χ(α), α ∈Θ .

Remark.A function ν ∈C1(Θ ,R) is a solution of of the inequality (13) if and only if there exists a function δ ∈ V (which
depends on ψ) such that

(i)|δ (α)| ≤ ε̄ , ∀α ∈Θ .

(ii)e
cD

ζ
0+

ν(α) = ϑ(α,ν(α), e
cD

ζ
0+

ν(α))+ δ (α), α ∈Θ .

Remark.Clearly,

(i)Definition 5 =⇒ Definition 6.
(ii)Definition 7 =⇒ Definition 8.
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3 Existence of solutions

Let us establish what we consider by a solution to problem (1)–(2).

Definition 9.A function ψ ∈C1(Θ ,R) is said to be a solution of the problem (1)–(2) if ψ satisfies equation (1) on Θ and

conditions (2).

In the sequel, we will need the following lemmas:

Lemma 7.Let ϑ(α,ψ ,ν) : Θ ×R×R→R be a continuous function. Then, problem (1)–(2) is equivalent to the problem:

ψ(α) = ψ0 +
eI

ζ
0+

δ (α), (16)

where δ ∈ V satisfies the equation:

δ (α) = ϑ(α,ψ0 +
eI

ζ
0+

δ (α),δ (α)).

Proof. If e
cD

ζ
0+

ψ(α) = δ (α) then eI
ζ
0+

e
cD

ζ
0+

ψ(α) = eI
ζ
0+

δ (α). We obtain ψ(α) = ψ0 +
eI

ζ
0+

δ (α).

Based on Banach’s fixed point, we can now assert and demonstrate our existence result for the problem (1)–(2).

Theorem 3.Assume

(A1)The function ϑ : Θ ×R×R→R is continuous.

(A2)There exist constants ρ1 > 0 and 0 < ρ2 < 1 such that

|ϑ(α,ψ ,ν)−ϑ(α, ψ̄ , ν̄)| ≤ ρ1|ψ − ψ̄|+ρ2|ν − ν̄|

for any ψ ,ν, ψ̄ , ν̄ ∈ R and α ∈Θ .

Put ρ3 =
ρ1

1−ρ2

. If

ρ3(e
b − 1)ζ

Γ (ζ + 1)
< 1, (17)

then there exists a unique solution for IVP (1)− (2) on Θ .

Proof. Consider the operator ϒ : V → V defined by:

ϒ (ψ)(α) = ψ0 +
eI

ζ
0+

δ (α), (18)

where δ ∈ V satisfies the following
δ (α) = ϑ(α,ψ(α),δ (α)).

The fixed points of operator ϒ are clearly solutions of problem (1)–(2). Let ψ ,ν ∈ V . Then for α ∈Θ ,

(ϒ ψ)(α)− (ϒ ν)(α) =
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1(δ (s)−σ(s))esds,

where δ ,σ ∈ V is such that
δ (α) = ϑ(α,ψ(α),δ (α)),

σ(α) = ϑ(α,ν(α),σ(α)).

Then, for α ∈Θ

|(ϒ ψ)(α)− (ϒ ν)(α)| ≤ 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1|δ (s)−σ(s)|esds. (19)

By (A2) we deduce

|δ (α)−σ(α)| = |ϑ(α,ψ(α),δ (α))−ϑ(α,ν(α),σ(α))|
≤ ρ1|ψ(α)−ν(α)|+ρ2|δ (α)−σ(α)|.

Thus
|δ (α)−σ(α)| ≤ ρ3|ψ(α)−ν(α)|.
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And by (19)

|(ϒ ψ)(α)− (ϒ ν)(α)| ≤ ρ3

Γ (ζ )

∫ α

0
(eα − es)ζ−1|ψ(s)−ν(s)|esds

≤ ρ3(e
b − 1)ζ

Γ (ζ + 1)
‖ψ −ν‖∞.

Then

‖ϒ ψ −ϒ ν‖∞ ≤ ρ3(e
b − 1)ζ

Γ (ζ + 1)
‖ψ −ν‖∞.

By (17), the operator ϒ is a contraction. Consequently, by using Banach’s contraction principle ([24]), we deduce that ϒ
has a unique fixed point.

Schauder’s fixed point theorem provides the basis for our next existence result.

Theorem 4.Assume (A1),(A2) and the following hypothesis holds.

(A3)There exist θ1,θ2,θ3 ∈C(Θ ,R+) with θ3
∗ = sup

α∈Θ
θ3(α)< 1 such that

|ϑ(α,ψ ,ν)| ≤ θ1(α)+θ2(α)|ψ |+θ3(α)|ν| for α ∈Θ and ψ ,ν ∈R.

If

θ2
∗(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

< 1, (20)

where θ1
∗ = sup

α∈Θ
θ1(α), and θ2

∗ = sup
α∈Θ

θ2(α). Then, problem (1)-(2) has at least one solution.

Proof. Consider the operator ϒ given in (18). theorem.

Claim 1: ϒ is continuous.
Let {ψn} be a sequence such that ψn → ψ in V . Then for each α ∈Θ

|ϒ (ψn)(α)−ϒ (ψ)(α)| ≤ 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1|δn(s)− δ (s)|esds, (21)

where δn,δ ∈ V such that

δn(α) = ϑ(α,ψn(α),δn(α)),

and

δ (α) = ϑ(α,ψ(α),δ (α)).

By (A2) we have

|δn(α)− δ (α)| = |ϑ(α,ψn(α),δn(α))−ϑ(α,ψ(α),δ (α))|
≤ ρ1|ψn(α)−ψ(α)|+ρ2|δn(α)− δ (α)|.

Then

|δn(α)− δ (α)| ≤ ρ3|ψn(α)−ψ(α)|.

Since ψn → ψ , then we get δn(α)→ δ (α) as n → ∞ for each α ∈Θ , and let β̃ > 0 be such that, for each α ∈Θ , we have

|δn(α)| ≤ β̃ and |δ (α)| ≤ β̃ , then we have

(eα − es)ζ−1es|δn(s)− δ (s)| ≤ (eα − es)ζ−1es[|δn(s)|+ |δ (s)|]
≤ 2β̃(eα − es)ζ−1es

.

For each α ∈ Θ , the function s → 2β̃(eα − es)ζ−1es is integrable on [0,α], and the Lebesgue dominated convergence
theorem and (21) imply that

|ϒ (ψn)(α)−ϒ (ψ)(α)| → 0 as n → ∞,
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so

‖ϒ (ψn)−ϒ (ψ)‖∞ → 0 as n → ∞.

Consequently, ϒ is continuous.

Let

Ω ≥ |ψ0|+Mθ1
∗

1−Mq∗
,

where M :=
(eb−1)ζ

(1−θ3
∗)Γ (ζ+1) and define the set

DΩ = {ψ ∈ V : ‖ψ‖∞ ≤ Ω}.

It is obvious that DΩ is a closed, convex and bounded subset of V .

Claim 2: ϒ (DΩ )⊂ DΩ .

Let ψ ∈ DΩ we show that ϒ ψ ∈ DΩ . We have, for each α ∈Θ

|ϒ ψ(α)| ≤ |ψ0|+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1|δ (s)|esds. (22)

By (A3) and for all α ∈Θ , we have

|δ (α)| = |ϑ(α,ψ(α),δ (α))|
≤ θ1(α)+θ2(α)|ψ(α)|+θ3(α)|δ (α)|
≤ θ1(α)+θ2(α)Ω +θ3(α)|δ (α)|
≤ θ1

∗+θ2
∗Ω +θ3

∗|δ (α)|.
Then

|δ (α)| ≤ θ1
∗+θ2

∗Ω

1−θ3
∗ := M̃.

Thus (22) implies that

|ϒ ψ(α)| ≤ |ψ0|+
(θ1

∗+θ2
∗Ω)(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

≤ |ψ0|+(θ1
∗+θ2

∗Ω)M

≤ Ω .

Then ϒ (DΩ )⊂ DΩ .

Claim 3: ϒ (DΩ ) is relatively compact.

Let ω1,ω2 ∈Θ , ω1 < ω2, and let ψ ∈ DΩ . Then

|ϒ (ψ)(ω2)−ϒ (ψ)(ω1)| =
∣∣∣∣

1

Γ (ζ )

∫ ω1

0

[
(eω2 − es)ζ−1 − (eω1 − es)ζ−1

]
δ (s)esds

+
1

Γ (ζ )

∫ ω2

ω1

(eω2 − es)ζ−1δ (s)esds

∣∣∣∣

≤ M̃

Γ (ζ + 1)

(
(eω2 − 1)ζ − (eω2 − 1)ζ

)
.

As ω1 → ω2, the right-hand side of the above inequality tends to zero.

We can now deduce by Arzelá-Ascoli theorem and Claims 1 to 3 that ϒ : V → V is continuous and compact. Thus,
by Schauder’s fixed point theorem ([24]), we conclude that ϒ has a fixed point.

The basis for our third existence result is the nonlinear alternative of Leray–Schauder type.

Theorem 5.Assume (A1),(A2),(A3) hold. Then, the I.V.P. (1)-(2) has at least one solution.
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Proof. We will demonstrate that ϒ verifies the assumption of Leray–Schauder fixed point theorem.

Claim 1: Obviously ϒ is continuous.

Claim 2: ϒ maps bounded sets into bounded sets in V .

We will prove that there exist a positive constant µ such that for each ψ ∈ Bµ = {ψ ∈ V : ‖ψ‖∞ ≤ µ}, we have
‖ϒ (ψ)‖∞ ≤ µ .

For ψ ∈ Bµ , we have

|ϒ ψ(α)| ≤ |ψ0|+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1|δ (α)|esds. (23)

By (A3), we obtain

|δ (α)| = |ϑ(α,ψ(α),δ (α))|
≤ θ1(α)+θ2(α)|ψ(α)|+θ3(α)|δ (α)|
≤ θ1(α)+θ2(α)µ +θ3(α)|δ (α)|
≤ θ1

∗+θ2
∗µ +θ3

∗|δ (α)|.

Then

|δ (α)| ≤ θ1
∗+θ2

∗µ

1−θ3
∗ := M∗

.

Thus (23) implies that

|ϒ ψ(α)| ≤ |ψ0|+
M∗(eb − 1)ζ

Γ (ζ + 1)
.

Thus

‖ϒ ψ‖∞ ≤ |ψ0|+
M∗(eb − 1)ζ

Γ (ζ + 1)
:= µ .

Claim 3: It is clear that ϒ maps bounded sets into equicontinuous sets of V .

We deduce that ϒ : V −→ V is continuous and completely continuous.

Claim 4: A priori bounds.

Now, we show that there exists an open set X ⊆ V with ψ 6= τϒ (ψ), for τ ∈ (0,1) and ψ ∈ ∂X . Let ψ ∈ V and
ψ = τϒ (ψ) for some 0 < τ < 1. Thus, for α ∈Θ , we get

ψ(α) = τψ0 +
τ

Γ (ζ )

∫ α

0
(eα − es)ζ−1δ (s)esds.

This implies by (A2) that, for each α ∈Θ ,

|ψ(α)| ≤ |ψ0|+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1|δ (s)|esds. (24)

And, by (A3), for each α ∈Θ ,

|δ (α)| = |ϑ(α,ψ(α),δ (α))|
≤ θ1(α)+θ2(α)|ψ(α)|+θ3(α)|δ (α)|
≤ θ1

∗+θ2
∗|ψ(α)|+θ3

∗|δ (α)|.
Thus

|δ (α)| ≤ 1

1−θ3
∗ (θ1

∗+θ2
∗|ψ(α)|).
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Hence

|ψ(α)| ≤ |ψ0|+
θ1

∗(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

+
θ2

∗

(1−θ3
∗)Γ (ζ )

∫ α

0
(eα − es)ζ−1|ψ(s)|esds.

Then Lemma 6 implies that, for each α ∈Θ ,

|ψ(α)| ≤
[
|ψ0|+

θ1
∗(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

]
1+

∫ α

0

∞

∑
k=1

(
θ2

∗
1−θ3

∗

)k

Γ (kζ )
(eα − es)kζ−1esds




≤
[
|ψ0|+

θ1
∗(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

]
1+

∞

∑
k=1

(
θ2

∗
1−θ3

∗

)k

Γ (kζ )

(eα − 1)kζ

kζ




≤
[
|ψ0|+

θ1
∗(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

]
1+

∞

∑
k=1

(
θ2

∗
1−θ3

∗

)k

Γ (kζ + 1)
(eα − 1)kζ




≤
[
|ψ0|+

θ1
∗(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

]
Eζ

(
θ2

∗

1−θ3
∗ (e

b − 1)

)
.

Thus

‖ψ‖∞ ≤
[
|ψ0|+

θ1
∗(eb − 1)ζ

(1−θ3
∗)Γ (ζ + 1)

]
Eζ

(
θ2

∗

1−θ3
∗ (e

b − 1)

)
:= M. (25)

Let

X = {ψ ∈ V : ‖ψ‖∞ < M+ 1}.
Because of our pick of X , there is no ψ ∈ ∂X such that ψ = τϒ (ψ), for τ ∈ (0,1). By Leray–Schauder’s theorem ([24]),
we conclude that ϒ has a fixed point.

4 Ulam–Hyers stability

Theorem 6.Assume that (A1), (A2) and (17) are met. Then, equation (1) is (U-H) stable.

Proof. Let ν ∈ V be a solution of (13), then

|ecD
ζ
0+

ν(α)−ϑ(α,ν(α), e
cD

ζ
0+

ν(α))| ≤ ε̄, α ∈Θ . (26)

By ψ ∈ V we denote the unique solution of the problem

e
cD

ζ
0+

ψ(α) = ϑ(α,ψ(α), e
cD

ζ
0+

ψ(α)), for each, α ∈Θ , 0 < ζ ≤ 1,

ψ(0) = ν(0).

Using Lemma 7, we have

ψ(α) = ν(0)+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δψ (s)e

sds,

where δψ ∈ V satisfies

δψ(α) = ϑ(α,ψ(0)+ eI
ζ
0+

δψ(α),δψ (α)).

However, by integration (26) we get
∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δν (s)e

sds

∣∣∣∣ ≤
ε̄(eα − 1)ζ

Γ (ζ + 1)

≤ ε̄(eb − 1)ζ

Γ (ζ + 1)
, (27)
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where δν ∈ V satisfies

δν (α) = ϑ(α,ν(0)+e I
ζ
0+

δν(α),δν (α)).

For each α ∈Θ , we have

|ν(α)−ψ(α)| =
∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δψ(s)e

sds

∣∣∣∣

=

∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δν(s)e

sds

+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1

(
δν(s)− δψ(s)

)
esds

∣∣∣∣

≤
∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δν(s)e

sds

∣∣∣∣

+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1|δν(s)− δψ(s)|esds, (28)

where
δψ(α) = ϑ(α,ψ(α),δψ (α)),

and
δν(α) = ϑ(α,ν(α),δν (α)).

By (A2), we obtain

|δν(α)− δψ(α)| = |ϑ(α,ν(α),δν (α))−ϑ(α,ψ(α),δψ (α))|
≤ ρ1|ν(α)−ψ(α)|+ρ2|δν (α)− δψ(α)|.

Then

|δν(α)− δψ(α)| ≤ ρ3|ν(α)−ψ(α)|. (29)

Thus, by (27), (28), and (29) we get

|ν(α)−ψ(α)| ≤ ε̄(eb − 1)ζ

Γ (ζ + 1)
+

ρ3

Γ (ζ )

∫ α

0
(eα − es)ζ−1|ν(s)−ψ(s)|esds.

Then Lemma 6 implies the following

|ν(α)−ψ(α)| ≤ ε̄(eb − 1)ζ

Γ (ζ + 1)

[
1+

∫ α

0

∞

∑
k=1

ρ3
k

Γ (kζ )
(eα − es)kζ−1esds

]

≤ ε̄(eb − 1)ζ

Γ (ζ + 1)

[
1+

∞

∑
k=1

ρ3
k

Γ (kζ )

(eα − 1)kζ

kζ

]

≤ ε̄(eb − 1)ζ

Γ (ζ + 1)

[
1+

∞

∑
k=1

ρ3
k

Γ (kζ + 1)
(eα − 1)kζ

]

≤ ε̄(eb − 1)ζ

Γ (ζ + 1)
Eζ

(
ρ3(e

b − 1)
)

:= cε̄.

Hence, Equation (1) is (U-H) stable. Taking γ̃(ε̄) = cε̄ , γ̃(0) = 0 yields that Equation (1) is (G.U-H).

5 Ulam–Hyers–Rassias stability

Theorem 7.Assume (A1), (A2), (17) and

(A4)The function χ ∈C(Θ ,R+) is increasing and there exists λχ > 0 such that, for each α ∈Θ , we have

eI
ζ
0+

χ(α)≤ λχ χ(α).

Then, Equation (1) is (U-H-R) stable with respect to χ .
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Proof. Let ν ∈ V be a solution (14), then

|ecD
ζ
0+

ν(α)−ϑ(α,ν(α), e
cD

ζ
0+

ν(α))| ≤ ε̄χ(α), α ∈Θ , ε̄ > 0. (30)

By ψ ∈ V , we denote the unique solution of the problem

e
cD

ζ
0+

ψ(α) = ϑ(α,ψ(α), e
cD

ζ
0+

ψ(α)), for each, α ∈Θ , 0 < ζ ≤ 1,

ψ(0) = ν(0).

Using Lemma 7, we have

ψ(α) = ν(0)+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δψ (s)e

sds,

where δψ ∈ V satisfies

δψ(α) = ϑ(α,ψ(0)+ eI
ζ
0+

δψ(α),δψ (α)).

By integration (30) and by (A3), we get
∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δν (s)e

sds

∣∣∣∣ ≤
ε̄

Γ (ζ )

∫ α

0
(eα − es)ζ−1χ(s)esds

≤ ε̄λχ χ(α). (31)

where δν ∈ V

δν(α) = ϑ(α,ν(0)+ eI
ζ
0+

δν (α),δν (α)).

For each α ∈Θ , we have

|ν(α)−ψ(α)| =
∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δψ(s)e

sds

∣∣∣∣

=

∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δν(s)e

sds

+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1

(
δν(s)− δψ(s)

)
esds

∣∣∣∣

≤
∣∣∣∣ν(α)−ν(0)− 1

Γ (ζ )

∫ α

0
(eα − es)ζ−1δν(s)e

sds

∣∣∣∣

+
1

Γ (ζ )

∫ α

0
(eα − es)ζ−1|δν(s)− δψ(s)|esds, (32)

where
δψ(α) = ϑ(α,ψ(α),δψ (α)),

and
δν(α) = ϑ(α,ν(α),δν (α)).

By (A2), we have

|δν(α)− δψ(α)| = |ϑ(α,ν(α),δν (α))−ϑ(α,ψ(α),δψ (α))|
≤ ρ1|ν(α)−ψ(α)|+ρ2|δν (α)− δψ(α)|.

Then

|δν(α)− δψ(α)| ≤ ρ3|ν(α)−ψ(α)|. (33)

Thus, by (31), (32), and (33)

|ν(α)−ψ(α)| ≤ ε̄λχ χ(α)+
ρ3

Γ (ζ )

∫ α

0
(eα − es)ζ−1|ν(s)−ψ(s)|esds.

|ν(α)−ψ(α)| ≤ ε̄λχ χ(α)+
ρ3 ‖ ν −ψ ‖∞

Γ (ζ )

∫ α

0
(eα − es)ζ−1esds

≤ ε̄λχ χ(α)+
ρ3 ‖ ν −ψ ‖∞

Γ (ζ + 1)
(eb − 1)ζ

.
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Thus, we have

‖ ν −ψ ‖∞

[
1− ρ3(e

b − 1)ζ

Γ (ζ + 1)

]
≤ ε̄λχ χ(α),

and

‖ ν −ψ ‖∞ ≤
[

1− ρ3(e
b − 1)ζ

Γ (ζ + 1)

]−1

ε̄λχ χ(α).

Then for each α ∈Θ

|ν(α)−ψ(α)| ≤
[

1− ρ3(e
b − 1)ζ

Γ (ζ + 1)

]−1

ε̄λχ χ(α) := cε̄χ(α). (34)

Thus, Equation (1) is (U-H-R) stable.

6 Examples

Example 1. Consider the following Cauchy problem

cD
1
2 ψ(α) =

2+ |ψ(α)|+ |cD 1
2 ψ(α)|

150eα+10(1+ |ψ(α)|+ |cD 1
2 ψ(α)|)

, α ∈ [0,1], (35)

ψ(0) = 1. (36)

Set

ϑ(α,ψ ,ν) =
2+ |ψ |+ |ν|

150eα+10(1+ |ψ |+ |ν|), α ∈ [0,1], ψ ,ν ∈ R.

It is obvious that the function ϑ is jointly continuous.
For any ψ ,ν, ψ̄ , ν̄ ∈ R and α ∈ [0,1]

|ϑ(α,ψ ,ν)−ϑ(α, ψ̄ , ν̄)| ≤ 1

150e10
(|ψ − ψ̄|+ |ν − ν̄|).

Hence condition (A2) is satisfied with ρ1 = ρ2 =
1

150e10 .

Since

|ϑ(α,ψ ,ν)| ≤ 1

150eα+10
(2+ |ψ |+ |ν|),

then the condition (A3) is verified with

θ1(α) =
1

75eα+10
and θ2(α) = θ3(α) =

1

150eα+10
.

And condition

θ2
∗bζ

(1−θ3
∗)Γ (ζ + 1)

=
(e− 1)

1
2

(150e10 − 1)Γ ( 3
2
)
=

1

(150e10 − 1)

√
e− 1

π
< 1,

is verified with b = 1, ζ = 1
2
, and θ2

∗ = θ3
∗ = 1

150e10 . As consequence of Theorem 4, we can say that problem (35)–(36)
has at least one solution.

Example 2. Consider the following Cauchy problem

e
cD

1
2 ψ(α) =

1

300
(α cosψ(α)−ψ(α)sin(α))+

1

150
e
cD

1
2 ψ(α), for each α ∈ [0,1], (37)

ψ(0) = 1. (38)
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Set

ϑ(α,ψ ,ν) =
1

300
(α cosψ −ψ sin(α))+

1

150
ν, α ∈ [0,1], ψ ,ν ∈ R

It is obvious that the function ϑ is jointly continuous.
For any ψ ,ν, ψ̄ , ν̄ ∈ R and α ∈ [0,1] :

|ϑ(α,ψ ,ν)−ϑ(α, ψ̄ , ν̄)| ≤ 1

300
|α||cosψ − cosψ̄ |+ 1

300
|sinα||ψ − ψ̄|+ 1

150
|ν − ν̄|

≤ 1

300
|ψ − ψ̄|+ 1

300
|ψ − ψ̄|+ 1

150
|ν − ν̄|.

=
1

150
(|ψ − ψ̄|+ |ν − ν̄|).

Hence condition (A2) is satisfied with ρ1 = ρ2 =
1

150
.

Thus condition
ρ3(e

b − 1)ζ

Γ (ζ + 1)
=

1
150

(1− 1
150

)Γ ( 3
2
)
=

2

149
√

π
≈ 0.00757< 1,

is satisfied with ρ1 = ρ2 = 1
150

, b = 1, and ζ = 1
2
. It follows from Theorem 3 that the problem (37)–(38) as a unique

solution on Θ . And it follows from Theorem 6 that the problem (37)–(38) is (U-H) stable.
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