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Abstract: In this paper, the Chebyshev spectral method is applied to solve the nonlinear Fisher fractional equation with initial boundary

conditions. Here, the fractional derivative is considered in Caputo type. Then, using the Chebyshev spectral collocation method, the

problem is transformed into an algebraic system. The results showed that this method is acceptable for numerical solution of the Fisher

equation.
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1 Introduction

Spectral methods have an important significant role in approximate differential equations, which simplify makes it easy
in treating many phenomena and models in physics, engineering, economic and many other fields. The most common
distinguished feature for spectral methods is using them as a basis in forming polynomials or functions that are
orthogonal with respect to the weight functions defined in bounded and unbounded domain [1–6]. Over the past century,
fractional derivative equations been adopted in several areas such as physics, chemistry, engineering and even
finance [7–12]. In addition to numerical solution, some new analytical methods, such as Adomian decomposition
method [12, 13] homotopy perturbation method [14], Differential transform method(DTM) [15, 16], variational iteration
method [17] and homotopy analysis method [11] exist. Spectral methods are a relatively accurate numerical method,
which has recently gained considerable popularity [18–24, 26–28]. Now, we consider time fractional Fisher’s equation

Dα
C u− uxx− u(u− 1) = f , x ∈ [0,L], 0 6 t 6 T, (1)

u(x,0) = f0(x), x ∈ [0,L], (2)

u(0, t) = f1(t), u(L, t) = f2(t), 0 6 t 6 T. (3)

We use the floor function ⌊α⌋ to denote the largest integer less than or equal to α and the ceiling function ⌈α⌉ to denote
the smallest integer greater than or equal to α . Here, Dα

C u which is the Caputo type fractional derivative of order α > 0 is
defined by

Dα
C u(x) =

1

Γ (m−α)

∫ x

0
(x− t)m−α−1u(m)(t)dt.

where m = ⌈α⌉.

2 Preliminaries

In this section, we review briefly the orthogonal Chebyshev polynomials and express some of their properties [19–22].
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2.1 Chebyshev polynomials

We know well that Chebyshev’s polynomial is defined in the interval (−1,1). We introduce the shifted Chebyshev

polynomial by presenting the following variable change r = 2t
T
− 1, let

Tr(
2t

T
− 1) = TT,r(t), t ∈ (0,T ).

Then, TT,r(t) can be obtained from the following recursive relation.

TT,r+1(t) = 2(
2t

T
− 1)TT,r(t)−TT,r−1(t), r = 1,2, ..., (4)

where TT,0(t) = 1 and TT,1(t) =
2t
T
− 1. Explicit form of the shifted Chebyshev polynomials TT,r(t) of degree r is

TT,r(t) = r
r

∑
k=0

(−1)r−k (r+ k− 1)!22k

(r− k)!(2k)!T k
tk
, (5)

where TT,r(0) = (−1)r and TT,r(T ) = 1. The orthogonality condition is

∫ T

0
TT, j(t)TT,k(t)wT (t)dt = δ jkλk, (6)

where wT (x) =
1√

T x−x2
and λk =

bk
2

π , with b0 = 2,bi = 1, i ≥ 1.

The approximation of u can be, as follows:

uN(t)≃
N

∑
i=0

ciTT,i(t). (7)

2.2 Shifted Chebyshev-Gauss-quadratures

Let ρ0,ρ1 · · · ,ρN be N + 1 Chebyshev-Gauss nodes in [−1,1], and ψi(t), i = 0, · · · ,N be the corresponding Christoffel
numbers dependent on these points. Let us assume ti and ωi, i = 0,1, ...,N the nodes and Christoffel numbers of the
(shifted) Chebyshev-Gauss-quadratures on the intervals [0,T ], then we have the following relations:

ti =
T

2
(ρi + 1), (8)

ωi = ψi, 0 ≤ i ≤ N. (9)

We assume PM is a set of polynomials of maximum degree M. According to Chebyshev-Gauss quadrature, we conclude
for each p ∈ P2M+1,

∫ T

0
p(t)wT (t)dt =

∫ 1

−1
p(

T

2
(t + 1))

1√
1− t2

dt =
N

∑
i=0

ψi p(
T

2
(ρi + 1)) =

N

∑
i=0

ωi p(ti). (10)

You can refer to [1–3] for more information.

2.3 The fractional derivatives of shifted Chebyshev polynomials [18]

The fractional derivative of order α in the Caputo type for the Chebyshev polynomials is

Dα
C TT,r = 0, r = 0,1, · · · ,⌈α⌉− 1, α ≥ 0, (11)

Dα
C TT,r =

∞

∑
s=0

Ωα(r,s)TT,s(t), r = ⌈α⌉,⌈α⌉+ 1, ..., (12)

Ωα(r,s) =
r

∑
k=⌈α⌉

(−1)r−k2r(r+ k− 1)!Γ (k−α + 1
2
)

bsT αΓ (k+ 1
2
)(r− k)!Γ (k−α − s+ 1)Γ (k+ s−α + 1)

.
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3 Description of the method

We consider the numerical approximation, as follows:

uN(x, t) =
N

∑
r=0

ar(x)TT,r(t), (13)

ar(x) =
1

λr

N

∑
s=0

TT,r(ts)uN(x, ts)ωs, r = 0,1, · · · ,N. (14)

where ar(x) is unmown function and ts is the Chebyshev-Gauss nodes. In the first step, a set of appropriate points must
be selected. We use the Chebyshev-Gauss nodes (8). Finally, we approximate the unknown solution with respect to these
points. Putting ar(x) in the equation of (13), we have

uN(x, t) =
N

∑
r=0

(

1

λr

N

∑
s=0

TT,r(ts)uN(x, ts)ωs

)

TT,r(t)

=
N

∑
r=0

(

N

∑
s=0

1

λr

TT,r(ts)uN(x, ts)ωs

)

TT,r(t)

=
N

∑
s=0

(

N

∑
r=0

1

λr

TT,r(ts)TT,r(t)ωs

)

uN(x, ts).

Then, we have

uN(x, t) =
N

∑
s=0

(

N

∑
r=0

1

λr

TT,r(ts)TT,r(t)ωs

)

uN(x, ts). (15)

We take τ as the step-size in variable x, xh = hτ,h = 0,1, · · · ,m;m = [L
τ ],u

h = u(xh, t).
If we rewrite equation (1) in terms of the discretization of the posterior, we have

Dα
C uh − uh − 2uh−1+ uh−2

τ2
+ uh − (uh−1)2 = f h−1

, h = 2, · · · ,m (16)

If we apply Chebyshev spectral collocation method, we have

Dα
C uh(tn)−

uh(tn)− 2uh−1(tn)+ uh−2(tn)

τ2
+ uh(tn)− (uh−1)2(tn) = f h−1(tn), n = 1, · · · ,N.

where

uh(tn) = uN(xh, tn) =
N

∑
j=0

(

N

∑
i=0

1

λi

TT,i(t j)TT,i(tn)ω j

)

uN(xh, t j).

now we put

Gh
n = (uh−1)2(tn)+ f h−1(tn)+

2uh−1(tn)− uh−2(tn)

τ2
,

Qns =
N

∑
r=0

1

λr

TT,r(ts)TT,r(tn),

Mns =
N

∑
r=0

1

λr

TT,r(ts)D
α
C TT,r(tn),

β = (
1

τ2
− 1).

where the matrix elements of Mns and Qns are easily computable with respect to (5), (12) and (11).

At the end, at each time step, we must solve the following algebraic system

N

∑
s=0

[Mns −β Qns]ωsuN(xh, ts) = Gh
n, n = 1, · · · ,N,

N

∑
s=0

(

N

∑
r=0

(−1)r

λr

TT,r(ts)ωs

)

uN(xh, ts) = f0(xh).
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4 Numerical example

Example 1.We consider equation (1), as follows:

α = 0.8, [0,L] = [0,1],

f (x, t) =
τ1−α

Γ (2−α)
xt(1− x)+ t2x4 − 2t2x3 + t2x2 + tx2 − tx+ 2t,

u(x,0) = 0, f1(t) = 0, f2(t) = 0.

Fig. 1: Plots of exact solution of Example 1

Fig. 2: Plots of our numerical solution of Example 1

The exact solution is
u(x, t) = tx(1− x).

We present the numerical solution for (1) with N = 20 in some values of x and τ = 0.1 as shown in Fig.1, and Fig.2. From
the comparison, an almost good approximation is observable.

Example 2.Consider the following Fisher equation with the initial condition

Dα
C u = uxx + 6u(1− u), (17)

u(x,0) =
1

(1+ ex)2
. (18)
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For the special case α = 1, the solution will be, as follows:

u(x, t) =
1

(1+ ex−5t)2
,

which is an exact solution of the classical Fisher equation( [15]).

We present the numerical solution for (2) with N = 20, α = 0.98 and τ = 0.1 as shown in Fig.3, and Fig.4 From the
comparison between our method and DTM( [15]), an almost good approximation is observable.

Fig. 3: Plots of exact solution of Example 2, α = 1

Fig. 4: Plots of our numerical solution of Example 2

5 Conclusion

In this paper, the Chebyshev spectral method has been applied to solve the nonlinear fractional order Fisher equation with
initial boundary conditions. The numerical results showed the validity of our method. We emphasize that this technique
is also applicable to other Jacobi polynomials. Mathematica has been used for computation.
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