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Abstract: Analytical formula for the autocorrelation speckle intensity is derived. The derivation based on the 
autocorrelation function of the speckle field of non-circular statistics. The autocorrelation function shows its dependence 

on the lateral correlation length of the roughness, the root mean square of the random roughness heights and also its 

dependence on the speckles lateral displacement. Experimental validations are carried out through the visibility of 

interference pattern obtained through mixing two lateral separated speckle patterns. It is investigated for different average 

roughness heights and for different speckle lateral displacements. 
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1 Introduction  

 

The surface quality of materials mostly expressed in terms 

of their roughness. The statistical probability distribution of 
the roughness deviation from its mean value is not enough 

to describe the surface roughness completely. It does not 

tell us how the scatterers of the surface are crowded close 

together or whether they are far apart and how much is their 

degree of correlation. A second function, the correlation 

function describes this aspect of the surface. The 

correlation function is a characteristic property of the 

second order speckle statistics. It describes how rapidly the 

surface height varies from point to point on the surface i.e. 

it analyzes the spatial structure of the surface height. 

Speckle correlation is one of the important statistical 

characteristics used as a measure of roughness parameters 
[1-5]. 

Ruffing derived theoretical formula to measure the surface 

roughness through the correlation between two speckle 

patterns producing by illuminating the surface with 

coherent light of either two differing wavelengths or of two 

differing angles of incidence. Most of the previous 

theoretical studies on speckle correlation were based on 

treating the statistics of the speckle field obey the central 

limit theorem. This assumption requires the phases of the 

elementary scattered waves are completely uniform 

distributed on an interval of integer number of 2π. It leads 

to scattered complex field amplitude of circularly Gaussian 

statistics in the complex plane. 

A part from this limited validity, the present study 

considers the general case of a non-circular complex 

Gaussian statistics of the speckle field. It represents the 

dependence of the speckle autocorrelation function on the 

root mean square of the surface roughness and on its phase 

correlation length. 

 2 Theories 
 

It is well known that the autocorrelation of speckle 

intensities must of necessity arises from the autocorrelation 

between the contributed fields that give rise to these 

speckle intensities. It is much easier to derive the 

autocorrelation function of the speckle intensity through the 

autocorrelation function of its speckle field. 

For simplicity, only the one-dimensional case is treated 

mathematically here while extension to two – dimensional 

is straight forward. Through the fourth order moment of the 

underlying speckle fields at two arbitrary positions 𝑥1 and 

𝑥2 on the observation 𝑥-plane, the autocorrelation function 

of speckle intensities 〈𝐼𝑠(𝑥1)𝐼𝑠(𝑥2)〉 is given by [6, 7] 
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〈𝐼𝑠(𝑥1)𝐼𝑠(𝑥2)〉

= 〈𝐼𝑠(𝑥1)〉〈𝐼𝑠(𝑥2)〉 + |〈𝐴(𝑥1)𝐴∗(𝑥2)〉|2 + |〈𝐴(𝑥1)𝐴(𝑥2)〉|2

− 2|𝐴(𝑥1)|2|𝐴(𝑥2)|2                                                               (1) 

𝐴(𝑥1) and 𝐴(𝑥2) are the resultant complex field amplitudes 

at the positions 𝑥1 and 𝑥2 respectively. The angular 

brackets 〈 〉 denote an ensemble average. An asterisk ∗ 

indicates that 𝐴∗ is the conjugate of 𝐴. 

The present study assumed that the probability density 

function 𝑃(𝜑) of the random phase 𝜑, acquired by the 

scattered waves from the rough surface, is given by the 

following Gaussian distribution of zero mean value: 

𝑃(𝜑) =
1

𝜎𝜑√2𝜋
exp (−

𝜑2

2𝜎𝜑
2

)                                               (2) 

with 〈𝜑2〉 = 𝜎𝜑
2. 

𝜎𝜑 is the root mean square of the phase 𝜑 where 𝜎𝜑 =
4𝜋

𝜆
〈ℎ𝑟〉 cos 𝜃 with 〈ℎ𝑟〉 is the average roughness heights and 

𝜃 is the specular angle of reflection. The basic factors 

affecting on the autocorrelation of the speckle field are the 

normalized phase correlation function 𝜇𝜑 and the 

correlation lateral length 𝐿𝑐  of the phase variation. It is 

assumed to be given by the following Gaussian model [8-

15]. 

𝜇𝜑(𝜉1 − 𝜉2) =
〈𝜑(𝜉1)𝜑(𝜉2)〉

〈𝜑2〉
= exp (−

|𝜉1 − 𝜉1|2

𝐿𝑐
2

) (3) 

where 𝜉1 and 𝜉2 are two separated arbitrary points on the 

rough surface 𝜉 - plane and 〈𝜑2(𝜉1)〉 = 〈𝜑2(𝜉2)〉 = 〈𝜑2〉. 

The complex field amplitude 𝐴(𝑥) at the observation 𝑥 – 

plane, in the far field diffraction at distance z apart from the 

rough surface 𝜉 – plane is given by [16, 17]: 

𝐴(𝑥)

=
1

𝑖𝜆𝑧
∬ 𝐴0(𝜉) exp(−𝑖𝜑(𝜉)) exp (

2𝜋𝑖

𝜆𝑧
𝜉𝑥) 𝑑𝜉

∞

−∞

,               (4) 

with 𝜆 is the wavelength of the illuminated light. It is the 

Fourier transform of the complex field amplitude 

distribution in the rough surface 𝜉 – plane with respect to 

the variable 
𝑥

𝜆𝑧
. The amplitude point spread function 

characterizing the optical imaging system is replaced here 

by the amplitude distribution function 𝐴0(𝜉) of the 

illuminating light at the rough surface plane [18, 19]. The 

rough surface is illuminated by a Gaussian laser beam of 

spatial amplitude distribution function given by: 

𝐴0(𝜉) = exp − (
𝜉

𝑤𝑒

)
2

                                 (5) 

with 𝑤𝑒  indicates the effective width of the amplitude 

distribution of the illuminating light. 

The autocorrelation function of the speckle field at two 

arbitrary points 𝑥1 and 𝑥2 on the observation plane arising 

from the interference of scattered waves from scattering 

arbitrary elements 𝜉1 and 𝜉2 on the rough surface is given 

by: 

〈𝐴(𝑥1)𝐴∗(𝑥2)〉 = 

                 (
1

𝜆𝑧
)

2

∬|𝐴0(𝜉)|2

∞

−∞

〈exp −𝑖 (𝜑(𝜉1) − 𝜑(𝜉2))〉 × 

exp
2𝜋𝑖

𝜆𝑧
(𝑥1𝜉1 − 𝑥2𝜉2)𝑑𝜉1𝑑𝜉2          (6) 

For the assumed Gaussian probability phase density 

distribution, the following identity holds [15, 20-22]: 

〈exp −𝑖 (𝜑(𝜉1) − 𝜑(𝜉2))〉

= exp[−〈𝜑2〉 (1 − 𝜇𝜑(𝜉1 − 𝜉2))]     (7) 

Substitution of equation (7) into equation (6) and let    

Δ𝑥 = 𝑥1 − 𝑥2 and Δ𝜉 = 𝜉1 − 𝜉2 ≥ 0 yields: 

〈𝐴(𝑥1)𝐴∗(𝑥2)〉

= (
1

𝜆𝑧
)

2

exp(−〈𝜑2〉) ∫ |𝐴0(𝜉)|2

∞

−∞

exp 𝑖 (
2𝜋

𝜆𝑧
Δ𝑥𝜉1) 𝑑 𝜉1  × 

∫ exp[〈𝜑2〉𝜇𝜑(Δ𝜉)]

∞

−∞

exp 𝑖 (
2𝜋

𝜆𝑧
𝑥2Δ𝜉) 𝑑Δ𝜉      (8) 

Equation (8) shows the effect of two separated integrands 

on the complex autocorrelation of the speckle field. The 
first integrand is the Fourier transform of the aperture 

illumination function |𝐴0(𝜉)|2. It represents the average 
size of the speckle in the observation plane. The second 

integrand is the Fourier transform of the phase correlation 

function of the scattered waves. It is related to the 

characteristics of the roughness heights variation. 

The first integrand is given by: 

𝐼1 = ∫ exp −2 (
𝜉

𝑤𝑒

)
2

exp 𝑖 (
2𝜋

𝜆𝑧
Δ𝑥𝜉)

∞

−∞

𝑑𝜉

= √
𝜋

2
𝑤𝑒 exp −

1

2
(

𝜋Δ𝑥𝑤𝑒

𝜆𝑧
)

2

                 (9) 

The second integrand is written in the form: 

𝐼2 = ∫ ∑
(𝜎𝜑

2)
𝑛

𝑛!
exp (−𝑛 (

Δ𝜉

𝐿𝑐

)
2

) exp 𝑖 (
2𝜋

𝜆𝑧
𝑥2Δ𝜉)

∞

𝑛=0

∞

0

𝑑Δ𝜉 

The limits of integration of this integrand is considered to 

be from zero up to ∞, since Δ𝜉 ≥ 0. 

It gives: 

𝐼2 =
1

2
∑

(𝜎𝜑
2)

𝑛

𝑛!
√

𝜋

𝑛
𝐿𝑐 exp − (

𝜋𝑥2𝐿𝑐

𝜆𝑧√𝑛
)

2∞

𝑛=0

                     (10) 
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The term corresponding to 𝑛 = 0 in the summation tends to 

𝜆𝑧𝛿(𝑥2) where 𝛿(𝑥2) is a delta function. Substitute for 𝐼1 

and 𝐼2 from equations (9) and (10) respectively into 
equation (8), we get: 

〈𝐴(𝑥1)𝐴∗(𝑥2)〉

= (
1

𝜆𝑧
)

2

exp(−𝜎𝜑
2) [√

𝜋

2
𝑤𝑒 exp −

1

2
(

𝜋Δ𝑥𝑤𝑒

𝜆𝑧
)

2

] × 

1

2
∑

(𝜎𝜑
2)

𝑛

𝑛!
√

𝜋

𝑛
𝐿𝑐 exp − (

𝜋𝑥2𝐿𝑐

𝜆𝑧√𝑛
)

2∞

𝑛=0

                            (11) 

From the third term of equation (1) we get: 

〈𝐴(𝑥1)𝐴(𝑥2)〉 = − (
1

𝜆𝑧
)

2

∬〈exp −𝑖(𝜑(𝜉1)

∞

−∞

+ 𝜑(𝜉2))〉 exp −2 (
𝜉

𝑤𝑒

)
2

exp 𝑖
2𝜋

𝜆𝑧
(𝑥1𝜉1

+ 𝑥2𝜉2) 𝑑𝜉1𝑑𝜉2                                      (12) 

As assumed before, 𝜑(𝜉1) and 𝜑(𝜉2) are stationary 

Gaussian random variables of zero mean value, their 
characteristic function is given by [21, 22]: 

〈exp −𝑖(𝜑(𝜉1) + 𝜑(𝜉2))〉 = 

                                 exp (−〈𝜑2〉 (1 +
〈𝜑(𝜉1)𝜑(𝜉2)〉

〈𝜑2〉
))  (13) 

Equations (12) and (13) give: 

〈𝐴(𝑥1)𝐴(𝑥2)〉

= − (
1

𝜆𝑧
)

2

∬ exp (−2 (
𝜉

𝑤𝑒

)
2

) exp {−〈𝜑2〉 (1 

∞

−∞

+ 𝜇𝜑(𝜉1 − 𝜉2))} exp 𝑖
2𝜋

𝜆𝑧
(𝑥1𝜉1 + 𝑥2𝜉2)  𝑑𝜉1𝑑𝜉2          ( 14) 

 

Let Δ𝑥 = 𝑥1 − 𝑥2and Δ𝜉 = 𝜉1 − 𝜉2 ≥ 0, we get: 

 

〈𝐴(𝑥1)𝐴(𝑥2)〉 = − (
1

𝜆𝑧
)

2

exp(−〈𝜑2〉) 

                      ∫ exp −2 (
𝜉

𝑤𝑒

)
2

exp (𝑖
2𝜋

𝜆𝑧
(𝑥1 + 𝑥2)𝜉1)

∞

−∞

𝑑𝜉1 

∫ exp {−〈𝜑2〉 exp − (
Δ𝜉

𝐿𝑐

)
2

} exp 𝑖 (
2𝜋

𝜆𝑧
𝑥2Δ𝜉)

∞

0

𝑑Δ𝜉 (15) 

〈𝐴(𝑥1)𝐴(𝑥2)〉

= − (
1

𝜆𝑧
)

2

exp(−𝜎𝜑
2) √

𝜋

2
𝑤𝑒 exp −

1

2
(

𝜋(𝑥1 + 𝑥2)𝑤𝑒

𝜆𝑧
)

2

 

 

 

                                                                                        (16) 

 

The term corresponding to 𝑛 = 0 in the summation tends to 

𝜆𝑧𝛿(𝑥2). 

Now we have to derive an expression for 〈𝐼(𝑥1)〉 =
〈𝐴(𝑥1)𝐴∗(𝑥1)〉. It represents the correlation function 

between speckle fields scattered from the arbitrary points 𝜉1 

and 𝜉2 on the scattering surface towards a single arbitrary 

point on the observation plane. Similarly is the case of 
〈𝐼(𝑥2)〉 = 〈𝐴(𝑥2)𝐴∗(𝑥2)〉. It represents self correlation 

function. 

Thus by setting Δ𝑥 = 0 in equation (11) we get: 

〈𝐼(𝑥)〉 = (
1

𝜆𝑧
)

2

exp(−𝜎𝜑
2) √

𝜋

2
𝑤𝑒

1

2
 

                                     ∑
(𝜎𝜑

2)
𝑛

𝑛!
√

𝜋

𝑛

∞

𝑛=0

𝐿𝑐 exp − (
𝜋𝑥𝐿𝑐

𝜆𝑧√𝑛
)

2

   (17) 

where 𝑥 is any arbitrary point on the observation plane. 

The average speckle field 〈𝐴(𝑥1)〉 scattered from the rough 

surface towards arbitrary point 𝑥1 on the observation plane 

is: 

〈𝐴(𝑥)〉

=
1

𝑖𝜆𝑧
∫ 〈exp −𝑖𝜑(𝜉)〉

∞

−∞

exp − (
𝜉

𝑤𝑒

)
2

exp (
2𝜋𝑖

𝜆𝑧
𝑥𝜉) 𝑑𝜉     (18) 

〈𝐴(𝑥)〉

=
1

𝑖𝜆𝑧
exp (−

𝜎𝜑
2

2
) 𝑤𝑒√𝜋 exp − (

𝜋𝑥𝑤𝑒

𝜆𝑧
)

2

                           (19) 

Substitute for |𝐴(𝑥1)𝐴∗(𝑥2)|2, |𝐴(𝑥1)𝐴(𝑥2)|2, 〈𝐼𝑠(𝑥1)〉, 
〈𝐼𝑠(𝑥2)〉, |𝐴(𝑥1)|2 and |𝐴(𝑥2)|2 from equations (11), (16), 
(17) and (19) respectively into equation (1), we get the 

required formula for the autocorrelation function 
〈𝐼𝑠(𝑥1)𝐼𝑠(𝑥2)〉 of the speckle intensity. 

It shows its dependence on the lateral correlation length 𝐿𝑐  

of the random phases acquired from the surface roughness, 
the root mean square of the roughness height expressed in 

𝜎𝜑, the phase correlation function of the rough surface and 

the spatial separation ∆𝑥 of the speckle patterns. 

Figs. (1-3) show that the speckle field correlation function 

increases as the speckle separation Δ𝑥 decreases, the root 

mean square of the random phases𝜎𝜑 increases and the 

lateral roughness correlation 𝐿𝑐  increases respectively. The 

correlation reaches a maximum value within a little range 

of small 𝜎𝜑 and then decreases with increasing 𝜎𝜑. It can be 

attributed to the phase randomization between the 

interfering speckle fields become outside the spatial 

coherence of the speckle fields. 
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Fig. 1: Autocorrelation function versus Δ𝑥 with 𝜎𝜑 as a 

parameter computed using a laser beam illumination 

(𝜆 = 6328 𝐴𝑜), 𝑥 = 1 × 10−4 𝑚, 𝑤𝑒 = 0.02 𝑚,𝑧 = 0.5 𝑚 

and 𝐿𝑐 = 100 × 10−6𝑚. 

 

 

Fig. 2: Autocorrelation function versu𝜎𝜑 with Δ𝑥 as a 

parameter computed using a laser beam illumination 

(𝜆 = 6328 𝐴𝑜), 𝑥 = 1 × 10−4 𝑚, 𝑤𝑒 = 0.02 𝑚,𝑧 = 0.5 𝑚 

and 𝐿𝑐 = 100 × 10−6𝑚. 

 

Fig. 3: Autocorrelation function versus 𝐿𝑐  with Δ𝑥 as a 

parameter computed using a laser beam illumination 

(𝜆 = 6328 𝐴𝑜), 𝑥 = 1 × 10−4 𝑚, 𝑤𝑒 = 0.02 𝑚,𝑧 = 0.5 𝑚 

and 𝜎𝜑 = 1. 

3 Experimental Validations 

 
Speckle pattern is an interference of scattered waves 

acquired random phases from the rough surface. Its 

autocorrelation function arises through the autocorrelation 

of the interfering scattered waves. From an Interferometric 

point of view, the autocorrelation function is known as the 
mutual coherence function of the interfering waves. It is 

related directly to the visibility of the produced interference 

fringes [22, 23]. Therefore the autocorrelation function of 

the speckle pattern is studied here experimentally through 

the visibility of interference fringes produced from mixing 

two sets of separated speckle patterns. It is measured as a 

function of the lateral separation of the speckle patterns Δ𝑥. 

The behaviour of the speckle correlation with the average 

surface roughness heights 〈ℎ𝑟〉 could not be experimentally 
investigated. It requires various rough surfaces of different 

values of 〈ℎ𝑟〉 but of the same statistical conditions, 

probability density distributions of roughness heights and 

the phase correlation function. These required conditions 

are not available. 

Fig. 4 shows the speckle pattern using He-Ne laser 

𝜆 = 6328 𝐴𝑜 for rough surface of average roughness 

heights 〈ℎ𝑟〉 = 3.5 𝜇𝑚. 

 

Fig. 4: The recorded speckle pattern for a rough surface of 

average heights 〈ℎ𝑟〉 = 3.5 𝜇𝑚 using He-Ne laser         

(𝜆 = 6328 𝐴𝑜). 

Figure 5 (a-b) show the interference fringes of two 

separated speckle patterns Δ𝑥 = 100 𝜇𝑚 and Δ𝑥 =
200 𝜇𝑚 respectively and 〈ℎ𝑟〉 = 3.5 𝜇𝑚. 

 
(a) 
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(b) 

Fig. 5: The interference fringes of two speckle patterns 

obtained for a rough surface of average heights 〈ℎ𝑟〉 =
3.5 𝜇𝑚 separated by (a) Δ𝑥 = 100 𝜇𝑚 and (b)             

Δ𝑥 = 200 𝜇𝑚 using He-Ne laser (𝜆 = 6328 𝐴𝑜). 

Figure 6 shows the speckle pattern using He-Ne laser   

(𝜆 = 6328 𝐴𝑜) for rough surface of average roughness 

heights 〈ℎ𝑟〉 = 6.5 𝜇𝑚. 

 

Fig. 6: The recorded speckle pattern for a rough surface of 

average heights 〈ℎ𝑟〉 = 6.5 𝜇𝑚 using He-Ne laser         

(𝜆 = 6328 𝐴𝑜). 

 
Figure 7 (a-b) show the interference fringes of two 

separated speckle patterns Δ𝑥 = 100 𝜇𝑚 and Δ𝑥 =
200 𝜇𝑚 respectively and 〈ℎ𝑟〉 = 6.5 𝜇𝑚. 

 

 

 

 
(a) 

 
(b) 

Fig. 7: The interference fringes of two speckle patterns 

obtained for a rough surface of average heights 〈ℎ𝑟〉 =
6.5 𝜇𝑚 separated by (a) Δ𝑥 = 100 𝜇𝑚 and (b)             

Δ𝑥 = 200 𝜇𝑚 using He-Ne laser (𝜆 = 6328 𝐴𝑜). 

 
Figure 8 shows that the visibility of the interference fringes, 

in turn the speckle correlation, decreases with increasing 

the separated distance ∆𝑥 between the speckle patterns. 

 
Fig. 8: Fringes visibility versus lateral displacement 

obtained for a rough surface of average heights〈ℎ𝑟〉 =
3.5 𝜇𝑚 using He-Ne laser (𝜆 = 6328 𝐴𝑜) 

100 100 150 200 250 300
0.1

0.2

0.3

Displacement (x) / m
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