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Abstract: An analytical formula for the speckle contrast is derived. It represents the dependence of the speckle contrast on 

the random amplitudes and phases of the interfering scattered waves. It shows also the effect of the number of the scattered 

waves on the speckle contrast. The normalized speckle contrast considering the randomization of both scattered field 

amplitudes and phases is slightly different from that of random phases only in the range of low root mean square of phases 

where the speckle pattern is partially developed. 
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1 Introduction  

 

The basic parameters defining the intensity of the speckle 

pattern are the point spread function of the imaging system 
forming it and the randomization of both the phases and the 

scattered field amplitudes of the interfering waves. The 

random phases carry information about the microscopic 

structure of the scattering medium. The random amplitudes 

give information about the random spatial intensity 

distribution of the transmitted or reflected waves by the 

scattering medium. Moser et al [1] derived an expression 

for amplitude probability density distribution for synthetic 

aperture radar (SAR) data, to deal with denoising and 

classification purposes. In medical applications, 

Motaghiannezam et al [2] formulated a theory to show that 

the statistics of optical coherence tomography (OCT) signal 
amplitude and intensity are highly dependent on the sample 

reflectivity and other parameters to differentiate between 

regions of motion from static areas. In industrial 

applications, Feced et al [3] studied the influence of random 

phase and amplitude fabrication errors on the performance 

of optical filters based on fiber Bragg gratings.  The 

random phases are the most dominant parameter which 

define the statistical characteristics of the speckle pattern. 

This is due to the high sensitivity of the phases to the 

interfering waves. Therefore, most researchers investigated 

the statistical characteristic of the speckle contrast and the 

speckle correlation considering the effect of the random 

phases that gained by the scattered waves, so for instance 

has Mansour et al [4] derived an analytical formula for the 

speckle contrast as a function of the root mean square of the 

rough surface, the number of the scattering grains and the 

spectral profile of the illuminating light considering two 

different phase probability density distributions of the 

roughness. Xiang [5] developed an expression for the 

mutual coherence function (MCF) of reflected Gaussian 

beam. Expression for the mean intensity and the average 

speckle size based on (MCF) was derived. Tchvialeva et al 
[6] formulated the speckle contrast as a function of surface 

roughness, spectral profile and geometry of speckle 

formation. A calibration speckle contrast curve for blue and 

red lasers was introduced. Moustafa et al [7] studied 

theoretically the parameter affecting the visibility of the 

speckle patterns. Periodic rough surface is considered. 

Pederson [8] derived a formula for the speckle contrast as a 

function of root mean square of the roughness. The 

theoretical result was compared with the available 

experimental results. Ohtsubo et al [9] studied theoretically 

and experimentally the properties of speckle patterns at the 
image plane resulting from coherent light incident on rough 

surface.  

The present study shows the effect of the randomization of 

both of the scattered amplitudes and phases on the contrast 

of speckle photography. 

http://dx.doi.org/10.18576/ijnhp/070103
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2 Theories 
 

Consider a quasi-monochromatic plane wave incident on a 

reflecting rough surface at angle 𝜃  to obtain speckle 

pattern at the observation plane, Fig.(1),. The rough surface 

is considered to be consisting of 𝑁 numbers of scatterers 

(grains). Let the backscattered complex amplitude from the 

jth scatterer at the specular direction 𝜃 to be 𝑎𝑗𝑒
𝑖𝜑𝑗. 𝑎𝑗  and 

𝜑𝑗  are its real amplitude and phase, respectively. Both of 

the amplitudes and phases of the backscattered waves are 

independent random variables. 

 

Fig. 1:  The Considered configuration for obtaining the 

speckle pattern. 

 

The intensity 𝐼𝑚(𝑎, 𝜑) of the speckle pattern due to the 

interference of number 𝑁 of strictly monochromatic 
scattered waves is given by 

𝐼𝑚(𝑎, 𝜑) = ∑ ∑ 𝑎𝑖𝑎𝑗𝑐𝑜𝑠(𝜑𝑖 − 𝜑𝑗)
𝑁
𝑗=1

𝑁
𝑖=1                  (1)

     

where (𝜑𝑖 − 𝜑𝑗) is the random phase delay between the 

scattered waves, given by 

𝜑𝑖 − 𝜑𝑗 =
2𝜋

𝜆
∆𝜂𝑖𝑗,           (2) 

     

and  ∆𝜂𝑖𝑗 is the optical path delay between the 𝑖𝑡ℎ and 

𝑗𝑡ℎscattered waves. 
For quasi-monochromatic wave of Gaussian spectral 

distribution 𝑔(𝜈, 𝜈0) = 𝐴𝐺 exp[−𝑎𝐺(𝜈 − 𝜈𝑜)
2], 𝐴𝐺 =

2Δ𝜈√ln 2/𝜋, 𝑎𝐺 = ln 2. (2/Δ𝜈)
2, Δ𝜐 is the spectral width 

of the illuminating light and 𝜈0  is its central frequency, the 

speckle intensity 𝐼𝑞(𝑎, 𝜑) will be given by the incoherent 

sum of its spectral distribution [8] . 

𝐼𝑞(𝑎,𝜑) = ∫ 𝐼𝑚(𝑎,𝜑)
∞

−∞

 𝑔(𝜈, 𝜈0) 𝑑𝜈 

It gives: 

𝐼𝑞(𝑎,𝜑) = ∑ ∑ 𝑎𝑖𝑎𝑗  𝛾𝑖𝑗 cos (
2𝜋𝜈0

𝑐
∆𝜂𝑖𝑗)

𝑁
𝑗=1

𝑁
𝑖=1  

                                            (3) 

With 

𝛾𝑖𝑗 = exp (−(
𝜋

𝑐
∆𝜂𝑖𝑗)

2 1

𝛼
) 

𝛼 = (
2

Δ𝜐
)
2

ln (2) 

Δ𝜂𝑖𝑗 = 2(ℎ𝑖 − ℎ𝑗) cos𝜃 

 

Where 𝛾𝑖𝑗 is the mutual degree of temporal coherence 

between the interfering beams [4] where 𝛾𝑖𝑗 = 1 for 𝑖 = 𝑗 

and 𝛾𝑖𝑗 = 𝛾 for 𝑖 ≠ 𝑗 which depends on the type of the 

beam’s spectral broadening.  

c is the wave velocity, 

𝜃 is the specular direction. 

In Eq.(3), (𝛾𝑖𝑗) is slowly varying than the cosine term so 

∆𝜂𝑖𝑗 is replaced by ∆𝜂 = √〈∆𝜂𝑖𝑗
2〉 where 〈… 〉 represents 

the ensemble average. 

Both of the amplitudes and phases of the scattered waves 

are governed by two independent probability density 

distributions 𝑃(𝑎) and 𝑃(𝜑) respectively. 

In this case, the average speckle intensity 〈𝐼𝑞(𝑎,𝜑)〉 will be 

given by: 

〈𝐼𝑞(𝑎,𝜑)〉 = ∑ ∑ 𝛾𝑖𝑗  〈𝑎𝑖𝑎𝑗〉 〈cos(𝜑𝑖 − 𝜑𝑗)〉
𝑁
𝑗=1

𝑁
𝑖=1  

   (4) 

Here the random phase delay, (𝜑𝑖 − 𝜑𝑗), between the 

scattered waves is given by: 

For the independent random variable of the amplitudes we 

have: 

〈𝑎𝑖𝑎𝑗〉 = {
〈𝑎𝑖〉〈𝑎𝑗〉       𝑓𝑜𝑟    𝑎𝑖 ≠ 𝑎𝑗
〈𝑎2〉        𝑓𝑜𝑟    𝑎𝑖 = 𝑎𝑗

  

                                   (5) 

With 〈𝑎𝜄〉 = ∫𝑎𝜄 𝑃(𝑎)𝑑𝑎                      𝜄 = 1, 2, 3,…  
                                                 (6) 

Similarly for the independent random variable 𝜑 of the 
phase we have: 
〈cos𝜑𝑖  cos𝜑𝑗〉 = 〈cos𝜑𝑖〉〈 cos𝜑𝑗  〉 =

{
〈cos𝜑〉2       𝑓𝑜𝑟 𝜑𝑖 ≠ 𝜑𝑗
〈cos2𝜑〉        𝑓𝑜𝑟 𝜑𝑖 = 𝜑𝑗

                    (7) 

〈sin𝜑𝑖  sin𝜑𝑗〉 = 〈sin𝜑𝑖〉〈 sin𝜑𝑗  〉 =

{
〈sin𝜑〉2       𝑓𝑜𝑟 𝜑𝑖 ≠ 𝜑𝑗
〈sin2𝜑 〉        𝑓𝑜𝑟 𝜑𝑖 = 𝜑𝑗

                    (8) 

With 

{
 
 

 
 〈cos𝜑〉 = ∫cos𝜑 𝑃(𝜑)𝑑𝜑 = 𝑥

〈sin𝜑〉 = ∫sin𝜑 𝑃(𝜑)𝑑𝜑 = 𝑦

〈cos2𝜑〉 = ∫ cos2𝜑𝑃(𝜑)𝑑𝜑 = 𝑥2  

〈sin 2𝜑〉 = ∫ sin2𝜑𝑃(𝜑)𝑑𝜑 = 𝑦2

  

                                                  (9) 
The pervious integrations have to be carried out under 

limits of integrations which define the validation ranges of 

the random variables 𝑎 and 𝜑 over which 𝑃(𝑎) and 𝑃(𝜑) 
are normalized. 

Taking into consideration the pervious conditions, the 
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averages 〈𝐼𝑞(𝑎, 𝜑)〉  according to Eq.(4) is obtained for all 

possible combinations of the mutual interference between 

the scattered radiations (𝑖 = 𝑗  and 𝑖 ≠ 𝑗 )  
〈𝐼𝑞(𝑎,𝜑)〉 = 𝑁〈𝑎

2〉 + 𝑁(𝑁 − 1)〈𝑎〉2𝛾(𝑥2 + 𝑦2) 

             (10) 

𝐼𝑞
2(𝑎,𝜑) can be written by the following formula 

𝐼𝑞
2(𝑎,𝜑) = ∑ ∑ ∑ ∑ 𝑎𝑖𝑎𝑗𝛾𝑖𝑗  cos(𝜑𝑖 −

𝑁
𝑛=1

𝑁
𝑚=1

𝑁
𝑗=1

𝑁
𝑖=1

 𝜑𝑗) 𝑎𝑚𝑎𝑛𝛾𝑚𝑛  cos(𝜑𝑚 −𝜑𝑛)    (11) 

where 

𝛾𝑖𝑗 = {
1       𝑓𝑜𝑟       𝑖 = 𝑗
𝛾        𝑓𝑜𝑟      𝑖 ≠ 𝑗

 

𝛾𝑚𝑛 = {
1       𝑓𝑜𝑟       𝑚 = 𝑛
𝛾        𝑓𝑜𝑟      𝑚 ≠ 𝑛

 

To calculate 〈𝐼𝑞
2(𝑎,𝜑)〉 we have to consider the following 

all possible cases of combinations between the random 

phases and the real random amplitudes of the waves’ 

complex amplitudes. It is represented in Eq. (11) by the two 

pairs of sets (𝑖, 𝑗) and (𝑚, 𝑛). 
Case I: 𝑖 = 𝑗 = 𝑚 = 𝑛 

〈𝐼𝑞
2(𝑎,𝜑)〉 = 𝑁〈𝑎4〉     

   (12) 

Case II: consists from the following subcases: 

(1) (𝑖 = 𝑗 = 𝑚) ≠ 𝑛 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎3〉〈𝑎〉 𝛾 (𝑥2 + 𝑦2) 

(2) (𝑖 = 𝑗 = 𝑛) ≠ 𝑚 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎3〉〈𝑎〉 𝛾 (𝑥2 + 𝑦2) 

(3) (𝑖 = 𝑚 = 𝑛) ≠ 𝑗 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎3〉〈𝑎〉 𝛾 (𝑥2 + 𝑦2) 

(4)( 𝑗 = 𝑚 = 𝑛) ≠ 𝑖 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎3〉〈𝑎〉 𝛾 (𝑥2 + 𝑦2) 

The total result of case II is: 

〈𝐼𝑞
2(𝑎,𝜑)〉 = 4𝑁(𝑁 − 1)〈𝑎3〉〈𝑎〉 𝛾 (𝑥2 + 𝑦2) 

  (13) 

Case III: consists from the following subcases: 

(1) (𝑖 = 𝑚) ≠ (𝑗 = 𝑛) gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎2〉2 𝛾2  [

1

2
(1 + 𝑥2

2 + 𝑦2
2)] 

(2) (𝑖 = 𝑛) ≠ (𝑚 = 𝑗) gives similar to the pervious 

subcase: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎2〉2 𝛾2  [

1

2
(1 + 𝑥2

2 + 𝑦2
2)] 

(3) (𝑖 = 𝑗) ≠ (𝑚 = 𝑛) gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎2〉2 

The result of case III is: 

〈𝐼𝑞
2(𝑎,𝜑)〉 = 𝑁(𝑁 − 1)〈𝑎2〉2  [1 + 𝛾2(1 + 𝑥2

2 + 𝑦2
2)] 

  (14) 

Case IV: consists from the following subcases: 

(1) 𝑖 ≠ 𝑗 ≠ 𝑚 = 𝑛 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)(𝑁 − 2)〈𝑎〉2〈𝑎2〉 𝛾 (𝑥2 + 𝑦2) 

(2) 𝑚 ≠ 𝑛 ≠ 𝑖 = 𝑗 gives similar to the pervious case: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 = 𝑁(𝑁 − 1)(𝑁 − 2)〈𝑎〉2〈𝑎2〉 𝛾 (𝑥2 + 𝑦2) 

(3) 𝑖 ≠ 𝑚 ≠ 𝑛 = 𝑗 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 =

1

2
𝑁(𝑁 − 1)(𝑁

− 2)〈𝑎〉2〈𝑎2〉 𝛾2 [𝑥2 + 𝑦2 + 𝑥2(𝑥
2 − 𝑦2)

+ 2𝑥𝑦𝑦2] 
(4) 𝑚 ≠ 𝑗 ≠ 𝑛 = 𝑖 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 =

1

2
𝑁(𝑁 − 1)(𝑁

− 2)〈𝑎〉2〈𝑎2〉 𝛾2 [𝑥2 + 𝑦2 + 𝑥2(𝑥
2 − 𝑦2)

+ 2𝑥𝑦𝑦2] 
(5) 𝑗 ≠ 𝑛 ≠ 𝑖 = 𝑚 gives: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 =

1

2
𝑁(𝑁 − 1)(𝑁

− 2)〈𝑎〉2〈𝑎2〉 𝛾2 [𝑥2 + 𝑦2 + 𝑥2(𝑥
2 − 𝑦2)

+ 2𝑥𝑦𝑦2] 
(6) 𝑖 ≠ 𝑛 ≠ 𝑗 = 𝑚 gives also: 

〈𝐼𝑞
2(𝑎, 𝜑)〉 =

1

2
𝑁(𝑁 − 1)(𝑁

− 2)〈𝑎〉2〈𝑎2〉 𝛾2 [𝑥2 + 𝑦2 + 𝑥2(𝑥
2 − 𝑦2)

+ 2𝑥𝑦𝑦2] 
The total result of case IV is: 

〈𝐼𝑞
2(𝑎,𝜑)〉 = 2𝑁(𝑁 − 1) 

(𝑁 − 2)〈𝑎〉2〈𝑎2〉  {𝛾(𝑥2 + 𝑦2) + 𝛾2 [𝑥2 + 𝑦2 +
𝑥2(𝑥

2 − 𝑦2) + 2𝑥𝑦𝑦2]}                                 (15) 

Case V: 𝑖 ≠ 𝑗 ≠ 𝑚 ≠ 𝑛 gives: 

〈𝐼𝑞
2(𝑎,𝜑)〉 = 𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)〈𝑎〉4 𝛾2 (𝑥2 +

𝑦2)2                                                             (16) 

The final result of 〈𝐼𝑞
2(𝑎,𝜑)〉 is given by adding all 

〈𝐼𝑞
2(𝑎,𝜑)〉 given by the previous five cases of the possible 

combinations between the random amplitudes and phases, 

Eqs. (12-16). 

Thus we can write he following formula for the net 

〈𝐼𝑞
2(𝑎,𝜑)〉: 

〈𝐼𝑞
2(𝑎,𝜑)〉 = 𝑁〈𝑎4〉 + 4𝑁(𝑁 − 1)〈𝑎3〉〈𝑎〉 𝛾 (𝑥2 + 𝑦2) +

𝑁(𝑁 − 1)〈𝑎2〉2 [1 + 𝛾2(1 + 𝑥2
2 + 𝑦2

2)] + +2𝑁(𝑁 −
1)(𝑁 − 2)〈𝑎〉2 〈𝑎2〉[𝛾(𝑥2 + 𝑦2) + 𝛾2 [𝑥2 + 𝑦2 +

𝑥2(𝑥
2 − 𝑦2) +        2𝑥𝑦𝑦2]] + 𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 −

3)〈𝑎〉4 𝛾2(𝑥2 + 𝑦2)2                    (17) 

The normalized average speckle contrast 𝐶 is defined by 
the ratio of the standard deviation of the speckle intensity to 

the average speckle intensity and given by [9], 

𝐶 =
[〈𝐼𝑞

2(𝑎,𝜑)〉−〈𝐼𝑞(𝑎,𝜑)〉
2]
1/2

〈𝐼𝑞(𝑎,𝜑)〉
            (18)

     

Substituting for 〈𝐼𝑞(𝑎,𝜑)〉 and 〈𝐼𝑞
2(𝑎, 𝜑)〉 from Eqs. (10) 

and (17) into Eq.(18) we get the following formula for the 

average speckle contrast: 

𝐶 = 𝐷 𝑁〈𝑎2〉 + 𝑁(𝑁 − 1)〈𝑎〉2𝛾(𝑥2 + 𝑦2)⁄    

  (19) 

Where 

𝐷 = {𝑁(〈𝑎4〉 − 〈𝑎2〉2) + 𝑁(𝑁 − 1)[〈𝑎2〉2(1 + 𝑥2
2 + 𝑦2

2) +

2 (𝑁 − 2) 〈𝑎2〉 〈𝑎〉2 (𝑥2  +  𝑦2 +   𝑥2 (𝑥
2 − 𝑦2) +

2 𝑥 𝑦𝑦 2) − (4𝑁 − 6)〈𝑎〉
4(𝑥2 + 𝑦2)2]𝛾2 + 4(〈𝑎3〉〈𝑎〉 −

〈𝑎2〉〈𝑎〉2)(𝑥2 + 𝑦2)𝛾}1/2        (20) 

To accomplish Eq. (6), the probability density distribution 

𝑃(𝑎) of the random amplitudes should be specified. 

http://www.naturalspublishing.com/Journals.asp
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Different types of distributions are considered namely 

uniform, Simpson, and Rayleigh probability distribution.    

For uniform amplitude probability density distribution

  

𝑃(𝑎) =
1

𝐴
                    0 < 𝐴 < 1   A is constant

  (21) 

〈𝑎ℓ〉 =
1

(ℓ+1)
 𝐴ℓ      

 (22) 

Where ℓ = 1,2,3,4. 

The Simpson amplitude probability density distribution is 

given by 

𝑃(𝑎) = {

𝑎

𝑏2
                    0 < 𝑎 < 𝑏          

 𝑏 = 0.5
2𝑏−𝑎

𝑏2
               𝑏 < 𝑎 < 2𝑏        

    

  (23) 

〈𝑎ℓ〉 = {
〈𝑎ℓ〉 =

2(ℓ+2)−2

(ℓ+1)(ℓ+2)
  𝑏ℓ                          𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 ℓ

〈𝑎ℓ〉 =
ℓ

(ℓ−1)!
𝑏ℓ                                      𝑓𝑜𝑟 𝑜𝑑𝑑 ℓ

  (24) 

Similarly for the normalized Rayleigh amplitude 

probability density distribution 

𝑃(𝑎) =
𝑎

𝐾𝜎2
exp (−

𝑎2

2𝜎2
)                     0 < 𝑎 < 1  

   (25) 

Where 𝐾 = [1 − 𝑒−1/2𝜎
2
] is the normalization factor, then 

the first, second, third and fourth moment of Rayleigh 
distribution can be written as 

〈𝑎ℓ〉 =

{
𝐾[2ℓ−1𝜎ℓ − (1 + ℓ𝜎2 + 2ℓ𝜎ℓ  𝑈(ℓ − 3)) 𝑒−1/2𝜎

2
]                              𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 ℓ

𝐾 [ℓ√
𝜋

2
 𝜎ℓ 𝑒𝑟𝑓(√1/2𝜎2) − (1 + 3𝜎2)(ℓ−1)/2 𝑒−1/2𝜎

2
]                         𝑓𝑜𝑟 𝑜𝑑𝑑 ℓ

 

      

    (26) 

Where 𝑈(𝑥) and 𝑒𝑟𝑓(𝑥) are the Heavyside function and the 

error function at the point 𝑥. 

It is remarkable that; if the randomization of the reflected 

amplitudes is not considered, thus 〈𝑎ℓ〉 in Eq.(19) will be 

constant and one gets  the developed equation of the 

speckle contrast given in [10]. 

3 Results and Discussion 

 Throughout the calculations, the random phase probability 

distribution for the rough surface 𝑃(𝜑)is chosen to be 

Gaussian with zero mean value  

𝑃(𝜑) =
1

2𝜎𝜑√𝜋
𝑒
−
𝜑2

2𝜎𝜑
2

 

where 𝜎𝜑 = [〈𝜑
2〉]

1

2 represents the root mean square of 

phase deviation. Under this assumption, the normalized 

speckle contrast is calculated using Eq.(19) by considering 

Eq.(9) for the values of 𝑥 , 𝑦, 𝑥2 and 𝑦2. The values of the 

average amplitudes 〈𝑎𝜄〉 are considered from Eq. (22), (24) 

and (26)) for uniform, Simpson and Rayleigh probability 

distributions. The calculations are carried out for 

monochromatic light where  𝛾 = 1. 

Figure 2 (a-c) represents the dependence of the average 

speckle intensity on the average scattered field amplitude 

computed for 𝜎𝜑 = 1, 2, 5 respectively. In each figure the 

computation is performed for the considered random field 

amplitude distributions (uniform Simpson and Rayleigh). 

 

(a) 

 

(b) 

 

(c) 

Fig. 2: The normalized average speckle intensity versus the 

average random scattered field amplitude for uniform, 

Simpson and Rayleigh probability distribution computed 

for 𝑁 = 100.  (a)  𝜎𝜑 = 1 , (b) 𝜎𝜑 = 2 and (c) 𝜎𝜑 = 5. 

Figure 3(a-c) represents the average squared intensity 

versus the average random field amplitude computed for 

𝜎𝜑 = 1, 2, 5 respectively. In each figure the computation is 

performed for the considered random field amplitude 

distributions. 
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(a) 

 

(b) 

 

(c) 

Fig. 3: The normalized average of the squared speckle 

intensity versus the average random scattered field 

amplitude for uniform, Simpson and Rayleigh probability 

distribution calculated for 𝑁 = 100. (a) 𝜎𝜑 = 1, (b) 𝜎𝜑 = 2 

and (c) 𝜎𝜑 = 5. 

The figures show that, the effect of the considered random 

scattered field amplitude distributions is remarkable. 〈𝐼〉 
and  〈𝐼2〉 decrease with increasing 𝜎𝜑. They increase with 

increasing 〈𝑎〉 due to the increase of the reflected scattered 

field amplitude from the rough surface. 

Figure 4(a-c) represents the normalized speckle contrast 

versus 𝜎𝜑 for𝑁 = 10, 100 and 1000. Each figure is 

computed for the considered probability density 

distributions of the random scattered field amplitude. As a 

comparison the normalized speckle contrast considering 

that the scattered waves are of the same value of amplitude 

(only the random phases is considered) is represented. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4: The average normalized speckle contrast versus the 

root mean square of phase deviation considering 

randomization of phases only (solid line) and 

randomization of both phases and amplitudes (dash lines). 

(a) 𝑁 = 10, (b) 𝑁 = 100 and (c) 𝑁 = 1000. 

The comparison show that, the random phases of the 

scattered waves acquired from the roughness and their 
probability distribution are the basic factors which affect 

the behavior of the normalized speckle contrast. The 

scattered random amplitudes of the waves affect the speckle 

contrast in the range of slightly low roughness where the 

speckle pattern is partially developed. As the roughness 

increases, the acquired random phases of the scattered 

waves dominate the behavior of the speckle contrast. The 

mean speckle intensity and its variance increases markedly 

with increasing the mean value of the contributing random 

amplitudes of the scattered waves. 

 

 
 

http://www.naturalspublishing.com/Journals.asp


    24                                                                                                                 A. M. Abd-Rabou.: Speckle Contrast of Scattered … 

 

 

© 2020NSP 
Natural Sciences Publishing Cor. 
 

4 Conclusions 

The effect of the random scattered field amplitude on the 

contrast is only considerable for small and moderate 
roughness (partially developed speckle pattern). 
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