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Abstract:A numerical method for solving partial differential equation is presented. The proposed method is based on 

Legendre wavelet in which Legendre polynomial is used. First we use the 2-point Euler backward differentiation formula, 

and then we use collocation points that convert the differential equation into a system of algebraic equations. Two 

examples are included to show the efficiency and accuracy of the present technique. 
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1 Introduction  

Mathematical modeling of real-life problems usually 

founds in several equations, e.g. integral and integro-

differential equation, partial differential equations, 

stochastic equations and others. More mathematical 

formulations of physical problem contain partial differential 

equations. These equations arise in biological models, fluid 

dynamics, and chemical kinetics [1-2]. Partial differential 

equations (PDEs) are classified according to linearity of 

differential operator, highest derivative, degree of highest 

derivative, type of coefficients, and the values of these 

coefficients.  

We consider the problem of numerically computing an 

approximation to 𝑢(𝑥, 𝑡), the solution of the one 

dimensional partial differential equation (PDE) 

𝑢𝑡(𝑥, 𝑦) − 𝑢𝑥𝑥(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝑢), ,in   IQ   

(1.1) 

associated with the boundary conditions 

𝑢(𝑎, 𝑡) = 𝑔1(𝑡),       𝑢(𝑏, 𝑡) = 𝑔2(𝑡)   𝑜𝑛  I  

(1.2) 

and the initial condition 

,)(),0( 0 =   x,         xutu                                            (1.3) 

WhereIdenote a finite time interval ),,0( T ;0T  and   is 

a bounded domain ],[ ba , time-independent coefficients 

and𝑔1, 𝑔2 are continuous functions in their variables. 

Equations which contain partial have been numerically 

solved by using a variety of techniques. In [3, 4], in fact, a 

hybrid algorithm, based on Monte Carlo and classical 

domain decomposition methods, has been proposed for 

solving linear partial differential equation. All the three 

main types of equations: elliptic, parabolic and hyperbolic 

equations are covered by the finite element method [5]. 

Some meshless schemes to solve partial differential 

equations Galerkin method [6], the finite point method [7], 

the partition of unity method [8], the reproducing kernel 

particle method [9], local Petrov-Galerkin method [10], the 

finite difference method [11], and radial basis functions 

used in [12]. 

The organization of the rest of the paper is as follows. In 

section 2, we describe the basic formulation of wavelets 

and Legendre wavelets required for our subsequent 

development. Section 3 is devoted to the solution of PDE 

using Legendre wavelets. In Section 4, by including 
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numerical examples, we report our numerical finding and 

demonstrate the accuracy of the proposed scheme. 

Conclusion is shown in Section 5. 

2 Legendre Polynomials 
 

2.1 Properties of Legendre polynomial 

Wavelets are very successfully used in signal analysis for 

waveform representations and segmentations, time-

frequency analysis and fast algorithms for easy 

implementation [13-19]. Wavelets constitute a family of 

signal functions constructed from dilation and translation of 

a signal function called the mother wavelet. The following 

family of continuous wavelets is found when the dilation 

parameter 𝑎 and the translation parameter 𝑏 vary 

continuously [20-22]. 

(𝑡) = |𝑎|−
1

2𝜑 (
𝑡−𝑏

𝑎
) ,              𝑎, 𝑏 ∈ 𝑅,    𝑎 ≠ 0.        (2.1) 

If we restrict the parameters 𝑎 and 𝑏 to discrete values as 

𝑎 = 𝑎0
−𝑘, 𝑏 = 𝑛𝑏0𝑎0

−𝑘, 𝑎0 > 1, 𝑏0 > 0 and 𝑛, 𝑘 are positive 

integers, we have the following family of discrete wavelets: 

𝜑𝑘,𝑛 (𝑡) = |𝑎0|−
𝑘

2𝜑(𝑎0
𝑘𝑥 − 𝑛𝑏0),                          (2.2) 

where𝜑𝑘,𝑛(𝑥) forms a wavelet basis for 𝐿2(𝑅). In 

particular, when 𝑎0 = 2 and 𝑏0 = 1, then 𝜑𝑘,𝑛(𝑥) form an 

orthonormal basis [20-24]. Legendre wavelets 𝜑𝑛𝑚(𝑡) =
𝜑(𝑘, 𝑛, 𝑚, 𝑡) have four arguments; translation argument 

𝑛 = 1,2,3, … , 2𝑘−1,dilation argument 𝑘 can assume any 

positive integer, 𝑚 is the order for Legendre polynomials 

[23-24]. They are defined on the interval [0, 1) as 

φn,m(𝑥) {
√𝑚 +

1

2
2

𝑘

2𝐿𝑚(2𝑘𝑥 − 2𝑛 + 1),
𝑛−1

2𝑘−1 ≤ 𝑥 ≤
𝑛

2𝑘−1

0,                                                    otherwise

          

(2.3) 

where 𝑛 = 1,2,3, … , 2𝑘−1. 𝑚 = 0,1,2, … , 𝑀 − 1,the 

coefficient √𝑚 +
1

2
 is for orthonormality, and 𝑘, 𝑀 are 

positive integers. 𝐿𝑚(𝑥)are the Legendre polynomials of 

order 𝑚 which are defined on the interval [−1, 1] and is 

given by the following recurrence relations 

     𝐿0(𝑥) = 1                                        (2.4) 

   𝐿1(𝑥) = 𝑥                                        (2.5) 

𝐿𝑚+1(𝑥) = (
2𝑚+1

𝑚+1
)  𝑥 𝐿𝑚(𝑥) − (

𝑚

𝑚+1
) 𝐿𝑚(𝑥), 𝑚 =

1,2,3, …                                                                 (2.6) 

The set of Legendre wavelets are an orthonormal set [23-

28]. 

2.2 Function Approximation 

A function 𝑢(𝑡) defined over [0, 1) can be expanded as  

𝑢(𝑡) = ∑ ∑ 𝑐𝑛𝑚𝜑𝑛𝑚(𝑡),∞
𝑚=0

∞
𝑛=1                     (2.7) 

where  

𝑐𝑛𝑚 = 〈𝑢(𝑡), 𝜑𝑛𝑚(𝑡)〉,                              (2.8) 

in which 〈∙,∙〉 denotes the inner product. Equation (2.7) can 

be written as 

𝑢(𝑡) ≅ ∑ ∑ 𝑐𝑛𝑚𝜑𝑛𝑚(𝑡)𝑀−1
𝑚=0

2𝑘−1

𝑛=1 = 𝐶𝑇∅(𝑡)                   (2.9) 

where 𝐶 and ∅ are 2𝑘−1𝑀 × 1 matrices given by 

𝐶 = [𝑐10 , 𝑐11, … , 𝑐1𝑀−1, 𝑐20, … , 𝑐2𝑀−1, … , 𝑐2𝑘−10, … , 𝑐2𝑘−1𝑀−1]
𝑇

 

(2.10) 

∅ = [𝜑10, 𝜑11, … , 𝜑1𝑀−1, 𝜑20, … , 𝜑2𝑀−1, … , 𝜑2𝑘−10, … , 𝜑2𝑘−1𝑀−1]
𝑇
 

(2.11) 

3 Solution of Partial Differential Equation 
 

 

In this section Legendre wavelet collocation method is used 

to obtain a numerical solution to the second order partial 

differential equation (1.1)with the boundary conditions 

(1.2)and the initial condition (1.3). To construct a 

numerical solution, we first consider the nodal points 𝑡𝑖, 
defined in [0, 𝑇], where 

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑖 < ⋯ < 𝑇,      𝑡𝑖+1 − 𝑡𝑖 = 𝜏, 𝜏 =
𝑇

𝑙⁄ ,                                                                                  (3.1) 

𝑡𝑖 = 𝑖𝜏,    for    𝑖 = 1,2, … , 𝑙.  

The initial condition in equation (1.3) is approximated as 

follows: 

𝑢(𝑥, 0) = 𝑢0 = 𝑢(𝑥, 𝑡0),         ∀𝑥 ∈ Ω
                            (3.2)

 

Next, the 2-point Euler backward differentiation formula is 

manipulated to approximate ),,( txut  given in equation 

(1.1), at the time-level it  for 𝑖 = 1,2, … , 𝑙. Therefore, we 

have 

𝑢𝑖(𝑥)−𝑢𝑖−1(𝑥)

𝜏
− (𝑢′′)𝑖(𝑥) = 𝑓𝑖(𝑥), 𝑖 = 1,2, … , 𝑙             (3.3) 

Where𝑓𝑖(𝑥) = 𝑓(𝑥, 𝑡𝑖)and𝑢𝑖(𝑥) = 𝑢(𝑥, 𝑡𝑖).Equivalently, 

we can rewrite equation (3.3) as 

𝑢𝑖(𝑥) − 𝜏(𝑢′′)𝑖(𝑥) = 𝐹𝑖(𝑥), 𝑖 = 1,2, … , 𝑙                     (3.4) 

where 
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𝐹𝑖(𝑥) = 𝜏𝑓𝑖(𝑥) + 𝑢𝑖−1(𝑥), 𝑖 = 1,2, … , 𝑙.                      (3.5) 

Second we approximate the unknown function 𝑢𝑖(𝑥) with 

help of Legendre wavelet as 

𝑢𝑖(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑖 𝜑𝑛,𝑚(𝑥) = 𝐶𝑖𝑇

 ∅(𝑥),

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

𝑖 = 1,2, … , 𝑙 

(3.6) 

(𝑢′′)𝑖(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑖 𝜑𝑛,𝑚

′′ (𝑥) = 𝐶𝑖𝑇
∅′′(𝑥), 𝑖 =𝑀−1

𝑚=0
2𝑘−1

𝑛=1

1,2, … , 𝑙.                                                                          (3.7) 

Where 𝐶𝑖 and ∅ are 2𝑘−1𝑀 × 1 matrices given by equation  

𝐶𝑖 = [𝑐1,0
𝑖 , … , 𝑐1,𝑀−1

𝑖 , 𝑐2,0
𝑖 , … , 𝑐2,𝑀−1

𝑖 , … , 𝑐
2𝑘−1,𝑀−1
𝑖 ]

𝑇

, 𝑖 =

1,2, … , 𝑙                                                                         (3.8) 

𝜑 = [𝜑1,0, … , 𝜑1,𝑀−1, 𝜑2,0, … , 𝜑2,𝑀−1, … , 𝜑2𝑘−1,𝑀−1], 

(3.9) 

then we can rewrite equation (3.4) as 

(Ci)T∅(𝑥) − 𝜏(Ci)T∅′′(𝑥) = Fi(𝑥), 𝑖 = 1,2, … , 𝑙 

(3.10) 

subject to the boundary conditions 

(𝐶𝑖)𝑇∅(𝑎) = 𝑔1(𝑡𝑖),    (𝐶𝑖)𝑇∅(𝑏) = 𝑔2(𝑡𝑖), 𝑖 = 1,2, … , 𝑙 

(3.11) 

Now collocating equation (3.10) at zeros of Chebyshev 

polynomial which given by 

xj = cos [
(2j − 1)π

2kM
] ,   𝑗 = 1,2, … , 2𝑘−1𝑀 − 2 

(3.12) 

Using the collocation points in equation (3.12), we get 

(Ci)T∅(𝑥𝑗) − 𝜏(Ci)T∅′′(𝑥𝑗) = Fi(𝑥𝑗),   𝑗 =

1,2, … , 2𝑘−1𝑀 − 2                                                        (3.13) 

we can rewrite equation (3.13) as  

(Ci)T[∅(𝑥𝑗) − 𝜏∅′′(𝑥𝑗)] = Fi(𝑥𝑗),

𝑗 = 1,2, … , 2𝑘−1𝑀 − 2 

(3.14) 

From equation (3.6) there are 2𝑘−1𝑀 unknown constants. 

To find out the values of these unknown, we need 

2𝑘−1𝑀equation out of which 2 equation are obtained from 

boundary conditions (3.11) which the remaining 2𝑘−1𝑀 −
2 equations are obtained from (3.14). By solve this system 

of equations given the unknown constants. By equation 

(3.6) we can give the approximate solution. 

Theorem: Convergence theorem 

The series solution (3.6) of problem (3.4) using Legendre 

wavelet method converges towards 𝑢𝑖(𝑥), 𝑖 = 1,2, … , 𝑙. 

Proof: Let 𝐿2(𝑅) be the Hilbert space and 𝜑𝑘,𝑛(𝑡) =

|𝑎|−
1

2𝜑(𝑎0
𝑘𝑡 − 𝑛𝑏0) where 𝜑𝑘,𝑛(𝑡) form a basis of 𝐿2(𝑅). 

As 𝑎0 = 2, 𝑏0 = 1, then 𝜑𝑘,𝑛(𝑡) forms an orthonormal 

basis. 

Let 

𝑢𝑖(𝑥) = ∑ 𝐶1𝑗
𝑖 𝜑1𝑗(𝑥),𝑀−1

𝑗=1         𝑖 = 1,2, … , 𝑙                 (3.15) 

where  

𝐶1𝑗
𝑖 = 〈𝑢𝑖(𝑥), 𝜑1𝑗(𝑥)〉,   𝑖 = 1,2, … , 𝑙    , 𝑘 = 1 

 

(3.16) 

and 〈∙,∙〉 represent an inner product. 

𝑢𝑖(𝑥) = ∑ 〈𝑢𝑖(𝑥), 𝜑1𝑗(𝑥)〉𝜑1𝑗(𝑥).𝑛
𝑗=1                            (3.17) 

Let us denote 𝜑1𝑗(𝑥) as 𝜑(𝑥). 

Let 𝛼𝑗
𝑖 = 〈𝑢𝑖(𝑥), 𝜑(𝑥)〉,    𝑖 = 1,2, … , 𝑙. 

And the sequence of partial sums {𝑆𝑛
𝑖 } of {𝛼𝑗

𝑖𝜑(𝑥𝑗)}. Let 𝑆𝑛
𝑖  

and 𝑆𝑚
𝑖  be arbitrary partial sums with 𝑛 ≥ 𝑚. We are going 

to prove that {𝑆𝑛
𝑖 } is a Cauchy sequence in Hilbert space. 

Let 𝑆𝑛
𝑖 = ∑ 𝛼𝑗

𝑖𝜑(𝑥𝑗),       𝑖 = 1,2, … , 𝑙𝑛
𝑗=1  

〈𝑢𝑖(𝑥), 𝑆𝑛
𝑖 〉 = 〈𝑢𝑖(𝑥), ∑ 𝛼𝑗

𝑖𝜑(𝑥𝑗)

𝑛

𝑗=1

〉 ,   𝑖 = 1,2, … , 𝑙 

(3.18) 

〈𝑢𝑖(𝑥), 𝑆𝑛
𝑖 〉 = ∑ 𝛼𝑗

�̅�

𝑛

𝑗=1

〈𝑢𝑖(𝑥), 𝜑(𝑥𝑗)〉,   𝑖 = 1,2, … , 𝑙 

(3.19) 

〈𝑢𝑖(𝑥), 𝑆𝑛
𝑖 〉 = ∑ �̅�𝑗

𝑖

𝑛

𝑗=1

𝛼𝑗
𝑖 = ∑|𝛼𝑗

𝑖|
2

𝑛

𝑗=1

,   𝑖 = 1,2, … , 𝑙 

(3.20) 

And ‖𝑆𝑛
𝑖 − 𝑆𝑚

𝑖 ‖
2

= ∑ |𝛼𝑗
𝑖|

2𝑛
𝑗=𝑚+1  for 𝑛 > 𝑚.             (3.21) 

Then 
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‖∑ 𝛼𝑗
𝑖𝜑(𝑥𝑗)𝑛

𝑗=𝑚+1 ‖
2

=

〈∑ 𝛼𝑘
𝑖 𝜑(𝑥𝑘)𝑛

𝑘=𝑚+1 , ∑ 𝛼𝑗
𝑖𝜑(𝑥𝑗)𝑛

𝑗=𝑚+1 〉                  (3.22) 

‖∑ 𝛼𝑗
𝑖𝜑(𝑥𝑗)𝑛

𝑗=𝑚+1 ‖
2

=

∑ ∑ 𝛼𝑘
𝑖 �̅�𝑗

𝑖𝑛
𝑗=𝑚+1

𝑛
𝑘=𝑚+1 〈𝜑(𝑥𝑘), 𝜑(𝑥𝑗)〉                  (3.23) 

 

‖ ∑ 𝛼𝑗
𝑖𝜑(𝑥𝑗)

𝑛

𝑗=𝑚+1

‖

2

= ∑ 𝛼𝑗
𝑖�̅�𝑗

𝑖

𝑛

𝑗=𝑚+1

= ∑ |𝛼𝑗
𝑖|

2
𝑛

𝑗=𝑚+1

 

(3.24) 

So    ‖𝑆𝑛
𝑖 − 𝑆𝑚

𝑖 ‖
2

= ∑ |𝛼𝑗
𝑖|

2𝑛
𝑗=𝑚+1  for 𝑛 > 𝑚.              

  (3.25) 

From Bessel's inequality, then ‖𝑆𝑛
𝑖 − 𝑆𝑚

𝑖 ‖
2

→ 0 𝑎𝑠 𝑚, 𝑛 →

∞. So {𝑆𝑛
𝑖 } is a Cauchy sequnce and it converges to 𝑆𝑖.  

We need to show that𝑢𝑖(𝑥) = 𝑠𝑖  

As 〈𝑆𝑖 − 𝑢𝑖(𝑥), 𝜑(𝑥𝑗)〉 = 〈𝑆𝑖, 𝜑(𝑥𝑗)〉 − 〈𝑢𝑖(𝑥) − 𝜑(𝑥𝑗)〉 

(3.26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

〈𝑆𝑖 − 𝑢𝑖(𝑥), 𝜑(𝑥𝑗)〉 = lim
𝑛→∞

〈𝑆𝑛
𝑖 , 𝜑(𝑥𝑗)〉 − 〈𝑢𝑖(𝑥) − 𝜑(𝑥𝑗)〉                                                                        

(3.27) 

〈𝑆𝑖 − 𝑢𝑖(𝑥), 𝜑(𝑥𝑗)〉 = 𝛼𝑗
𝑖 − 𝛼𝑗

𝑖 = 0                        (3.28) 

Hence 𝑢𝑖(𝑥) = 𝑠𝑖  and ∑ 𝛼𝑗
𝑖𝜑(𝑥𝑗)𝑛

𝑗=1  converges to 𝑢𝑖(𝑥). 

4 Illustrative Examples 

In this section, we present Legendre wavelet (LW) 

collocation method for the numerical solution of partial 

differential equation in comparison with existing method to 

demonstrate the capability of the proposed method and 

error analysis are shown in tables and figures. Error 

function is presented to verify the accuracy and efficiency 

of the following numerical results. We use MATLAB 

program to obtain the solution. 

Example 1: 

Consider the following partial differential equation 

𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 2𝑥2𝑡 − 2𝑡2, 𝑖𝑛    𝑄 ≡ (0,1) ×
(0, 𝑇)                                                                             (4.1) 

with the boundary conditions 

𝑢(0, 𝑡) = 2,                             𝑢(1, 𝑡) = 𝑡2 + 3                (4.2) 

the exact solution is  𝑢(𝑥, 𝑡) = 𝑥2𝑡2 + 𝑥 + 2                (4.3) 

𝑢(𝑥, 𝑡) = 𝑥2𝑡2 + 𝑥 + 2(4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1.Comparison between exact and numerical solution. 

x 
t = 1 

Exact solution Wavelets 𝑀 = 4, 𝑘 = 1 Wavelets 𝑀 = 8, 𝑘 = 1 

0.0 2.000000 2.000000 2.000000 

0.1 2.110000 2.110017 2.110015 

0.2 2.240000 2.240012 2.240006 

0.3 2.390000 2.390000 2.389997 

0.4 2.560000 2.560001 2.559990 

0.5 2.750000 2.749996 2.749988 

0.6 2.960000 2.959993 2.959993 

0.7 3.190000 3.189994 3.190004 

0.8 3.440000 3.439998 3.440017 

0.9 3.710000 3.710006 3.710026 

1.0 4.000000 4.000000 4.000000 

 



Num. Com. Meth. Sci. Eng.2, No. 1, 27-33 (2020)/ http://www.naturalspublishing.com/Journals.asp 31 

 

        © 2020 NSP 

         Natural Sciences Publishing Cor. 
 

 

 

 

 

 

 

 

 

 

 

Example 2: 

Consider the following partial differential equation  

𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 𝑒𝑥 − 𝑡 𝑒𝑥, 𝑖𝑛   𝑄 ≡ (0,1) × (0, 𝑇)  

                                                                                        (4.4) 

𝑢(0, 𝑡) = t + 2,             𝑢(1, 𝑡) = 𝑡𝑒1 + 2                      (4.5) 

the exact solution of equation (4.4) is as follows 

𝑢(𝑥, 𝑡) = 𝑡 𝑒𝑥 + 2                                                          (4.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the boundary conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4.1): Comparison of numerical solutions and exact solution of example 1. 

 

Table 4.2.Comparison between exact and numerical solution. 
 

x 
t = 0.1 

Exact solution Wavelets 𝑀 = 4, 𝑘 = 1 Wavelets 𝑀 = 8, 𝑘 = 1 

0.0 2.100000 2.100000 2.100000 

0.1 2.110517 2.110461 2.110523 

0.2 2.122140 2.122054 2.122140 

0.3 2.134986 2.134923 2.134980 

0.4 2.149182 2.149201 2.149176 

0.5 2.164872 2.165019 2.164869 

0.6 2.182212 2.182510 2.182214 

0.7 2.201375 2.201806 2.201380 

0.8 2.222554 2.223040 2.222556 

0.9 2.245960 2.246344 2.245960 

1.0 2.271828 2.271828 2.271828 
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From the numerical results in Table 4.1 and 4.2 which 

shown in figures (4.1) and (4.2), it is easy to conclude that 

the obtained results by the proposed method are in good 

agreement with the exact solution 

 

5 Conclusions 

The aim of present work is to develop an efficient and 

accurate method for solving partial differential equation. 

The problem has been reduced to solving a system of linear 

algebraic equations. Two test problems were presented to 

demonstrate the validity of the technique. 
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