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Abstract: This paper is concerned with certain aspects of conformable semigroups. Mainly, we try to give an answer to the following

question “when can a linear operator A generate a conformable semigroup?” To do this in the sequel, we introduce and prove new

properties of conformable semigroups of operators similar to that of strongly continuous semigroups of operators.
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1 Introduction and basic results

The theory of semigroups of bounded linear operators is used to solve differential equations. Semigroup theory had
immediate applications to partial differential equations, Markov processes, and ergodic theory.

Let L(X ,X) be the space of all bounded linear operators on a Banach space X . Then a family of {T (t)}t≥0 ⊆ L(X ,X)
is called a semigroup of operators if:

(i) T (0) = I,
(ii) T (s+ t) = T (s)T (t) f or all s, t ≥ 0.

The semigroup {T (t)}t≥0 is called a strongly continuous c0−semigroup if for each fixed x ∈ X , ‖T (t)x− x‖ → 0 as

t → 0+, see [1].
Fractional calculus has a useful applications in engineering and science, physics, bioengineering, and dynamics of

particles [2,3,4,5,6,7,8,9]. In the last decades, fractional calculus became an interesting subject in the area of

mathematical analysis. The idea came from L’Hopital in 1695 when he asked what it means
dn f
dxn if n = 1

2
. Then, many

researchers tried to put a definition of a fractional derivative [10,11,12]. Most of them used an integral form.
The authors In [12] define the fractional derivative as a natural extension to the usual definition of the first derivative

as follows:
Let f : [0,∞)→R be a given function. Then for all t > 0, α ∈ (0,1), let

Dα( f )(t) = f (α)(t) = lim
ε→0

f (t + εt1−α)− f (t)

ε
,

Dα f is called the Conformable derivative of f of order α. If f is α−differentiable in some (0,a), a > 0, and lim
t→0+

f (α)(t)

exists, then we define

f (α)(0) = lim
t→0+

f (α)(t).

It is easy to see that this new definition of fractional derivative satisfy all the usual properties of the first derivative. The
α−fractional integral of a function f starting from a ≥ 0 is defined as

Ia
α( f )(t) =

b∫

a

f (t)dαt :=

b∫

a

f (t)tα−1dt.
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According to [12], it is known that for a continuous function f such that Ia
α f exists, then

Dα(I
a
α f )(t) = f (t), f or t ≥ a ≥ 0.

Fore more on Conformable derivative and fractional integral we refer the reader to [12,13,14,15,16,17,18,19].

Conformable derivatives or their modifications in [15] as a type of local fractional derivatives of fractal ones are
further important since they can be used to generate new generalized nonlocal fractional operators, see [13,20,21].

Conformable semigroups are related to semigroups generated by fractional powers of closed operators which is
developed by Bochner, see [22]. In [23], the authors studied the problem of fractional powers of closed operators and the
semigroups generated by them. The fractional Cauchy problem associated with a Feller semigroup was studied by
Popescu, see [24].

The first study of conformable semigroups appeared in 2015, see [25]. The authors used the new definition of
Conformable derivative to obtain a new basic definition of conformable semigroups of linear operators which is a natural
extension to the usual semigroups as follows:
Let L(X ,X) be the space of all bounded linear operators on a Banach space X . Then a family of {T (t)}t≥0 ⊆ L(X ,X) is
called a fractional α−semigroup (or α−semigroup ) of operators if:

(i) T (0) = I,

(ii) T (s+ t)
1
α = T (s

1
α )T (t

1
α ) for all s, t ∈ [0,∞).

If α = 1, this definition leads to the usual semigroups of operators.
The semigroup {T (t)}t≥0 is called a strongly continuous c0 −α−semigroup if for each fixed x ∈ X , ‖T (t)x− x‖ → 0 as

t → 0+.

Example 1. For a bounded linear operator A on X , define T (t) = e
tα

α A. It is easy to see that {T (t)}t≥0 is an α−semigroup.
Indeed:

(i) T (0) = e0A = I.

(ii) T (s+ t)
1
α = e

(s+t)
α A = e

s
α Ae

t
α A = T (s

1
α )T (t

1
α ).

Example 2. (See [25]). Let X =C [0,∞). Define (T (t) f )(s) = f (s+ 2
√

t). Then {T (t)}t≥0 is a 1
2
−semigroup.

The linear operator A defined by Ax = lim
t→0+

T (α)(t)x provided that the limit exists is called the infinitesimal generator of

the α−semigroup T (t), see [25].

Definition 1. An α−semigroup of bounded linear operators T (t) is called uniformly continuous if

lim
t→0+

‖T (t
1
α )− I‖= 0.

Now, the important question: Under what conditions can a linear operator A generate conformable α−semigroup?
The following theorem answered the question for case of uniformly continuous α−semigroup. Section 3 provides proof
for this theorem.

Theorem 1. A linear operator A is the α−infinitesimal generator of a uniformly continuous α−semigroup if and only if

A is a bounded linear operator.

For the case of c0 −α−semigroup of contractions T (t), that means ‖T (t)‖< 1 for all t ∈ (0,∞), we have the following
generlazation of the Hille-Yosida theorem, and we called it modified Hille-Yosida type theorem. Section 2 provides proof
for this theorem.

Theorem 2. (Modified Hille-Yosida Type Theorem). An unbounded linear operator A generates a strongly continuous

α−differentiable c0− semigroup {T (t)}t≥0 of contractions if and only if:

(i) A is closed and D(A) is dense in X.

(ii) The resolvent set ρ(A)⊇ R
+ and for every λ > 0, we have

‖R(λ : A)‖ ≤ 1

λ
. (1.1)
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The goal of this article is to present a new and attractive properties of conformable semigroups and to prove the
modified Hille-Yosida type theorem for conformable semigroups of operators.

This paper is organized as follows: Section 2 states and proves Hille-Yosida type theorem for conformable semigroups.
Section 3 addresses the uniformly continuous α−semigroups of bounded linear operator. Conclusion is presented in
Section 4.

2 Modified Hille Yosida type theorem

Throughout this section, {T (t)}t≥0 is an α−conformable semigroup of operators on a Banach space X , with 0 < α ≤ 1.
The generator will be denoted by A. To prove Theorem 2, we need first to prove the following classical results.

Lemma 1. Let {T (t)}t≥0 be a c0 −α−semigroup, α ∈ (0,1), a, h > 0. Then

a) If f (h)x =
(tα+hα)

1
α∫

a

T (u)x dαu, then

Dα( f )(t)x = f (α)(h)x = lim
ε→0

1

ε

((h+εh1−α)α+tα)
1
α∫

(tα+hα)
1
α

T (u)x dαu.

b) If g(h) is α−differentiable at h > 0 and f (h)x =
g(h)∫
a

T (u)x dαu, then

Dα( f )(t)x = f (α)(h)x =
T (g(h))x

g1−α(h)
g(α)(h).

Proof. a)

f (α)(h)x = lim
ε→0

f (h+ εh1−α)x− f (h)x

ε

= lim
ε→0

1

ε









((h+εh1−α)α+tα)
1
α∫

a

T (u)x dαu−
(tα+hα)

1
α∫

a

T (u)x dαu









= lim
ε→0

1

ε









((h+εh1−α)α+tα)
1
α∫

a

T (u)x dαu+

a∫

(tα+hα)
1
α

T (u)x dαu









= lim
ε→0

1

ε

((h+εh1−α)α+tα)
1
α∫

(tα+hα)
1
α

T (u)x dαu.

b) Let

f (h)x =

g(h)∫

a

T (u)x dαu = L(g(h))x,

where

L(h)x =

h∫

a

T (u)x dαu.
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Using semi-chain rule, (see [14]), we get

L(α)(g(h))x = L′(g(h))xg(α)(h) where L′(h)x =
T (h)x

h1−α

=
T (g(h))x

g1−α(h)
g(α)(h).

�

Theorem 3. (See [25]). Let A be the infinitesimal generator of a c0 −α−semigroup {T (t)}t≥0, 0 < α ≤ 1 . If T (t) is

continuously α−differentiable and x ∈ D(A), then

T (α)(t)x = AT (t)x = T (t)Ax.

Theorem 4. Let α ∈ (0,1), a, h, t > 0, and {T (t)}t≥0 be a c0 −α−semigroup. Then

a) For x ∈ X ,

lim
ε→0

1

ε

t+εt1−α∫

t

T (s)x dαs = T (t)x.

b) ∀x ∈ X ,
t∫

a

T (s)x dαs ∈ D(A).

c) If T (t) is continuously α−differentiable, then for x ∈ D(A)

T (t + ε t1−α)x−T(t)x =

t+ε t1−α∫

t

T (u) A x dαu =

t+ε t1−α∫

t

A T (u)x dαu.

Proof. a)

lim
ε→0

1

ε

t+εt1−α∫

t

T (s)x dαs = lim
ε→0

t+εt1−α∫
0

T (s)x dαs−
t∫

0

T (s)x dαs

ε

= lim
ε→0

G(t + εt1−α)x−G(t)x

ε
where G(u)x =

u∫

0

T (s)x dαs

= G(α)(t)x

= T (t)x.

b)

T (h+ εh1−α)−T (h)

ε

t∫

a

T (s)x dαs =
1

ε





t∫

a

T (sα +(h+ εh1−α)α)
1
α x dαs

−
t∫

a

T (sα + hα)
1
α xdαs



 .

Using change of variables, we get

T (h+ εh1−α)−T(h)

ε

t∫

a

T (s)x dαs =
1

ε









(tα+(h+εh1−α)α)
1
α∫

(aα+(h+εh1−α)α)
1
α

T (u)x dαu−
(tα+hα)

1
α∫

(aα+hα)
1
α

T (u)x dαu









c© 2022 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 8, No. 1, 77-89 (2022) / www.naturalspublishing.com/Journals.asp 81

=
1

ε









(aα+hα)
1
α∫

(aα+(h+εh1−α)α)
1
α

T (u)x dαu+

(tα+hα)
1
α∫

(aα+hα)
1
α

T (u)x dαu

+

(tα+(h+εh1−α)α)
1
α∫

(tα+hα)
1
α

T (u)x dαu−
(tα+hα)

1
α∫

(aα+hα)
1
α

T (u)x dαu









.

If ε → 0 Lemma 1 (a) implies

lim
ε→0

T (h+ εh1−α)−T (h)

ε

t∫

a

T (s)x dαs =−Dα

(

(aα+hα)
1
α∫

a2

T (u)x dαu

)

+Dα

(

(tα+hα)
1
α∫

a1

T (u)x dαu

)

where a1, a2 > 0.

Using Lemma 1 (b) to get

lim
ε→0

T (h+ εh1−α)−T (h)

ε

t∫

a

T (s)x dαs =−T (aα + hα)
1
α x+T(tα + hα)

1
α x.

As h → 0+, we have

A

t∫

a

T (s)x dαs =−T (a)x+T(t)x

= T (t)x−T(a)x.

c) Take α−integral of
[

T (α)(u)x = A T (u)x = T (u) A x

]

from t to t + ε t1−α.

t+ε t1−α∫

t

T (α)(u)x dαu =

t+ε t1−α∫

t

A T (u)x dαu =

t+ε t1−α∫

t

T (u) A x dαu.

Consequently,

t+ε t1−α∫

t

T (α)(u)x dαu =

t+ε t1−α∫

a

T (α)(u)x dαu−
t∫

a

T (α)(u)x dαu

= T (t + ε t1−α)x−T(t)x.

Therefore,

T (t + ε t1−α)x−T (t)x =

t+ε t1−α∫

t

T (u)A x dαu =

t+ε t1−α∫

t

A T (u) x dαu.

The proof is complete. �

Corollary 1. If A is α−infinitesimal generator of a c0 −α−semigroup T (t) and T (t) is continuously α− differentiable

then D(A) is dense in X and A is closed operator.

Proof. Let x ∈ X . Let xh,ε =
1
ε

h+εh1−α∫
h

T (u)x dαu ∈ D(A).

lim
ε→0

h→0+

xh,ε = lim
ε→0

h→0+

1

ε

h+εh1−α∫

h

T (u)x dαu = lim
h→0+

T (h)x = T (0)x = x.
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Thus D(A) = X .
To prove the closedness let xn ∈ D(A), xn → x and Axn → y as n→ ∞.
From Theorem 4 (c), we have

T (h+ εh1−α)xn −T (h)xn =

h+εh1−α∫

h

T (u)Axndαu.

Dividing by ε and taking ε → 0

lim
ε→0

1

ε

[

T (h+ εh1−α)xn −T (h)xn

]

= lim
ε→0

1

ε

h+εh1−α∫

h

T (u)Axn dαu.

Equivalently

T (α)(h)xn = T (h)Axn.

As n → ∞, we get

T (α)(h)x = T (h)y.

Also if h → 0+, we have

Ax = T (0)y = y.

Thus Ax = y and x ∈ D(A). �

Now, we are able to prove Theorem 2. First, we proof necessity of the theorem.

Proof. (Necessity). If A is the infinitesimal generator of a c0 − α−semigroup then it is closed and D(A) = X by
Corollary 1. For λ > 0 and x ∈ X let

Rε(λ)x =

∞∫

ε

e−λ tα

α T (t)x dαt,

and

R(λ)x =

∞∫

0

e−λ tα

α T (t)x dαt.

Since ‖Rε(λ)−R(λ)‖ −→ 0 as ε −→ 0, we get

R(λ)x = lim
ε−→0

∞∫

ε

e−λ tα

α T (t)x dαt.

Provided that the map t → T (t)x is uniformly bounded and continuous, the improper integral exists as a Riemann integral
and defines a bounded linear operator R(λ) that satisfies the inequality

‖R(λ)x‖= ‖
∞∫

0

e−λ tα

α T (t)x dαt‖ ≤
∞∫

0

e−λ tα

α ‖T (t)x‖dαt ≤ 1

λ
‖x‖.

Therefore,

‖R(λ)‖ ≤ 1

λ
.

Now, for h > 0

T (h+ εh1−α)−T (h)

ε

∞∫

0

e−λ tα

α T (t)x dαt

=
1

ε

∞∫

0

e−λ tα

α T (tα +(h+ εh1−α)α)
1
α x dαt − 1

ε

∞∫

0

e−λ tα

α T (tα + hα)
1
α x dαt.
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Using change of variables, we get

T (h+ εh1−α)−T(h)

ε
R(λ)x =

1

ε

∞∫

h+εh1−α

e−λ
uα−(h+εh1−α)α

α T (u)x dαu− 1

ε

∞∫

h

e−λ uα−hα

α T (u)x dαu

=
eλ

(h+εh1−α)α

α

ε

∞∫

h+εh1−α

e−λ uα

α T (u)x dαu− eλ hα

α

ε

∞∫

h

e−λ uα

α T (u)x dαu

=
eλ

(h+εh1−α)α

α

ε

h∫

h+εh1−α

e−λ uα

α T (u)x dαu

+
eλ

(h+εh1−α)α

α

ε

∞∫

h

e−λ uα

α T (u)x dαu− eλ hα

α

ε

∞∫

h

e−λ uα

α T (u)x dαu.

As ε → 0, and using L’Hopital’s rule with respect to ε, we get

lim
ε→0

T (h+ εh1−α)−T (h)

ε
R(λ)x = lim

ε→0

eλ
(h+εh1−α)α

α λ
α α(h+ εh1−α)α−1h1−α

1

∞∫

h

e−λ uα

α T (u)x dαu

+ lim
ε→0

eλ
(h+εh1−α)α

α

ε

h∫

h+εh1−α

e−λ uα

α T (u)x dαu.

= λeλ hα

α

∞∫

h

e−λ uα

α T (u)x dαu

− lim
ε→0

eλ
(h+εh1−α)α

α lim
ε→0

1

ε

h+εh1−α∫

h

e−λ uα

α T (u)x dαu.

Using Theorem 4 (a), we get

lim
ε→0

T (h+ εh1−α)−T(h)

ε
R(λ)x = λeλ hα

α

∞∫

h

e−λ uα

α T (u)x dαu− eλ hα

α e−λ hα

α T (h)x.

Also, for h → 0+, we get

AR(λ)x = λ

∞∫

0

e−λ uα

α T (u)x dαu− x

= λR(λ)x− x.

This implies that for every x ∈ X and λ > 0, R(λ)x ∈ D(A) and AR(λ) = λR(λ)− I, or

(λI−A)R(λ) = I. (2.2)

For x ∈ D(A), we have

R(λ)Ax =

∞∫

0

e−λ tα

α T (t)Ax dαt

=

∞∫

0

e−λ tα

α AT (t)x dαt.
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Since A is closed, we get

R(λ)Ax = A(

∞∫

0

e−λ tα

α T (t)x dαt).

= AR(λ)x.

(2.3)

From (2.2) and (2.3), it follows that

R(λ)(λI−A)x = x f or x ∈ D(A).

Thus, R(λ) is the inverse of (λI −A), it exists for all λ > 0 and satisfies the desired estimate (1.1). Thus, conditions (i)
and (ii) are necessary.

To prove that the conditions (i) and (ii) of Theorem 2 are sufficient for A to be the α−infinitesimal generator of a
continuously α−differentiable c0 −α−semigroup of contractions, we need the following lemmas:

Lemma 2. Let A satisfy the conditions (i) and (ii) of Theorem 2 and let R(λ : A) = (λI−A)−1. Then

lim
λ→∞

λR(λ : A)x = x f or x ∈ X . (2.4)

Proof. Let x ∈ D(A), then

‖λR(λ : A)x− x‖= ‖AR(λ : A)x‖
= ‖R(λ : A)Ax‖

≤ 1

λ
‖Ax‖→ 0 as λ → ∞.

Claim: λR(λ : A)x → x as λ → ∞ for every x ∈ X . To prove the claim, let x ∈ X . Since D(A) is dense X ∃xn ∈ D(A)
such that xn → x and ‖λR(λ : A)xn − xn‖→ 0 as λ → ∞. Then

‖λR(λ : A)x− x‖ ≤ ‖λR(λ : A)x− xn‖+ ‖xn− x‖
= ‖λR(λ : A)x−λR(λ : A)xn +λR(λ : A)xn − xn‖+ ‖xn− x‖
≤ ‖λR(λ : A)x−λR(λ : A)xn‖+ ‖λR(λ : A)xn − xn‖+ ‖xn− x‖

≤ λ · 1

λ
‖xn − x‖+ ‖λR(λ : A)xn − xn‖+ ‖xn− x‖→ 0.

�

Define the sequences of operators

Aλ = λAR(λ : A) = λ2R(λ : A)−λI. (2.5)

Lemma 3. Let A satisfy the conditions (i) and (ii) of Theorem 2. Then

lim
λ→∞

Aλx = Ax f or x ∈ D(A). (2.6)

Proof. For x ∈ D(A) by Lemma 2 and the definition of Aλ, we have

lim
λ→∞

Aλx = lim
λ→∞

λAR(λ : A)x

= lim
λ→∞

λR(λ : A)Ax

= Ax.

The proof is complete. �
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Lemma 4. Let A satisfy the conditions (i) and (ii) of Theorem 2. Then Aλ is the α−infinitesimal generator of a uniformly

continuous α−semigroup of contractions e
tα

α Aλ . Furthermore, for every x ∈ X, λ, µ > 0 we have

‖e
tα

α Aλx− e
tα

α Aµx‖ ≤ tα

α ‖Aλx−Aµx‖. (2.7)

Proof. From (2.5), it is clear that Aλ is a bounded linear operator and so it is the infinitesimal generator of a uniformly

continuous α−semigroup e
tα

α Aλ of bounded linear operators Theorem 1. Also,

‖e
tα

α Aλ‖= ‖e
tα

α (λ2R(λ:A)−λI)‖ ≤ ‖e
tα

α λ2R(λ:A)− tα

α λ‖

≤ ‖e
tα

α λ2R(λ:A)‖e−
tα

α λ

≤ e
tα

α λ2‖R(λ:A)‖e−
tα

α λ

= e0 = 1.

(2.8)

So e
tα

α Aλ is an α−semigroup of contractions. Consequently,

‖e
tα

α Aλx− e
tα

α Aµx‖= ‖
1∫

0

d

ds
(e

tα

α sAλe
tα

α (1−s)Aµ)x ds‖

≤
1∫

0

‖ d

ds
(e

tα

α sAλe
tα

α (1−s)Aµ)x‖ds

=

1∫

0

‖e
tα

α sAλe
tα

α (1−s)Aµ(− tα

α )Aµx+ e
tα

α (1−s)Aµe
tα

α sAλ( tα

α )Aλx‖ds

≤ tα

α

1∫
0

‖e
tα

α sAλ‖‖e
tα

α (1−s)Aµ‖‖Aλx−Aµx‖ds

≤ tα

α (1)(1)‖Aλx−Aµx‖
= tα

α ‖Aλx−Aµx‖.
The proof is complete. �

Now, we will prove the sufficiency of the theorem.
Proof. Theorem 2 (Sufficiency). Let x ∈ D(A). Then

‖e
tα

α Aλx− e
tα

α Aµx‖ ≤ tα

α ‖Aλx−Aµx‖
≤ tα

α ‖Aλx−Ax‖+ tα

α ‖Ax−Aµx‖.
(2.9)

Consequently using Lemma 3 and (2.9), we have x ∈D(A) and e
tα

α Aλ converges uniformly on bounded intervals as λ→ ∞.

Since ‖e
tα

α Aλ‖ ≤ 1 and D(Aλ) = X , we have

lim
λ→∞

Tλ(t)x = lim
λ→∞

e
tα

α Aλ x = T (t)x for every x ∈ X . (2.10)

Notice that the limits T (t) satisfies the α−semigroup property, that T (0)x = lim
λ→∞

eAλ(0)x = x, and

T (s+ t)
1
α = lim

λ→∞
e
(s+t)

α Aλ

= lim
λ→∞

e
s
α Aλe

t
α Aλ

= lim
λ→∞

e
(s

1
α )α

α Aλ e
(t

1
α )α

α Aλ

= T (s
1
α )T (t

1
α ).
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From (2.8) and (2.10), we have

‖T (t)x‖= ‖ lim
λ→∞

e
tα

α Aλx‖

= lim
λ→∞

‖e
tα

α Aλx‖

≤ ‖x‖.

Therefore, ‖T (t)‖ ≤ 1. Also, t → T (t)x is continuous for t ≥ 0 as a uniform limit of the continuous functions t → e
tα

α Aλx.
Thus T (t) is a c0 −α−semigroup of contractions on X .
To complete the proof, we need to show that A is the infinitesimal generator of an α−semigroup T (t). Let B be the
infinitesimal generator of an α−semigroup T (t) and x ∈ D(A). Then, using Theorem 4 and (2.10) we have,

T (t + εt1−α)x−T(t)x = lim
λ→∞

(Tλ(t + εt1−α)x−Tλ(t)x)

= lim
λ→∞

t+εt1−α∫

t

Tλ(u)Aλx dαu

=

t+εt1−α∫

t

T (u)Ax dαu.

Therefore,

T (t + εt1−α)x−T(t)x =

t+εt1−α∫

t

T (u)Ax dαu.

Dividing by ε > 0 and letting ε → 0, we get

lim
ε→0

T (t + εt1−α)x−T (t)x

ε
= lim

ε→0

1

ε

t+εt1−α∫

t

T (u)Ax dαu.

Equivalently,

T (α)(t)x = T (t)Ax.

As t → 0+, we have

Bx = Ax and x ∈ D(B).

Thus B ⊇ A. From necessary conditions, we have 1 ∈ ρ(B), and by assumption (ii) 1 ∈ ρ(A). Since B ⊇ A,

(I−B)D(A) = (I −A)D(A) = X ,

which implies D(B) = (I −B)−1X = D(A) and therefore A = B. �

3 Uniformly continuous α−semigroups of bounded linear operator

This section is dedicated to the study of uniformly continuous α−semigroups of bounded linear operator. Now, we are
ready to prove the Theorem 1.

Proof. Define T (t) = e
tα

α A, A is bounded linear operator. Then T (t) is an α−semigroup with A is an α−infinitesimal
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generator.

‖T (t
1
α )− I‖= ‖e

t
α A − I‖

= ‖
∞

∑
k=0

( t
α A)k

k!
− I‖

= ‖
∞

∑
k=1

( t
α A)k

k!
‖

= ‖ t
α A+

( t
α A)2

2!
+ . . .‖

≤ t
α‖A‖‖I+

t
α A

2!
+ . . .‖

≤ t
α‖A‖‖I+ t

α A+ . . .‖
= t

α‖A‖e
t
α ‖A‖

.

lim
t→0+

‖T (t
1
α )− I‖= 0.

Now for the converse. Fix a> 0, choose ρ> 0 small enough such that ‖I−λ
ρ∫
a

T (t) dαt‖< 1, then
ρ∫
a

T (t) dαt invertible

and

T (h+ εh1−α)−T (h)

ε

ρ∫

a

T (t)dαt =
1

ε





ρ∫

a

T (tα +(h+ εh1−α)α)
1
α dαt −

ρ∫

a

T (tα + hα)
1
α dαt





=
1

ε









(ρα+(h+εh1−α)α)
1
α∫

(aα+(h+εh1−α)α)
1
α

T (u)dαu−
(ρα+hα)

1
α∫

(aα+hα)
1
α

T (u) dαu









=
1

ε









(aα+hα)
1
α∫

(aα+(h+εh1−α)α)
1
α

T (u)dαu+

(ρα+hα)
1
α∫

(aα+hα)
1
α

T (u)dαu

+

(ρα+(h+εh1−α)α)
1
α∫

(ρα+hα)
1
α

T (u)dαu−
(ρα+hα)

1
α∫

(aα+hα)
1
α

T (u)dαu









.

As ε → 0 Lemma 1 (a) implies

lim
ε→0

T (h+ εh1−α)−T (h)

ε

ρ∫

a

T (t)dαt =−Dα

(

(aα+hα)
1
α∫

a2

T (u)dαu

)

+Dα

(

(ρα+hα)
1
α∫

a1

T (u)dαu

)

where a1, a2 > 0.

Now, using Lemma 1 (b) to get

lim
ε→0

T (h+ εh1−α)−T(h)

ε

ρ∫

a

T (t)dα =−T (aα + hα)
1
α +T (ρα + hα)

1
α .
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As h → 0+, we get

A

ρ∫

a

T (t)dαt =−T (a)+T (ρ)

= T (ρ)−T(a).

Therefore, A = (T (ρ)−T(a))(
ρ∫
a

T (t)dαt)−1 and so A is bounded. �

4 Conclusion

This paper investigates the generator of conformable semigroups and its resolvent operator. Generally, this paper
introduces and proves some of new properties of conformable semigroups of operators similar to those of strongly
continuous semigroups of operators. Also, this paper defines a uniformly continuous conformable semigroups and
proves some characterization of its generator. Based on these results, some further works could apply our theorems to
solve certain problems and applications in fractional differential equations.
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