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Abstract: The present paper investigates the electromechanical coupling and the propagation of Bleustein–Gulyaev (B-G) 
wave in a transversely isotropic piezoelectric composed half-space under the effect of initial stress. It also addresses the 
dispersion relation of the Bleustein-Gulyaev wave. The suitable electrical and mechanical boundary conditions are 
considered for the electric potential, and electric displacements. The dispersion relation is computed numerically and 
illustrated graphically for the electric open and short cases for different thicknesses of the layer and wave number under the 
effect initial stress. The results indicate that the Bleustein-Gulyaev wave and electro-mechanical coupling factor are 
influenced by initial stress and the physical properties of the material. Numerical outcomes are produced employing 

 as an example of the materials included for clarification. Bleustein-Gulyaev waves under the initial stress have a 
good deal of practical importance in different signal transmission, micro-machined gyroscopes, sensors, actuators, signal 
processing and information storage applications. 
Keywords: Dispersion relation; Bleustein–Gulyaev wave; Initial stress, Piezoelectric composed structure; Electro-
mechanical coupling factor. 
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Nomenclature 
 the components of stress 

 
The initial stress tensor 

 the strain components 

 the dielectric constants 

 the displacement components 

 the electric displacement components 

 
the initial elastic displacement components 

 the electric field components 

 a unit vector representing the direction of the axis of rotation 

 the elastic stiffness constants  

 the piezoelectric constants  

 the density 
 the electrical intensity components 

 the electrical potential components 
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1 Introduction  
 

Recently, surface acoustic wave propagation in 
piezoelectric composite frameworks has gained a great 
attention because of  their major achievement in practical 
manufacturing applications such as surface acoustic wave 
oscillators, amplifier, sensors, resonators, delay lines, 
oscillators, filters. Since Bleustein [l] and Gulyaev [2] 
concurrently found out the existence of a SH 
electroacoustic surface mode which propagates in 
piezoelectric materials  of class 6 mm, there has been 
considerable interest in investigated the modeling of this 
type of surface wave. Furthermore, the results of the B-G 
have provided a theoretical and practical basis for several 
studies and applications that address the acoustic surface 
wave in piezoelectric devices. Thus, B-G waves have 
become one of the important topics in modern electro-
acoustic technology [3-8]. 
Several authors investigate the surface acoustic waves such 
as B-G waves with different piezoelectric layers and 
substrate propagating in the structure under some special 
conditions and different hypotheses [9-16]. 
 The nonlinear wave propagation in anisotropic elastic 
materials is a complicated procedure and the solutions for 
corresponding nonlinear problems are uncommon. The 
presence of acceleration waves is widely connected with 
the characteristic of hyperbolic dynamics equations (or 
elliptic equations of statics). For example, Altenbach [17] 
extended the problem of acceleration wave propagation 
analysis to the case of nonlinear thermoelastic micropolar 
structure. Many studies considering reflection and 
transmission of fluid streams at discontinuity surfaces of 
material characteristics in numerous various frames are 
illustrated  in [18-26].  

 

In this study, the propagation attitude of the B-G waves and 
the elecromechancial coupling factor in a piezoelectric 
composite structure have been examined the presence of 
initial stress. The dispersion relation for the B–G wave is 
given when a layered half-space has identical piezoelectric 
layer with the substrate. The electromechanical coupling 
coefficients were also studied in piezoelectric layers under 
the influence of initial stress. Some of the previous studies 
can be deduced as special cases of this study. The results of 
the present study are useful for building SAW devices with 
high efficiency and quality, but also for estimating the 
distribution of residual stress in composite materials. 
 

2 Basic Equations  
The composite piezoelectric structure and the relevant 
coordinate axis are given in Fig. 1. We consider the normal 
configuration the substrate is in the region  and the 

layer is in part . We suppose that the above-

mentioned region of the piezoelectric layer ( ) 
may be electrically free or shorted. In addition, it will be 
considered as traction-free. Also, the layer is assumed to be 
under the effect of steady initial stresses. Therefore, the 

differential equations of motion in a quasi-static 
approximation of the hexagonal piezoelectric half-space 
may be written as follows taking into consideration the 
effects of the initial stress [4] and [8]: 
 

,                                (1) 

                                           (2) 

Where the equations of state of the piezoelectric solid may 
be given as: 

,                                             (3) 

,                                           (4) 

                                             (5) 

                                                                  (6)  

 
Where dot denotes time differentiation, the repeated index 
in the subscript implies summation, the comma signifies 
space-coordinate derivative [18]. 
From Eqs. (3)-(6) into Eqs. (1) and (2), one may obtain 
[16]: 

     (7)                                  

                    (8)  

Where  and  have four and three indices, 

respectively. These constants may be written in two-index                                                               
Notations, as shown in [1] and [4].  
 

3 Boundary Conditions and Formulation of 
the Problem 
 

The motion must satisfy the boundary and continuous 
conditions which it should be assumed as:  
(a)   The mechanical condition is: 

  ,       at                               (9)                      
(b) The electrical boundary conditions 
(i) For electrical open case:  

    at                                                            

(10) 
(ii) For electrical short case: 

   at                                  (11)                                                                           

 (c) The continuity conditions at : 

    

                                                                                      (12)                                                                  
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here  and  denote the normal stress components in 
the substrate and layer, respectively. While, 

and  indicate the normal 
components in the vacuum, the layer and the substrate of 
the electric displacement. Also,  and  represent the 
electric potentials in the substrate and vacuum. 
Now, we give concern to transverse surface wave 
propagation on a hexagonal piezoelectric medium and 
consider that the propagation of wave has amplitude decays  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                         

(16) 
where  and  indicate the displacement component 

and electric potential function in the layer   

while  and  show the correspondence of them in the 

substrate ,  and 

  
Now, it is clear that Eqs. (15) and Eqs.(16) contain only 
three  constants, i.e.,  and  due to the 
symmetric axis of the hexagonal system of the piezoelectric 
region which is perpendicular to the  plane. Let 

with depth to the -axis.  
Furthermore, the components of the plane displacement and 
electrical potential  are assumed as: 

 
 

   (13) 
It is proposed that the layered piezoelectric structure and 
the substrate are made of the same transversely isotropic 
piezoelectric materials but in the opposite direction. Thus, 
we have: 

                 (14) 

Let  and  individually indicate the electrical 
potential and mechanical displacement in the layered 
piezoelectric structure. Therefore, one may obtain the 
fundamental coupled field equations for B–G wave 
propagation as:  

                                                                

(15) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 denotes the electrical potential in the air which 
satisfies the following Laplace equation:  
 

.                                                 (17)  
It is clear that the propagation of B-G wave must satisfy 
and content the boundary conditions and the continuity 
conditions over the interface between the two composites. 
 

5 Solution of the Problem 
 

5.1 Solution for the Electric Open Condition 
 
The solutions of Eq. (11) may be considered as follows: 

  

                                                                                       
                                                                                        (18) 
 

where  and are the unknown functions.  
Substitution of Eq. (18) into (15) presents the following: 
 
 

 

                                                                                         (19) 
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Fig. 1: Geometry of the problem. 
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From Eq. (20) , one may obtain: 

                                      

                                                                                         (20) 
Substitution of Eq. (20) into (19)  gives 

   

                                                                                          
(21) 

Where   

And  
The solution of Eq. (21) is  

                                    
                                                                                       (22) 
where  defines the shear wave velocity in the 
piezoelectric structure. Equation (20) may be considered as 
differential equation of .  

It is noticeable that  is a 
particular solution of Eq. (20). The homogeneous equation 
(20) has a general solution that can be written as follows 

 

Therefore, the complete solution of  may be 
considered as 
 

 
 
Substitution the relations and  into (18), 
one may obtain the following equation: 
 

           

(23) 
Eq. (12) may be solved in a similar way. For 

 in the substrate when , 

and ; therefore, Eq. (12) has the 
solution as 

                                                       

 

  (24) 

where  . Thus, one may get the 

solution of  Eq. (17) as: 

   
                                                                                         (25)  
Substitution (23), (24) and (25) into (9), (10) and (11), 
provides the linear homogeneous algebraic relations of the 

arbitrary constants   and . 
Then, the dispersion velocity equation for electrically open 
case at the free surface may be written as:   

   

                                                                                       (26) 
 

Where we have use the following relations: 

,  ,  

, , 

,    

with  is the relative dielectric constant corresponding to 

. Eq. (26) represents the equation of the dispersion 
velocity for the B–G wave in the layered piezoelectric 
ceramics for the electric open condition when the surface is 
free from traction. Eq. (26) reveals that  the B–G wave in 
the layered structure is frequency dispersive (see [1]). 
 

5.2 Solution for the Electric Shorted Condition 
 

Based on the previous representation, for the layered 
piezoelectric half-space structure according to the electric 
shorted condition at the free surface, the solution may be 
given  by solving Eqs. (15) and Eqs. (16) With the help of 
the relations (9), (11) and (12). The suitable dispersion 
velocity equation in this case may be given as: 
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( 27)

 

The dispersion velocity is associated with influence of the 
initial stress, layer thickness, wavelength, elastic, dielectric 
and piezoelectric coefficients. 
 

6 Electromechanical Coupling Factor 
 

A very important factor for the B-G surface wave in many 

applications is the electrochemical coupling factor 
which is known as: 

                                                      (28) 

where  and  are the velocities the  B-G wave in the 
electrically shorted and open conditions, respectively.  
The factor of electromechanical coupling is a parameter 
which straightway connected with the qualification of a 
transducer in transforming electrical energy to mechanical 
energy or vice versa. Moreover, it is a significant material 
operator for building of acoustic surface sensors [9]. 
 

7 Numerical Calculations 

 

The  piezoelectric solid ceramic material having 
hexagonal symmetry (6mm class) is considered for the 
reason of numerical computation. All the materials data 
used in the calculation can be seen in [16]. To find the 
solution of Eqs. (26) and (27) numerically, the values of 
phase velocity of the B–G wave for the electrically open 
and electrically shorted cases may be acquired and denoted  
as  and , respectively. The change type in values of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the propagation velocity of the B–G wave along with the 
thickness of the layer in the layered structure is illustrated 
in Figs. 2, 3, 4 and 5, respectively. The important results 
are defined according to the reality of the graphs as  
follows:  
Figure 2 illustrates the dispersion velocity c for the 
electrically open condition versus the penetration depth 
m(= ) for different values of initial stress. Figure (2) 
illustrates in the period (0.01-0.18) that the phase velocity c 
dramatically decreases by growing m. Then, it slightly 
increases in the period (0.19- 0.5). After that, it becomes 
almost constant. In addition, it increases with the rise of the 
value of initial stress, especially after the period (0, 0.1). 
Figure 3 addresses velocity of the dispersion c for the 
electric short case versus m for different values of initial 
Stress. In this case, the dispersion velocity is lower than in 
the previous case and has a similar behavior with the 
change of m. It is also affected by the increase of the initial 
stress as a function of m. 
Figure 4 involves the comparison between velocity of the 
dispersion c for the electric open and short cases versus m 
for a fixed initial stress. It is confirmed that velocity of the 
dispersion for the electric open case is greater that of the 
electric short case.  
Figure 5 presents the electromechanical coupling factor 

 versus m for various values of initial stress. It may be 
observed that the electromechanical correlation coefficient 
as a function of m decreases very rapidly in the period 
(0.01-0.16). Then it gradually increases to reach its 
maximum value (0.075). After that, it goes down very 
slowly. Furthermore, the initial stress is obvious in the 
various curves. It is also noted that there is a significant 
inverse proportionality between the parameters of 
electromechanical coupling as a function of initial stress 
and m.  
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Fig.2: The dispersion velocity c versus m for various values of initial stress for the electrical open case. 



                                                                                                                          R A. Bossly: Effect of initial stress on … 

 
 
© 2019 NSP 
Natural Sciences Publishing Cor. 
 

1064 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: The dispersion velocity c versus m for various values of initial stress for the electrical shorted case. 

 
 

 

 
Fig.4: Comparison for the dispersion velocity c versus m for a fixed initial stress. 

 
 

 
Fig.5: The electromechanical coupling factor  versus m for various values of initial stress. 2K
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8 Conclusions 

In this research, the computations were achieved to clarify 
the effect of the initial stress on the dispersion velocities 
and the electromechanical coupling parameter for 
Bleustein-Gulyaev surface waves for a piezoelectric 
structure. The above-mentioned results confirm that the 
initial stress, the mechanical and electrical conditions on 
the boundaries  have substantial influences 
on the dispersion velocities in the composite structure. One 
may observe that the influence of initial stress on the 
dispersion relation and electromechanical coupling 

coefficients is negligible because   Pa. 

However, the dispersion velocity reduces with the rise of 

initial stress as  Pa. Furthermore, the significant 

outcomes of this work not only detecting the complicated 
behaviour of electromechanical coupling of piezoelectric 
layered composites under the influence of initial stress but 
also providing a theoretical basis for shaping  high standard 
electro-acoustic appliances for practical purposes in the 
microwave  devices. 
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