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Abstract: In the present article, we intend to solve the Stokes’ first and second problems for an incompressible couple stress fluid under

isothermal conditions. The solutions of the considered problems are obtained by the Laplace transform (LT) as for the time variable

t and the sine Fourier transform (FT) as for the y-variable. It ought be noticed that by suitable manipulations of the inverse integral

transforms, fluid velocity expressions are written as the sum of steady-state (post-transient solution) and transient solutions. Further,

we wish to give a comparison of the obtained results and the results obtained by Devakar and Lyengar [1] by using the four inverse

Laplace transform algorithms (Stehfest’s, Tzou’s, Talbot, Fourier series) in the space time domain utilizing a numerical methodology.

Moreover, velocity profiles are plotted and considered for different times and different values of couple stress Reynolds number. At the

end, the outcomes are introduced through graphs and in tabular forms.
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1 Introduction

Recently, researchers have demonstrated their enthusiasm
for non-Newtonian liquids in view of their applications in
numerous common, industrial and mechanical problems.
One such type of fluid that has pulled in the consideration
of research specialists in fluid mechanics during few
decades is the couple stress fluid planned by Stokes [2,3].
The hypothesis of couple stress fluids is a simplification
of the traditional hypotheses of viscous liquids, which
takes into consideration the nearness of couple stresses
and body couples in the fluid medium. Additionally, the
couple stress hypothesis includes couple stresses and
non-symmetric forces-tress in fluid.

Moreover, the couple stress fluid theory presented by
Stokes’ suggests models for those fluids whose
microstructure is mechanically momentous [4]. To
introduce a size dependent effect is one of the main
features of couple stresses. The subject of continuum
mechanics ignores the impact of magnitude of material
particles inside the continua. This is unswerving with
neglecting the rotational association between the particles
of the fluid, which results in a symmetry of forces-tress
tensor. However this cannot be true and a size dependent
couple-stress hypotheses is needed in some important

cases for fluid flow with suspended particles. The spin
because of microrotation of these unreservedly suspended
particles set up an antisymetric stress, which is known as
couple stress, and in this way framing couple stress
liquid. The couple stress fluids are proficient of describing
different types of lubricants, suspension fluids, blood and
so on.

These fluids have applications in various processes in
industry, for example, solidification of liquid crystals,
expulsion of polymer liquids, colloidal solutions and
cooling of metallic plate in shower etc. Stokes has also
written, review of couple stress fluid dynamics by the
name ”Theories of Fluids with Microstructure” [2] which
contains an extensive study about these fluids. Essential
thoughts and methods for both steady and unsteady flow
problems of Newtonian and non-Newtonian fluids are
given by Ellahi [5]. The essential equations overseeing
the flow of couple stress liquids are non-linear in nature
and even of higher order than the Navier Stokes
equations. In this manner, an analytical solution of these
equations is not easy to find. Diverse perturbation
procedures are usually utilized for obtaining approximate
solutions of these equations see [6,7,8,9] and references
there in.
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In this paper, we establish the exact solutions of
Stokes’ first and second problems for an incompressible
couple stress fluid by Laplace and Fourier transforms.
The basic governing equations for couple stress fluids are
given in section 2, and the formulation of the problem is
given in section 3. Analytical solutions of Stocks first and
second problems are obtained in section 4. In section 5,
the conclusion and discussion is given. Also the
comparison of our obtained results are shown with the
results of Devakar and Lyengar [1] and four other results
which, are obtained by employing the different numerical
inversion techniques (Stehfests, Tzous, Tzous, Talbot,
Fourier series) [10] for the inverse Laplace transform by
graphical and tabular form.

2 Basic Equations

The simple equations governing the flow of an
incompressible couple stress fluid are in [6,11,12,13] as
follows

∇ ·V, (1)

ρ
dV

dt
= ∇ ·T−η∇4V+ρf, (2)

where V is the velocity vector, ρ is the constant density,
f is the body force per unit mass, T is the Cauchy stress
tensor, η is the couple stress parameter and the operator
d/dt denotes the material derivative which is defined as:

d

dt
(∗) =

(

∂

∂ t
+V ·∇

)

(∗).

The Cauchy stress tensor T can be defined as:

T =−pI+ τ, τ = µA1,

where p is the dynamic pressure, I is the unit tensor, µ is
the coefficient of viscosity and A1 is the first
Rivlin-Ericksen tensor defined as: A1 = L+LT , L is the
gradient of V and LT is the transpose of L.
To solve the problem dealing with couple stress fluid
flows, in addition to the assumption of no-slip condition,
it is presumed that the couple stresses vanish at the
boundary.

3 Formulation of the problem

Consider the unsteady flow of couple stress fluid which
fills the half space y > 0 over an infinite extended flat
(solid) plate possessing xy-plane. At first, we expect that
both fluid and plate are at rest. At time t = 0+, regardless
of whether we enable the plate to begin with a constant
velocity U along x-axis or oscillate with velocity
U cos(ωt) or U sin(ωt). Along these lines, the velocity is
expected to be in the form V = (u(y, t),0,0) and it

consequently satisfies the continuity equation (1).
The equation governing u(y, t), is now seen as

ρ
∂u(y, t)

∂ t
= µ

∂ 2u(y, t)

∂y2
−η

∂ 4u(y, t)

∂y4
. (3)

Introducing the following non-dimensional quantities:

u∗ =
u

U
, y∗ =

y

l
, t∗ =

U

l
t, where l2 =

η

µ
, Re =

ρUl

µ
,

into Eq. (3), yields the following dimensionless expression
(drop out the star notation for simplicity)

Re
∂u(y, t)

∂ t
=

∂ 2u(y, t)

∂y2
−

∂ 4u(y, t)

∂y4
, (4)

where, Re is the Reynold number.
It is simple that we need to solve the above equation
utilizing the suitable boundary conditions relying upon
whether we are managing Stokes’ first or second problem.

4 Solution of the problem

4.1 Stokes’ first problem

Initially, both fluid and plate are at rest. At time t = 0+, the
plate is all of a sudden set to move with constant velocity
U . The non-dimensional initial and boundary conditions to
be satisfied for this problem are

u(y,0) = 0, for all y, (initial condition)

u(0, t) = 1, for all t > 0, (no-slip condition). (5)

u(y, t)−→ 0, as y−→∞, for all t > 0, (natural condition)

∂ 2(y, t)

∂y2
= 0, at y = 0, for any t > 0.

(vanishing of couple stress on the boundary)
Taking the LT to Eqs. (4), (5) and using the initial

condition (5)1, we have

∂ 4u(y,q)

∂y4
−

∂ 2u(y,q)

∂y2
+Requ(y,q) = 0, (6)

with boundary conditions

u(0,q) =
1

q
,

u(y,q)−→ 0, as y −→ ∞, (7)

∂ 2u(y,q)

∂y2
= 0, at y = 0.

Applying the sine FT to Eq. (6) and taking into account the
conditions (7), we find

usn(ξ ,q) =

√

2

π

1

ξ

{

1

q
−

1

q+ ξ 2(ξ 2+1)
Re

}

.
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Taking inverse LT to the last relation, we get

usn(ξ , t) =

√

2

π

1

ξ

{

1− exp

(

−

ξ 2(ξ 2 + 1)

Re
t

)}

. (8)

Now, employing the inverse sine FT, we obtain

u(y, t) = 1−
2

π

∫ ∞

0

sin(yξ )

ξ
exp

(

−

ξ 2(ξ 2 + 1)

Re
t

)

dξ .

(9)
Our final solution is the sum of post-transient (steady)
solution and transient solution, where the transient
solution is

ut(y, t) =−

2

π

∫ ∞

0

sin(yξ )

ξ
exp

(

−

ξ 2(ξ 2 + 1)

Re
t

)

dξ .

We hightailed the property limt−→∞. ut(y, t) = 0.

4.2 Stokes’ second problem

Initially, both fluid and plate are at rest. At time t = 0+,
it is assumed that the plate begins to oscillate in its own
plane with velocity U cos(ωt) or U sin(ωt), (where U is
the amplitude of the motion and ω is the frequency of the
vibration). Therefore, the non-dimensional conditions to
be satisfied are

u(y,0) = 0, for all y, (initial condition)

u(0, t) = cos(ωt) or u(0, t) = sin(ωt), for all t > 0, (10)

(no-slip condition)

u(y, t)−→ 0, as y−→∞, for all t > 0, (natural condition)

∂ 2(y, t)

∂y2
= 0, at y = 0, for any t > 0.

(vanishing of couple stress on the boundary) As in the
case of Stokes’ first problem, taking LT of Eqs. (4), (10)
and using initial condition (10)1, we get Eq. (6) with the
following boundary conditions

u(0,q) =
q

q2 +ω2
, or u(0,q) =

ω

q2 +ω2

u(y,q)−→ 0, as y −→ ∞, (11)

∂ 2u(y,q)

∂y2
= 0, at y = 0.

Employing the sine FT to Eq. (6) and taking into account
the conditions (11), we have

usn(ξ ,q) =

√

2

π
ξ (ξ 2 + 1)

q

(Req+ ξ 2(ξ 2 + 1))(q2 +ω2)
.

An equivalent form is

usn(ξ ,q) =

√

2

π

1

ξ

{

q

q2 +ω2
−

1

q+ ξ 2(ξ 2+1)
Re

+
ω

q2 +ω2

ω

q+
ξ 2(ξ 2+1)

Re

}

.

Taking inverse LT to the above relation, we get

usn(ξ , t) =

√

2

π

1

ξ

{

cos(ωt)− exp

(

−

ξ 2(ξ 2 + 1)

Re
t

)

+ ω

∫ t

0
sin(ω(t − τ)) (12)

× exp

(

−

ξ 2(ξ 2 + 1)

Re
τ

)

dτ

}

.

Now, employing the inverse sine Fourier transform, we
obtain the solution corresponding to the cosine oscillation
of the boundary

uc(y, t) = cos(ωt)−
2

π

∫ ∞

0

sin(yξ )

ξ
exp

(

−

ξ 2(ξ 2 + 1)

Re
t

)

dξ

+
2ω

π

∫ ∞

0

∫ t

0

sin(yξ )

ξ
sin(ω(t − τ)) (13)

× exp

(

−

ξ 2(ξ 2 + 1)

Re
τ

)

dτ. (14)

With similar procedure as in this section, we find the
following solution corresponding to sine oscillation of the
boundary

us(y, t) = sin(ωt)−
2ω

π

∫ ∞

0

∫ t

0

sin(yξ )

ξ
cos(ω(t − τ))

× exp

(

−

ξ 2(ξ 2 + 1)

Re
τ

)

dτ.

Table 1: Validation of the obtained numerical results with

analytical solution (9)

.
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Fig. 1: Variation of the velocity field u(y, t) with distance at

different times for Re = 0.5.

Fig. 2: Variation of the velocity field u(y, t) for different values

of Re at t = 1.

5 Conclusions and Numerical results

In the present study, the velocity field corresponding to
the Stokes’ first and second problems for an
incompressible couple stress fluid under isothermal
conditions are determine by using the LT and sine FT.
Straightforward computations show that u(y, t) given by
Eq. (9), as well as uc(y, t) and us(y, t) given by Eqs. (13)
and (14), satisfy both the governing equation and all
imposed initial and boundary conditions. Further, the
obtained results are compared with the numerically
evaluated results of Devakar and Lyengar [1] and four
other inverse Laplace transform algorithms (Stehfest’s,
Tzou’s, Fourier series, Talbot) in the space time domain

Fig. 3: Comparison of our result (9) with the results of [1, 10] for

Re = 0.5 and t = 0.5

Table 2: Validation of the obtained numerical results with

analytical solution (13)

.

using a numerical approach. In each case, physical
aspects of the flow parameters on velocity field can be
seen graphically and in tabular form. All the graphs and
tables are presented in dimensional velocity profile and
the special variable y.
Stokes’ first problem. Fig. 1 is plotted against the
velocity field and spatial variable y to see the effect of
time t for fixed parameter (Reynolds number) Re. It is
observed that, at a fixed distance y, as time increases, the
fluid velocity increases. it means that velocity profile is
directly proportional to the time t. Fig. 2, shows that for
any fixed time t, as Re is increasing, the velocity profile is
seen to be decreasing for a fixed distance y. Fig. 3, shows
the comparison of our obtained result (9) and the
numerically evaluated results of [1] and four other Inverse
Laplace transform algorithms (Stehfest’s, Tzou’s, Fourier
series, Talbot) in the space time domain using a numerical
approach [10]. From Table 1, it can be observed that the
Honig-Hirdes method [1], Stehfest’s, Tzou’s, and Talbot
methods have good agreement with our obtained
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Fig. 4: Variation of the velocity fields uc(y, t) and us(y, t) with

distance at different times for Re = 0.5.

Table 3: Validation of the obtained numerical results with

analytical solution (14)

.

analytical results. But Fourier Series method give errors.
Stokes’ second problem. For fixed value of Reynolds
number Re the oscillatory character of the velocity is seen
in the Figs. 4(a) and 4(b), as can be expected. In Figs 5(a)
and 5(b), the variation of fluid velocity is plotted for
different values of couple stress Reynolds number Re at a
fixed time t. As Reynolds number Re increasing, it can be
seen that the velocity decreases for both cosine and sine

Fig. 5: Variation of the velocity fields uc(y, t) and us(y, t) for

different values of Re at t = 1.

Fig. 6: Comparison of our result (13) with the results of [1, 10]

for Re = 0.5, t = 0.5 and ω = π/7.

oscillations. Figs. (6) and (7), give the comparison of our
obtained analytical results (13) and (14), with the
numerically evaluated results in [1,10]. From Table 2, it
can seen that all numerically evaluated results have good
agreement with our obtained cosine results (13), but in
Table.3, except of Honig-Hirdes method [1], all other
algorithms show the error with the sine results (14).
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Fig. 7: Comparison of our result (14) with the results of [1, 10]

for Re = 0.5, t = 0.5 and ω = π/7.

By this discussion, we can see that all these numerically
evaluated inverse Laplace transform algorithms are not
suitable to find the solutions for all type of problems.
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