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Abstract: In this paper, we analyze a stochastic SIR epidemic model in a constant population with a relapse and nonlinear perturbation.

First, we illustrate show that the system has a unique global positive solution that belongs to a positively invariant set. Then, we obtain

sufficient conditions for the extinction and persistence in the mean. Finally, numerical simulations are carried out to illustrate the

theoretical results.
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1 Introduction

The spread of infectious diseases, which has become one
of the major concerns, threatens public health, as well as
the economic and social developments of the community.
Thus, it is necessary to control it. Based on the classical
SIR epidemic model of Kermack and McKendrick which
was established in 1927 [1], the spread of infectious
diseases among population is mathematically described
using compartmental models, such as SIS, SIR, SIRS, or
SEIR where each letter refers to a compartment in which
an individual can reside. Let S(t) denotes the number of
members of a population susceptible to the disease, I(t)
represents the number of infective members and R(t)
signifies the number of the members who have been
removed from the possibility of infection with permanent
or temporary immunity, at time t. A relapse may occur
after recovery. According to Macquarie Dictionary, a
relapse is ”to fall or slip back into a former state or
practice,...etc”. According to the Australian Concise
Oxford Dictionary, it is ”deterioration in a patient’s
condition after a partial recovery” [21]. Incomplete
treatment may lead to a relapse in case of catching some
diseases, such as tuberculosis, see Martin [4]. Tudor [2]

was the first to construct and study a compartmental
epidemic model with relapse. In [16,20], the
displacement of the recovered individuals to the infective
class due to relapse is illustrated by a linear relapse rate
ηR(t), where η > 0. If a relapse occurs due to a contact
with an infected person, it is more reasonable to consider
a bilinear relapse rate δβ R(t)I(t). That is, the SIR model
with bilinear relapse takes the form:





dS(t) = [µ − µS(t)−β S(t)I(t)]dt,

dI(t) = [−(µ +α)I(t)+β S(t)I(t)+ δβ R(t)I(t)]dt,

dR(t) = [−µR(t)+αI(t)− δβ R(t)I(t)]dt,

(1.1)
where, µ is the rate at which new individuals enter the
population as well as the natural death rate of the
susceptible, infected and recovered individuals. α is the
rate at which the infective individuals get recovered, β is
the infection coefficient, and δ ∈ [0,1] is the parameter
that measures the intensity of the relapse. The incidence
of a disease is the number of new cases per unit time. In
our model, we adopt the bilinear incidence rate β S(t)I(t),
which is frequently used in many epidemic models.
Another addition in the modeling of population dynamics
of diseases is the introduction of stochasticity into
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epidemic models. Several scholars have investigated the
effect of stochasticity on epidemic models [8,6,10]. For
instance, to include stochastic demographic variability,
Allen [8] studied a SDEs for simple SIS and SIR
epidemic models with constant population size derived
from a continuous time Markov chain model. In [6], the
situation of white noise stochastic perturbations around
the endemic equilibrium state was considered. The
technique of parameter perturbation has been used by
several researchers [9,10,17,13]. The case of color noise
was investigated by Gray et al. as well as Settati and
Lahrouz [12,15]. Both of them have conducted a detailed
analysis on asymptotic behavior of an SIS epidemic
model under a finite regimes-switching.

Let (Ω ,F ,{Ft}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual
conditions that comprise all the random variables we
meet in the following. In this paper, we assume that
fluctuations in the environment will manifest themselves
as fluctuations in the infection coefficient β . To
incorporate the random nature of diseases transmission,
we assume that the infection coefficient β is a random

variable governed by the equation dβ (t) = β̃ dt +σdB(t),
where B(t) is a Brownian motion and σ is the intensity of

noise. Thus, if we still denote the mean value β̃ by β , the
corresponding stochastic system (1.1) can be described by
the following stochastic differential equation:

dS(t) = [µ − µS(t)−β S(t)I(t)]dt −σS(t)I(t)dB(t),

dI(t) = [−(µ +α)I(t)+β S(t)I(t)+ δβ R(t)I(t)]dt

+(σS(t)I(t)+ δσR(t)I(t))dB(t),

dR(t) = [−µR(t)+αI(t)− δβ R(t)I(t)]dt

−δσR(t)I(t)dB(t), (1)

subject to the initial conditions:
S(0) > 0, I(0) > 0,R(0) > 0 and S(0)+ I(0)+R(0) = 1.
We mention here that a stochastic version of the
deterministic model (1.1) is studied by El Myr et al [19],
by perturbating the death rates in a population of varying
size, which is not the case in our model. That is, the
population remains constant in time. The other parts of
the present paper is organized as follows: The next
section addresses solving the problem of the model well
posedness (1). The third section is devoted to obtaining
sufficient conditions for the extinction of the disease
described by (1). The fourth section sheds light on the
disease persistence in the host population. The fifth
section presents some numerical simulations to illustrate
the theoretical findings. The last section involves
conclusions and further considerations .

2 Existence and uniqueness of positive

solution

Throughout the following sections, we denote .

R
3
+ = {(x1,x2,x3)|xi > 0, i = 1,2,3},

∆ = {x ∈ R
3
+,x1 + x2 + x3 = 1}

In general, consider the n−dimensional stochastic
differential equation

dX(t) = f (X(t), t)dt + g(X(t), t)dB(t), X(0) = x0 ∈ R
n
,

(2)
where f : Rn → R

n, g : Rn → R
n×d and B(t) denotes a

d-dimensional standard Brownian motion defined on the
underlying probability space. If A is a vector or matrix, its
transpose is denoted by AT . The n× n matrix

Σ(x)
∆
= g(x)T g(x)

is called the diffusion matrix. For the convenience of a later
presentation, we present the generator L associated with
(1) as follows. For any twice continuously differentiable
V (x) ∈ C 2(Rn)

LV (x) = ∇V (x) f (x)+
1

2
trace

(
Σ(x)∇2

V (x)
)
,

where ∇V and ∇2V denote the gradient, Hessian of V

respectively. Next, we indicate that the solution of model
(1) is global and positive using the Lyapunov analysis
method.

Theorem 1.For any initial values

(S(0), I(0),R(0)) ∈ ∆ , there is a unique solution

(S(t), I(t),R(t)) to system (1) on t ≥ 0 and the solution

will remain in ∆ with probability 1.

Proof.Since the coefficients of system (1) are locally
Lipschitz continuous, for any initial value
(S(0), I(0),R(0)) ∈ ∆ , there is a unique local solution on
[0,τe) where τe is the explosion time (see [5]). Let p0 > 0

be sufficiently large such that min{S(0), I(0),R(0)}> 1
p0

.

For each p ≥ p0, define the stopping time τp as follows:

τp = inf

{
t ∈ [0,τe) : min

{
S(t), I(t),R(t)

}
≤ 1

p

}
, (3)

we set inf /0 = ∞. Obviously, τp is increasing as p → ∞.
Set τ∞ = limp→∞ τp. Suppose that P{τ∞ ≤ ∞} > 0, then
there is a pair of constants T > 0 and ε ∈ (0,1) such that
P{τ∞ ≤ T}> ε . Thus, there is an integer p1 ≥ p0 such that

P{τp ≤ T} ≥ ε, ∀p ≥ p1 (4)

For t ≤ τp, we can see for each k

d(S+ I+R)

dt
= µ (1− S(t)+ I(t)+R(t)),

which implies that for all t ≥ 0, we have

d(S(t)+ I(t)+R(t)) = 1+ e−µt (S(0)+ I(0)+R(0)− 1).

Since, S(0)+ I(0)+R(0)= 1. Then

S(t)+ I(t)+R(t)= 1 for all t ≥ 0. (5)

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 6, 999-1007 (2019) / www.naturalspublishing.com/Journals.asp 1001

Define the C2 function W : R3
+ →R by

W(S, I,R) = (S− 1− lnS)+ (I− 1− lnI)+ (R− 1− lnR)

Hence, by Itô’s formula, we obtain that for all t ∈ [0,τp)

dW(t) = LW(t)dt +σ

[
I(t)− S(t)− δR(t)+ δ I(t)

]
dB(t),

(6)
where LW(t) is given by,

LW(t) = (1− 1

S(t)
)
[
µ −µS(t)−βS(t)I(t)

]
+

1

2
σ2I2(t)

+(1− 1

I(t)
)
[
− (µ +α)I(t)+βS(t)I(t)

+δβR(t)I(t)
]
+

1

2
σ2
(
S(t)+δR(t)

)2

+(1− 1

R(t)
)
[
−µR(t)+αI(t)−δβR(t)I(t)

]

+
1

2
σ2δ 2R2(t)

= 4µ +α +β I(t)+δβ I(t)−µ
(
S(t)+ I(t)+R(t)

)

− µ

S(t)
−βS(t)−δβR(t)−α

I(t)

R(t)

+
1

2
σ2I2(t)+

1

2
σ2(S(t)+δR(t))2 +

1

2
σ2δ 2R2(t)

≤ 4µ +α +β +δβ +
1

2
σ2 +

1

2
σ2(1+δ )2 +

1

2
σ2δ 2

=: K,

where K is a positive constant independent of S, I,R and t.
Substituting the last inequality into (6) leads to

dW(t)≤ Kdt +σ

[
I(t)− S(t)− δR(t)+ δ I(t)

]
dB(t).

Integrating the above-mentioned inequality sides from 0 to
τp ∧T and taking expectation, we get

E

[
W

(
S(τp ∧T ), I(τp ∧T ),R(τp ∧T )

)]
≤ W

(
S(0), I(0),R(0)

)

+E

[∫ τp∧T

0
Kdt

]

≤ W

(
S(0), I(0),R(0)

)

+KT. (7)

Let Ωp = {τp ≤ T} for p ≥ p1, we have by (4)
P(Ωp) ≥ ε . Thus, for every ω ∈ Ωp, there is at least one

of Sk(τp,ω), Ik(τp,ω) and Rk(τp,ω) equals 1
p
. Therefore,

W

(
S(τp,ω), I(τp,ω),R(τp,ω)

)
is not less than

1
p
− 1− ln 1

p
. Hence,

W

(
S(τp,ω), I(τp,ω),R(τp,ω)

)
≥ 1

p
− 1+ ln p.

Then, it follows from (7) that

W

(
S(0), I(0),R(0)

)
+KT ≥ E

[
1Ωp

(ω)W

(
S(τp,ω), I(τp,ω)

,R(τp,ω)

)]

≥ ε

(
1

p
− 1+ ln p

)

where 1Ωp
(ω) is the indicator function of Ωp. Let p → ∞

,we have that

∞ > W

(
S(0), I(0),R(0)

)
≥+∞.

This is a contradiction. Consequently, we must have τ∞ =
∞ as. Since, τ∞ ≤ τe, we deduce that τe =∞ a.s. That is, the
solution S(t), I(t),R(t) will not explode in a finite time and
remain positive for all t ≥ 0. The invariance of the domain
∆ follows from (5).

3 Extinction of the Disease

The following theorem provides sufficient conditions in
which the disease will die out.

Theorem 2.Let (S(t), I(t),R(t)) be the solution of system

(1) with initial value

(S(0), I(0),R(0)) ∈ ∆ . If one of the two following

assumptions holds

(C1)
β 2

2σ2
< µ+α

(8)

(C2)
σ2(α(δ + 1)+ µ)

µ +α
≤ β and

Te =




β [α(δ+1)+µ]
µ+α

(µ +α)+ σ 2

2

(
α(δ+1)+µ

µ+α

)2


< 1, (9)

then the disease will die out exponentially a.s. That is,

limsup
t→∞

log It

t
< 0, a.s.. (10)

Moreover

lim
t→∞

1

t

∫ t

0
R(s)ds = 0, a.s..

lim
t→∞

1

t

∫ t

0
S(s)ds = 1, a.s..
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Proof.Applying Itô’s formula to system (1), we obtain

d logI(t) =

(
β
(
S(t)+ δR(t)

)
− (µ +α)

−σ2

2

(
S(t)+ δR(t)

)2

)
dt

+σ
(
S(t)+ δR(t)

)
dB(t).

Integrating the above equation from 0 to t and dividing
by t results in

log I(t)− logI(0)

t
=

β

t

∫ t

0
(S(s)+ δR(s))ds− (µ +α)

−σ2

2

∫ t

0

(S(s)+ δR(s))

t

2

ds+
M(t)

t

≤ β
(∫ t

0

(S(s)+ δR(s))

t
ds
)
− (µ +α)

−σ2

2

(∫ t

0

(S(s)+ δR(s))

t
ds

)2

+
M(t)

t

≤ β 2

2σ2
− (µ +α)

−σ2

2

[(∫ t

0

(S(s)+ δR(s))

t
ds

)
− β

σ2

]2

+
M(t)

t

≤ β 2

2σ2
− (µ +α)+

M(t)

t
.

Where M(t) = σ
∫ t

0

(
S(s) + δR(s)

)
dB(s) is a local

martingale with M(0) = 0. Moreover,

lim
t→∞

sup

〈
M,M

〉
t

t
≤ σ2(1+ δ )2

< ∞ a.s..

In virtue of Lemma 2, we get limt→+∞
M(t)

t
= 0 a.s..

limsup
t→+∞

log I(t)

t
≤ β 2

2σ2
− (µ +α) a.s.,

so, if condition (8) holds, the desired assertion (10) is
verified. Now, we show that (9) is a sufficient condition
for (10). First, we rewrite, using S+ I +R = 1, the third
equation of the system (1) as

dR = [−µR(t)+α(1− S(t)−R(t))−δβ R(t)I(t)]dt

−δσR(t)I(t)dB(t)

= [α − (µ +α)R(t)−αS(t)− δβ R(t)I(t)]dt

−δσR(t)I(t)dB(t).

From the well-known variation of constant formula, we get

R(t) = e−(µ+α)t

[
R(0)+

∫ t

0
e(µ+α)s

(
α −αS(t)

−δβ R(s)I(s)
)
ds− δσ

∫ t

0
e(µ+α)sR(s)I(s)dB(s)

]

=
α

µ +α
−
(

α

µ +α
−R(0)

)
e−(µ+α)t

−α

∫ t

0
S(s)e−(µ+α)(t−s)ds

−δβ

∫ t

0
R(s)I(s)e−(µ+α)(t−s)ds

−δσ

∫ t

0
R(s)I(s)e−(µ+α)(t−s)dB(s).

Then

S(t)+ δR(t) = (1−R(t)− I(t))

+δ

[
α

µ +α
−
(

α

µ +α
−R(0)

)
e−(µ+α)t

]

−δ

(
α
∫ t

0
S(s)e−(µ+α)(t−s)ds

+δβ

∫ t

0
R(s)I(s)e−(µ+α)(t−s)ds

+δσ

∫ t

0
R(s)I(s)e−(µ+α)(t−s)dB(s)

)

=
α(δ + 1)+ µ

µ +α
−ψ1(t)+ψ2(t)

−δ 2σ
∫ t

0
R(s)I(s)e−(µ+α)(t−s)dB(s), (11)

where

ψ1(t) = R(t)+ I(t)+ δα

∫ t

0
S(s)e−(µ+α)(t−s)ds

+δ 2β

∫ t

0
R(s)I(s)e−(µ+α)(t−s)ds,

and ψ2(t) =−δ

(
α

µ +α
−R(0)

)
e−(µ+α)t

.

Since, S, I,R ∈ (0,1), we have

lim
t→0

1

t

∫ t

0
ψ2(s)ds = 0 and

1

t

∫ t

0
ψ1(s)ds ≥ 0. (12)

Next, from (11) we get

log I(t)− logI(0)

t
=

β

t

∫ t

0
(S(s)+ δR(s))ds− (µ +α)−

σ2

2t

∫ t

0
(S(s)+ δR(s))2ds+

M(t)

t

≤ β

t

∫ t

0
(S(s)+ δR(s))ds− (µ +α)

−σ2

2

(∫ t

0

(S(s)+ δR(s))

t
ds

)2

+
M(t)

t
,
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where M(t) = σ
∫ t

0

(
S(s)+δR(s)

)
dB(s). By (11), we have

log I(t)− logI(0)

t
≤

β

[
α(δ + 1)+ µ

]

µ +α
− (µ +α)

−σ2

2

(
α(δ + 1)+ µ

µ +α

)2

+

(
σ2(α(δ + 1)+ µ)

µ +α
−β

)
×

1

t

∫ t

0
ψ1(s)ds+Γ (t).

Where

Γ (t) =

(
−σ2

(
α(δ + 1)+ µ

µ +α
− 1

t

∫ t

0
ψ1(s)ds

)
+β

)
×

(
1

t

∫ t

0
ψ2(s)ds−Ψ(t)

)

−σ2

2

(
1

t

∫ t

0
ψ2(s)ds−Ψ(t)

)2

+
M(t)

t
,

and

Ψ(t) =
δ 2σ

t

∫ t

0

∫ u

0
R(s)I(s)e−(µ+α)(u−s)dB(s)du.

In view of Lemma (1), we have limt→+∞Ψ(t) = 0 a.s.,
Lemma (2) with (12) lead to limt→+∞ Γ (t) = 0 a.s.. Thus,
if condition (9) holds, we get

limsup
t→+∞

log I(t)

t
≤ β [α(δ + 1)+ µ ]

µ +α
− (µ +α)

−σ2

2

(
α(δ + 1)+ µ

µ +α

)2

≤
(
(µ +α)+

σ2

2

(
α(δ + 1)+ µ

µ +α

)2
)
×




β [α(δ+1)+µ]
µ+α

(µ +α)+ σ 2

2

(
α(δ+1)+µ

µ+α

)2
− 1




≤
(
(µ +α)+

σ2

2

(
α(δ + 1)+ µ

µ +α

)2
)
×

(Te − 1)< 0, (13)

which indicates that

lim
t→+∞

I(t) = 0 a.s..

Denote Ω1 = {ω ∈ Ω : limt→∞ I(ω , t) = 0}. In view of
(13), we have P(Ω1) = 1. It means, for any given ε1 > 0,
there exists a constant T1 = T1(ω) such that I(t)< ε1, a.s.
for t > T1. Integrating the third equation of (1) both sides
from 0 to t and dividing by t, we have

µ

t

∫ t

0
R(s)ds ≤ α

t

∫ t

0
I(s)ds− δβ

t

∫ t

0
R(s)I(s)ds

−R(t)−R(0)

t
− 1

t

∫ t

0
σδR(s)I(s)dB(s).

≤ α

t

∫ t

0
I(s)ds− R(t)−R(0)

t

−1

t

∫ t

0
σδR(s)I(s)dB(s).

≤ α

t

∫ T1

0
I(s)ds+

α

t

∫ t

T1

I(s)ds− R(t)−R(0)

t

−1

t

∫ t

0
σδR(s)I(s)dB(s).

≤ αT1

t
+αε1 −

αε1T1

t
− R(t)−R(0)

t

−1

t

∫ t

0
σδR(s)I(s)dB(s).

According to Lemma 2, we get
limt→+∞

1
t

∫ t
0 σδR(s)I(s)dB(s) = 0, a.s.. Then, from the

arbitrariness of ε1, we get

limsup
t→∞

1

t

∫ t

0
R(s)ds ≤ 0, a.s..

From the positivity of R, we get

lim
t→∞

1

t

∫ t

0
R(s)ds = 0, a.s..

Let Ω2 = {ω ∈ Ω1 : limt→∞
1
t

∫ t
0 R(ω ,s)ds = 0} ⊂ Ω1.

In view of (13), for any given ε2 > 0, there exists a constant
T2 = T2(ω)≥ T1 such that 1

t

∫ t
0 R(s)ds < ε2, a.s. for t > T2.

For any ω ∈ Ω2, we have

d(S(t)+ I(t)+R(t)) =

[
µ − µ

(
S(t)+ I(t)+R(t)

)]
dt.

Integrating from 0 to t and dividing by t yield

1

t

∫ t

0
S(s)ds = 1− 1

t

∫ t

0
I(s)ds− 1

t

∫ t

0
R(s)ds

− 1

µ

(N(t)−N(0)

t

)
.

= 1− 1

t

∫ T2

0

(
I(s)+R(s)

)
ds− 1

t

∫ t

T2

I(s)ds

−1

t

∫ t

T2

R(s)ds− 1

µ

(N(t)−N(0)

t

)
.

≥ 1− ε1 − ε2 + ε1
T2

t
− 2T2

t
− 1

µ

(N(t)−N(0)

t

)
.

From the fact that limt→∞
1
µt

(N(t)−N(0)
t

)
= 0 a.s., and by

the arbitrariness of ε1 and ε2, we get

liminf
t→∞

1

t

∫ t

0
S(s)ds ≥ 1, a.s..
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Since, 0 ≤ S ≤ 1, we conclude

lim
t→∞

1

t

∫ t

0
S(s)ds = 1, a.s..

Thus, the proof is complete.

4 Persistence of the Disease

Theorem 3.For any initial values
(
S(0), I(0),R(0)

)
∈ ∆ .

If

Tp =
β

µ +α + 1
2
σ2

> 1, (14)

then the solution of system (1) obeys

(i)liminf
t−→∞

1

t

∫ t

0
S(u)du ≥ µ

µ +β
a.s.,

(ii)liminf
t−→∞

1

t

∫ t

0
I(u)du ≥ µ

β − 1
2
σ2

(
1− 1

Tp

)
a.s.,

(iii)liminf
t−→∞

1

t

∫ t

0
R(u)du ≥ µα

(µ+δβ )(β− 1
2 σ 2)

(
1− 1

Tp

)
a.s..

Proof.(i) From the first equation of system (1) and while
we have

(
S(t), I(t),R(t)

)
∈ ∆ ,

for all t ≥ 0, we get

dS(t)≥ (µ − (µ +β )S)dt−σS(t)I(t)dB(t).

Integrating the above inequality from 0 to t and dividing
both sides by t results in the following:

1

t

∫ t

0
S(u)du ≥ 1

µ +β

[
µ − S(t)− S(0)

t

−σ

t

∫ t

0
S(u)I(u)dB(u)

]
.

From the large number theorem for martingales and
the fact that 0 ≤ S(t)≤ 1
for all t ≥ 0, we have

lim
t→∞

(
S(t)− S(0)

t
− σ

t

∫ t

0
S(u)I(u)dB(u) = 0

)
a.s..

Then

liminf
t−→∞

1

t

∫ t

0
S(u)du ≥ µ

µ +β
.

(ii) Applying Itô’s formula to system (1), we get

d logI(t) =

(
β
(
S(t)+ δR(t)

)
− (µ +α)

−σ2

2

(
S(t)+ δR(t)

)2

)
dt +σ

(
S(t)

+δR(t)
)
dB(t).

Using the fact that
(
S(t), I(t),R(t)

)
∈ ∆ ,

we have S(t)≤ S(t)+ δR(t)≤ 1. Then

d logI(t) ≥
(
− 1

2
σ2S(t)+β S(t)− (µ+α)

)
dt

+σ
(
S(t)+ δR(t)

)
dB(t).

≥
(
− (µ +α)+β − 1

2
σ2

−
(
β − 1

2
σ2
)(

1− S(t)
))

dt

+σ(S(t)+ δR(t))dB(t). (15)

On the other hand

dS(t) =
(
µ − µS(t)−β S(t)I(t)

)
dt −σS(t)I(t)dB(t)

≥
(

µ
(
1− S(t)

)
−β I(t)

)
dt −σS(t)I(t)dB(t).

So,

−
(
1− S(t)

)
dt ≥− 1

µ
dS(t)− β

µ
I(t)dt − σ

µ
S(t)I(t)dB(t).

(16)
Combining (14),(15),(16) and integrating from 0 to t give

log I(t) ≥
(

β −
(
µ +α +

1

2
σ2
))

t

−β

µ

(
β − 1

2
σ2
)∫ t

0
I(u)du+ϒ(t).

Where

ϒ (t) = log I(0)− β − 1
2
σ2

µ

(
S(t)− S(0)

)
+

∫ t

0
σ(S(u)

+δR(u))dB(u)−
(
β − 1

2
σ2
)
σ

µ

∫ t

0
S(u)I(u)dB(u).

Moreover, based on the fact that 0 ≤ S(t)≤ 1 for all t ≥ 0

and Lemma 2, we have limt→∞
ϒ (t)

t
= 0. Applying Lemma

3, we get

liminf
t−→∞

1

t

∫ t

0
I(u)du ≥ µ

β − 1
2
σ2

(
1− 1

Tp

)
a.s..

(iii) Integrating the third equation of the system (1), we
have

R(t)−R(0) = −µ

∫ t

0
R(u)du+α

∫ t

0
I(u)du

−δβ
∫ t

0
R(u)I(u)du− δσ

∫ t

0
R(u)I(u)dB(u)

≥ α

∫ t

0
I(u)du− (µ + δβ )

∫ t

0
R(u)du

−δσ

∫ t

0
R(u)I(u)dB(u).
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Then
∫ t

0
R(u)du ≥ 1

µ + δβ

(
−
(
R(t)−R(0)

)
+α

∫ t

0
I(u)du

−δσ

∫ t

0
R(u)I(u)dB(u)

)
.

According to Lemma (2) and the fact that 0 ≤ R(t)≤ 1 for
all t ≥ 0, we have

lim
t→∞

(
− R(t)−R(0)

t
− δσ

t

∫ t

0
R(u)I(u)dB(u)= 0

)
a.s..

Then, using (ii), we obtain

liminf
t−→∞

1

t

∫ t

0
R(u)du≥ µα

(µ + δβ )(β − 1
2
σ2)

(
1− 1

Tp

)
a.s..

This finishes the proof of Theorem (3).

Appendix

Lemma 1.Let g(t) be a continuous and bounded function

on [0,∞) and θ > 1, then

lim
t→∞

sup
1√
t ln t

∣∣∣∣
∫ t

0
g(s)dB(s)

∣∣∣∣ ≤ θ a.s.

And for any constant ξ > 0,

lim
t→∞

sup
1√
t ln t

∣∣∣∣
∫ t

0
g(s)e−ξ (t−s)dB(s)

∣∣∣∣≤ θ a.s.

For the proof of the lemma, we refer the reader to Liu et al
[18]

Lemma 2.[5] (Strong Law of Large Numbers).Let

M = {Mt}t≥0 be a real-value continuous local martingale

vanishing

at t = 0.Then

lim
t→∞

〈
M,M

〉
t
= ∞ a.s.⇒ lim

t→∞

Mt〈
M,M

〉
t

= 0. a.s.

also we have

lim
t→∞

sup

〈
M,M

〉
t

t
< ∞ a.s.⇒ lim

t→∞

Mt

t
= 0. a.s.

Lemma 3.Suppose X ∈C (R+×Ω ,R+) and Y ∈C (R+×
Ω ,R). If there exist positive constants ν0 and ν such that

for all t ≥ 0:

logX(t)≥ ν0t−ν

∫ t

0
X(u)du+Y(t) and lim

∞

Y (t)

t
= 0 a.s..

Then

lim
t→∞

inf
1

t

∫ t

0
X(u)du ≥ ν0

ν
a.s.

5 Discussion and Simulations

To illustrate the effectiveness of the results, we will
perform some numerical simulations. Here, the numerical
simulations are given by the Milstein scheme [7]. We
consider the following discretization of equation (1)





Sk+1 = Sk +[µ − µSk −β SkIk]∆ t −σSkIk

√
∆ tτk

−σ 2

2
SkIk(τ

2
k − 1)∆ t,

Ik+1 = Ik +[−(µ +α)Ik +β SkIk + δβ RkIk]∆ t

+σSkIk

√
∆ tτk +

σ 2

2
SkIk(τ

2
k − 1)∆ t

+σδRkIk

√
∆ tτk − σ 2

2
δRkIk(τ

2
k − 1)∆ t,

Rk+1 = Rk +[−µRk +αIk − δβ RkIk]∆ t

−σδRkIk

√
∆ tτk − σ 2

2
δRkIk(τ

2
k − 1)∆ t,

where τk (k = 1,2, ...) are N(0,1)-distributed independent
random variables.

Example 51Let the parameters in model (1) take the

following values: β = 0.49, µ = 0.05, δ = 0.22,
α = 0.28,, σ = 0.6, with initial values S(0) = 0.7,

I(0) = 0.2, R(0) = 0.1. Therefore, it follows from

Theorem (2) that the solution (S(t), I(t),R(t)) of model

(1) obeys limsupt→+∞
log I(t)

t
≤(

(µ +α)+ σ 2

2

(
α(δ+1)+µ

µ+α

)2
)
(Te − 1) = −0.00344 < 0

, a.s.. That is, I(t) will tend to zero exponentially with

probability one, (see Fig1).

Fig. 1: The numerical simulation of one path of the
solution (S(t), I(t),R(t)) of system (1) using the Milstein
scheme with initial values S(0) = 0.7, I(0) = 0.2, R(0) =
0.1 and the parameter values β = 0.49, µ = 0.05, δ =
0.22, α = 0.28,, σ = 0.6, and Te = 0.99656 < 1.

Example 52Let the parameters in model (1) take the

following values: β = 0.52, µ = 0.05, δ = 0.5,
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α = 0.28,, σ = 0.6, with initial values S(0) = 0.7,

I(0) = 0.2, R(0) = 0.1, so Tp = 1.02 > 1. Therefore, it

follows from Theorem (3) the disease will prevail in the

population, we present the simulations to support our

results (see Fig2).

Fig. 2: The numerical simulation of one path of the
solution (S(t), I(t),R(t)) of system (1) using the Milstein
scheme with initial values S(0) = 0.7, I(0) = 0.2, R(0) =
0.1 and the parameters values β = 0.52, µ = 0.05, δ = 0.5,
α = 0.28,, σ = 0.6, and Tp = 1.02 > 1.

6 Perspective

In this paper, we have considered a stochastic SIR
epidemic model with a nonlinear relapse by perturbing
the incidence rate. Applying theoretical analysis, we have
found sufficient conditions for the extinction and the
persistence of the disease. In addition, we have performed
some numerical simulations to illustrate our findings.
However, some interesting topics deserve further
consideration. On the one hand, in Theorem (2), the

condition
σ 2(α(δ+1)+µ)

µ+α ≤ β is necessary, what is the

behavior of system (1) in the case of
σ 2(α(δ+1)+µ)

µ+α > β ?

On the other hand, white noise, in the present paper, is
used to describe small-scale time environmental
fluctuations, such as daily or weekly variations of
meteorological factors. Nevertheless, climate conditions
usually experience random switching between different
environments, either dry or wet. It is worthwhile to
introduce Markovian switching into all parameters of
system (1). However, the present stage involves some
technical obstacles. Our future work will address these
cases.
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