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Abstract: In this paper, a novel Multi-Dimensional Recurrent Deep Neural Network is proposed for classifying hyperspectral

images. Deep Learning Networks have developed rapidly with applications in several fields including computer vision, healthcare,

bioinformatics and machine learning. Multi-Dimensional Recurrent Deep Neural Networks are a special case of directed acyclic

graph networks in which standard Recurrent Neural Networks are realized by giving recurrent connections along all spatio-temporal

dimensions of the data and the recurrent connection size is equal to the dimension of the data. In this work, two Recurrent Neural

Networks are replaced by one Multi-Dimensional Recurrent Deep Neural Network to learn middle-level visual patterns and spatial

dependencies between them. In the last stage, fully connected layers are used to learn a global image representation. Due to the recurrent

connections, this method is robust to local distortions such as image rotation and shear. Without suffering from scaling problems, it

brings additional advantages over Recurrent Neural Networks to multi-dimensional data. This paper investigates hyperspectral image

classification with the proposed network and the results have been validated with hyperspectral datasets namely Pavia University and

Salinas images. There is an improvement in the classification accuracy of this newly proposed method in comparison to classical

methods like Support Vector Machine, Convolutional Neural Network (CNN) and Recurrent Convolutional Neural Network (RCNN).

Keywords: Hyperspectral, Image Classification, Convolutional Neural Network, Recurrent Neural Network, Multi-Dimensional

Recurrent Neural Network.

1 Introduction

Hyperspectral Image (HSI) encompasses spectral as well
as spatial information. In contrast to multispectral images,
hyperspectral images have hundreds of spectral bands that
make it feasible to distinguish objects that closely
resemble each other. HSI plays a major role in
applications like precision agriculture [1], land-use
monitoring [2], mining [3], space exploration,
defense [4], change detection [5], environment
measurements, and so forth.

Recently, Deep Learning (DL) with Convolutional
Neural Networks (CNN) has shown promising results for
HSI classification [6]. The ability of extracting the spatial
contextual information makes the CNN classifier
adaptive. But it fails for pixel-based processing of HSI,
due to its 2D filter processing characteristic. To overcome
this, Recurrent Neural Network (RNN) can be used as

another deep learning tool for HSI classification [7].
RNNs use Long Short Term Memory (LSTM) and has
found to be time consuming in training and managing
long-sequences. The combination of CNN with RNN had
been investigated as RCNN model for HSI
classification [8]. By using spatial contextual feature,
CNN and RNN layers extract the local invariant
information among spectral bands patch-level wise.
Multi-Dimensional Recurrent Neural Network (MDRNN)
is another deep learning network investigated in the
literature for spectral applications, but not yet used for
hyperspectral remote sensing images.

Various methods, either spectral or spatial information
or both, have been applied for processing and classifying
remotely-sensed images efficiently [9]. This includes
unsupervised methods like clustering [10] and supervised
methods like Support Vector Machine (SVM). Supervised
classifiers are preferred for their high classification
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Fig. 1: General RNN structure showing input layer, hidden
layer and output layer

accuracies, despite the limitations from the lack of a large
number of training samples. As HSIs possess
high-dimensional information, it often leads to Hughes
phenomenon (curse of dimensionality) [11]. Hence, the
supervised schemes have some specific challenges in the
field of classification. As SVMs [12] and multi-nomial
Logistic Regression (MLR) [13] are capable of managing
large input spaces, they give better performance for the
classification of HSI. Semi-supervised and active learning
schemes [14] are recommended for classification in
which the number of training samples is restricted.

Artificial Neural Networks (ANNs) are preferred to
classify linearly non-separable data [15]. CNNs have been
found to be effective for image classification, as they
combine the spectral and spatial characteristics of data
efficiently.

Stacked Auto Encoder (SAE) [16] and Deep Belief
Network (DBN) [17] are the earlier networks in this
category. Recent research with CNN and RNN-based
models is available in literature [18–21].

2 Recurrent Neural Network

In RNNs, contextual information of the image sequences
is encoded by connecting current states with the output of
previous hidden states in the form of feedback loops.

A typical RNN [22] is illustrated in Fig. 1, where, the

input layer of length S is x(s), the hidden layer is h(s) and

the predicted output is y(s). Here S is the set of states, i.e,
S ∈ [1, . . . ,S]. The definition of hidden layer and RNN
output is as follows:

h(s) = fh

(

Whhh(s−1)+Wihx(s)Wihs(s)+ bh

)

(1)

y(s) = fo

(

Whoh(s)+ bo

)

(2)

where
x(s) is the input,

h(s)) is the hidden layer,

y(s) is the output,
Wih,Whh and Who are the transformation matrices between
input to hidden, hidden to hidden layers and hidden to
output
bh and b0 are the constant bias terms and
fh and f0 are the non-linear activation functions.

By updating the weights Wih, Whh and Who, RNNs will
retain information about the data processed earlier. RNN
will learn spatial dependencies at distinct spatial spots
and the same will be available in the connections between
image regions. In general, one dimensional data are
appropriate for RNN and hence the output from CNN is
converted to four one-dimensional data to process them
with the RNN. These four one-dimensional data will
provide the context in all image regions.

Referring to the above equation, the four
one-dimensional RNNs are defined as:

h(s)→ = fh

(

Whh→h(s−1)
→ +Wih→x(s)+ bh→

)

h(s)← = fh

(

Whh←h(s−1)
← +Wih←x(s)+ bh←

)

h
(s)
↓ = fh

(

Whh↓h
(s−1)
↓ +Wih↓x

(s)+ bh↓

)

h
(s)
↑ = fh

(

Whh↑h
(s−1)
↑ +Wih↑x

(s)+ bh↑

)

(3)

where:
h
(s)
→ is the left side-to-right side hidden layer units,

h
(s)
← is the right side-to-left side hidden layer units,

h
(s)
↓ is the top side-to-bottom side hidden layer units and

h
(s)
↑ is the bottom side-to-top side hidden layer units. The

hidden layer is a summation of the above four equations:

h(s) = h(s)→ + h(s)← + h
(s)
↓ + h

(s)
↑ (4)

The weights of the one-dimensional RNN sequences are
updated in forward and backward procedures and are as
follows:

W
(δ+1)
ih→ =W

(δ )
ih→+ x(δ )e

(δ )
h→ε

W
(δ+1)
hh→ =W

(δ )
hh→+ h(δ−1)

→ e
(δ )
h→ε

W
(δ+1)
ih← =W

(δ )
ih←+ x(δ )e

(δ )
h←ε

W
(δ+1)
hh← =W

(δ )
hh←+ h(δ−1)

← e
(δ )
h←ε

W
(δ+1)
ih↓ =W

(δ )
ih↓ + x(δ )e

(δ )
h↓ ε

W
(δ+1)
hh↓ =W

(δ )
hh↓ + h(δ−1)

→ e
(δ )
h↓ ε

W
(δ+1)
ih↑ =W

(δ )
ih↑ + x(δ )e

(δ )
h↑ ε

W
(δ+1)
hh↑ =W

(δ )
hh↑ + h(δ−1)

→ e
(δ )
h↑ ε

(5)

where e
(δ )
h is the gradient of error,

δ is the step size and ε is the learning rate.

Two fully connected layers, defined below, are used to
collect all hidden units in the RNN layers

g = fg

(

WhgH + bg

)

(6)

y = fy (Wgyg+ by) (7)

H =

[

(

h(1)
)T

, . . . ,
(

h(s)
)T

, . . . ,
(

h(S)
)T

]T

(8)
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Fig. 2: 2D sequence ordering of MDRNN with forward
pass begins at (0, 0) and follows the direction of arrows

where Whg is the transfer matrix between the concatenated
RNN outputs H and the global hidden layer g,
Wgy is the transfer matrix between g and the predicted
class label y,
H is the sequential links of all sequential states

h(S)(s = 1, . . . ,S),
bg & by are the bias values and
fg & fy are non-linear activation function and softmax
function.

3 Multi-dimensional Recurrent Neural

Network

MDRNNs [23] are formed by furnishing recurrent
connections along all spatio-temporal dimensions of the
data in standard RNNs. Due to these connections,
MDRNN is capable of managing local variation due to
rotations and shears. When dealing with
multi-dimensional data, MDRNN is more advantageous
than RNNs and it does not affect scaling.

The single recurrent connection is substituted by n

number of recurrent connections in MDRNN if the
dimension of the data is n. At each point in the input
sequence, if the input and all the previous hidden layer
data are fed forward, it is called forward pass (Fig. 2). On
the other hand, at the hidden layer, if the output error
derivatives and its ‘future’ derivatives are fed back, it is
called backward pass.

Error gradient of multi-dimensional network is
calculated by taking the derivative of cost function with
respect to weights. ixj is the input to the jth unit and hx

k is

the activation of the kth hidden unit at a point
m = (m1, . . . ,mn) in an n-dimensional sequence x. The
recurrent connection from unit j to unit k will have wd

jk as

weight along the dimension d. The algorithm for forward
pass is shown in Algorithm 1 [24].

In Algorithm 1, there are I input units, K output units
and H summation units for an n-dimensional MDRNN.
The dimensions are D1D2, . . . ,Dn, and ϕk is the activation
function of the hidden unit k. The algorithm for the
backward pass is shown in Algorithm 2 [24].

Algorithm 1: MDRNN forward pass

for m1 = 0 to D1−1 do

for m2 = 0 to D2−1 do
...

for mn = 0 to Dn−1 do

for k = 1 to H do

am
k
= ∑I

i=1 xm
i wik

end

for d = 1 to n do

if md > 0 then

am
k
+= ∑H

j=1 h
(m1,...md−1,...,mn)

j wd
jk

hm
k
= ϕk(a

m
k
)

end

end

end

end

end

Algorithm 2: MDRNN backward pass

for m1 = D1−1 to 0 do

for m2 = D2−1 to 0 do
...

for mn = Dn−1 to 0 do

for k = 1 to H do

em
k ← ∑K

j=1 αm̂
j w jk for d = 1 to n do

if md < Dd −1 then
em

k
=

∑+H
j=1 ĥ

(m1,...,md+1,...,mn)

j wd
jk

hm̂
k
← ϕ

′

k(e
m
k
)

end

end

end

end

end

end

Here, the derivatives of the cost function with respect

to the activations are α
p̂
j and h

p̂
k for jth input and the kth

hidden unit at point p.
As forward or backward pass is required, the training

intricacy of MDRNN is linear with respect to the number
of data points and network weights.

The equations for forward pass are:

am
k =

I

∑
i=1

xm
i wik +

n

∑
d = 1

md > 0

H

∑
j=1

h
(m1,...md−1,...,mn)
k wd

jk (9)

and:

hm
k = ϕk(a

m
k ) (10)
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The equation for backward pass is:

ĥm
k = ϕ

′

k(a
m
k )
( K

∑
j=1

α
m̂w jk

j

+
n

∑
d = 1

md < Dd− 1

H

∑
j=1

h
(m̂1,...md+1,...,mn)
k wd

jk

)

(11)

The above equations will be analogous to RNN for n = 1.

4 Proposed Method

In this work, MDRNN dimension is taken as two and
hence two numbers of RNNs have been combined and
replaced by one MDRNN. One dimensional RNNs of
Left-to-Right and Right-to-Left are replaced by one
MDRNN. Similarly, one dimensional RNNs of
Top-to-Bottom and Bottom-to-Top are replaced by
another MDRNN as shown in Fig. 3. MDRNN will learn
spatial dependencies between the middle-level visual
patterns and the fully connected layers will learn global
image representation.

Numerous convolutional layers will extract more
abstract and robust patterns. With back propagation in the
network, the global representations from the output will
be propagated back to MDRNN to improve the spatial
dependency encoding. Further, CNNs will be fed to learn
both middle and low-level features. The addition of the
results of two MDRNNs will be processed at the output
by fully connected layers.

The network with access to the surrounding context in
all directions is generally preferred. The issue in
multidirectional context for one dimensional RNNs can
be resolved by introducing two separate hidden layers that
process the input sequence in the forward and reverse
directions. The two hidden layers are connected to a
single output layer, thereby providing the network with
access to both past and future contexts. This can be
extended to n-dimensional data by using 2n separate
hidden layers. If the size of the hidden layers is held
constant, the multi-directional MDRNN architecture
scales as O(2n) for n-dimensional data. However, the
computing power of the network will not get affected, as
it depends on the overall number of weights, rather than
the size of the hidden layers. This is because the data
processing is shared between the layers. Hence, the O(2n)
scaling factor can be neutralized by using smaller hidden
layers for higher dimensions. Moreover, the complexity
of a task and the number of weights are likely to be
needed for it. Complexity does not necessarily increase
with the dimensionality of the data.

For training the MDRNN, the loss function is chosen
as cross-entropy as in CNN and RNN and mini-batch
gradient descent is used to find the best parameters of the
network. Training a neural network is to find the best

Fig. 3: Block diagram of MDRNN-CNN framework with
two one dimensional RNNs

parameters (weights of the network) to minimize the loss
function and classification task to measure the
compatibility between a prediction (e.g., the class scores
in classification) and the ground truth label.

The loss takes the form of an average over the losses
for all training iterations as:

L =
1

N

N

∑
k=1

Lk (12)

where N is the number of samples and Lk is the kth sample
loss.

For the output layer with softmax activation, the cross-
entropy loss is defined as:

Lk =− log(p(yk | xk)) (13)

This is a negative log-likelihood function computed for a
training iteration.

5 Experimental Results and Discussion

In this work, two benchmark HSI datasets: Pavia
University images and Salinas images are considered. The
Reflective Optics System Imaging Spectrometer (ROSIS)
sensor collected Pavia University images. It consists of
103 spectral bands, with 430 nm to 860 nm spectral
range. The spatial resolution of the image is 1.3 m, and
the total image size is 610× 340 pixels. The Salinas
images were acquired via the Airborne Visible / Infrared
Imaging Spectrometer (AVIRIS), and the image size is
512× 217, with spatial resolution of 3.7 m. It consists of
224 spectral bands. After removing 20 bands containing
noise and water-absorption, 204 spectral bands are left for
subsequent analysis. The ground-reference data for the
Salinas images entails 16 classes. The false-color
composite and ground-reference map of the Pavia
University image with classes are shown in Fig. 4. The
false-color composite and ground-reference map of the
Salinas image with classes are shown in Fig. 5.
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Table 1: Class codes for Pavia University and Salinas
images

Pavia University Image Salinas Image

Class

No.
Name

Class

No.
Name

1 Asphalt 1 Brocoli green weeds 1

2 Meadow 2 Brocoli green weeds 2

3 Gravel 3 Fallow

4 Trees 4 Fallow rough plow

5 Painted Metal Sheets 5 Fallow smooth

6 Bare Soil 6 Stubble

7 Bitumen 7 Celery

8 Self-Blocking Bricks 8 Grapes untrained

9 Shadows 9 Soil vinyard develop

10 Corn senesced green weeds

11 Lettuce romaine 4wk

12 Lettuce romaine 5wk

13 Lettuce romaine 6wk

14 Lettuce romaine 7wk

15 Vinyard untrained

16 Vinyard vertical trellis

Table 2: Number of Training and Testing Samples used
for Pavia University

Class
Name

Training Test

No. Samples Samples

1 Asphalt 550 6080

2 Meadow 540 7110

3 Gravel 390 2705

4 Trees 540 4520

5 Painted Metal Sheets 250 2080

6 Bare Soil 530 4500

7 Bitumen 375 1955

8 Self-Blocking Bricks 510 3170

9 Shadows 245 1700

5.1 Distance measure

The distance measure used in this work is Spectral Angle
Mapper (SAM) [25]. The SAM is the mapping of the
spectral coincidence of test image spectra with reference
spectra. The spectral similarity between the two spectra is
defined as:

SAM = cos−1

(

It · Ir

‖It‖ · ‖Ir‖

)

(14)

This can also be written as:

SAM = cos−1





∑N
i=1 ItiIri

(

∑N
i=1 I2

ti

)1/2 (

∑N
i=1 I2

ri

)1/2



 (15)

where It is the test image vector, Ir is the reference image
vector and N is the number of bands.

Table 1 lists the class codes for Pavia University and
Salinas image datasets. Tables 2 and 3 provide
corresponding training and test samples used in this work.

(a) False-color composite of Pavia University image

(b) Ground-Reference map of the Pavia University image with

classes

Fig. 4

To assess the effectiveness of the proposed MDRNN,
three algorithms SVM, CNN, and RCNN are taken as
baseline algorithms. For SVM, the Radial Basis Function
(RBF) is utilized as kernel function. For the CNN, two
convolutional layers, two max pooling layers, and one
Fully-Connected (FC) layer are considered. Different
model structures are implemented based on different
images.

All ground-reference data for each image are
randomly split into training and testing sample sets for
evaluating the classification accuracy. Ten independent
runs were performed on each data set. The results are
averaged across the ten runs and tabulated.

Furthermore, it is observed that the improvement in
accuracy in RCNN as compared to CNN reaches a
maximum of 42% for some cases like class 6 but no
improvement in the case of class 9 in Pavia University
data. Conversely, the improvement is uniform for all
classes in MDRNN compared to RCNN. Fig. 6 and 7
show that the classified result of MDRNN preserves all
the relevant data of Ground-Truth.

Tables 4 and 5 provide the results found by the
experiment, and Figs. 6 and 7 demonstrate the
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(a) False-color composite of Salinas image

(b) Ground-Reference map of the Salinas image with

classes

Fig. 5

Table 3: Number of Training and Testing Samples used
for Salinas images

Class
Name

Training Test

No. Samples Samples

1 Brocoli green weeds 1 30 15

2 Brocoli green weeds 2 150 1200

3 Fallow 150 680

4 Fallow rough plow 100 130

5 Fallow smooth 150 340

6 Stubble 150 580

7 Celery 20 10

8 Grapes untrained 150 320

9 Soil vinyard develop 15 10

10 Corn senesced green weeds 150 810

11 Lettuce romaine 4wk 150 1230

12 Lettuce romaine 5wk 150 440

13 Lettuce romaine 6wk 150 75

14 Lettuce romaine 7wk 150 1100

15 Vinyard untrained 50 340

16 Vinyard vertical trellis 50 45

Table 4: Classification Accuracy for the Pavia University
image in %

Class

No.
SVM CNN RCNN MDRNN

1 97.52 ± 0.21 96.53 ± 0.57 98.78 ± 0.39 99.02 ± 0.23

2 95.77 ± 0.30 94.78 ± 1.55 98.84 ± 0.29 99.17 ± 0.31

3 65.57 ± 3.41 68.93 ± 3.65 89.22 ± 2.63 91.54 ± 3.00

4 71.27 ± 7.38 76.62 ± 7.92 94.70 ± 1.71 95.92 ± 1.29

5 95.50 ± 1.55 98.50 ± 0.86 99.42 ± 0.64 99.71 ± 0.53

6 59.51 ± 6.74 63.62 ± 11.03 90.65 ± 3.92 91.83 ± 4.04

7 52.10 ± 0.93 66.87 ± 4.86 88.47 ± 6.60 90.19 ± 5.61

8 84.27 ± 1.13 83.54 ± 1.73 93.27 ± 1.28 94.72 ± 1.55

9 99.92 ± 0.11 99.65 ± 0.31 98.49 ± 1.75 99.88 ± 0.42

Table 5: Classification Accuracy for the Salinas image
in %

Class

No.
SVM CNN RCNN MDRNN

1 96.84 ± 1.18 99.12 ± 1.52 99.86 ± 0.22 99.91 ± 0.19

2 98.79 ± 0.13 98.79 ± 0.69 99.34 ± 0.51 99.74 ± 0.15

3 85.11 ± 1.38 95.53 ± 1.32 96.24 ± 1.10 97.93 ± 0.95

4 97.44 ± 0.18 97.94 ± 0.67 97.90 ± 1.70 98.32 ± 1.01

5 95.03 ± 0.85 97.20 ± 2.76 98.83 ± 0.68 99.65 ± 0.92

6 99.79 ± 0.11 99.77 ± 0.21 99.71 ± 0.33 99.80 ± 0.24

7 98.63 ± 0.44 99.35 ± 0.62 99.38 ± 0.51 99.61 ± 0.32

8 76.70 ± 1.31 83.99 ± 4.02 85.66 ± 3.00 87.11 ± 2.78

9 99.12 ± 0.04 99.02 ± 0.29 99.43 ± 0.27 99.67 ± 0.19

10 81.91 ± 1.58 85.89 ± 2.09 91.00 ± 2.13 92.24 ± 1.99

11 69.51 ± 1.00 82.23 ± 6.71 83.49 ± 4.40 85.38 ± 3.79

12 93.33 ± 0.34 96.82 ± 1.05 98.26 ± 1.67 99.21 ± 0.93

13 92.67 ± 0.65 94.15 ± 2.62 97.33 ± 1.98 98.58 ± 1.54

14 89.68 ± 2.19 89.80 ± 3.78 90.75 ± 3.77 90.75 ± 3.77

15 56.78 ± 2.39 59.34 ± 12.38 69.85 ± 3.21 72.04 ± 4.02

16 95.59 ± 1.18 98.60 ± 0.44 96.19 ± 3.79 97.93 ± 2.65

classification maps on the Pavia University dataset and
the Salinas dataset. The accuracies given in Tables 4
and 5 are Overall Accuracies (OA) along with the
standard deviation. The experiment is implemented with
Python 3.6.

MDRNN outperforms SVM, CNN and RCNN for
both data sets. In addition, it is inferred that MDRNN
gives invariably better classification accuracy across all
classes for both data sets. Thus, it is reasonable to specify
that MDRNN is a better choice for HSI classification.

6 Conclusion

In this paper, a novel MDRNN HSI classification
framework is proposed, where the sequential feature from
a single HSI is extracted and classified accurately. The
accuracy attains a maximum value of 99.91% for class 1
of Salinas image data set with MDRNN. The proposed
algorithm provides high accuracy classification compared
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(a) Ground-Reference map (b) SVM with Overall

Accuracy = 83.91%

(c) CNN with Overall Accuracy

= 87.46%

(d) RCNN with Overall

Accuracy = 96.77%

(e) MDRNN with Overall

Accuracy = 98.9%

Fig. 6: Classification maps for the Pavia University image

(a) Ground-Reference map (b) SVM with Overall

Accuracy = 85.17%

(c) CNN with Overall Accuracy

= 86.13%

(d) RCNN with Overall

Accuracy = 91.24%

(e) MDRNN with Overall

Accuracy = 92.53%

Fig. 7: Classification maps for the Salinas image
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to existing algorithms like SVM, CNN and RCNN. The
resultant improvement of the overall accuracy for the
Pavia University image and the Salinas image is 2.2% and
1.3% respectively compared to RCNN algorithm. Hence,
it is inferred that the proposed method is performing
better on both image datasets.

The proposed method uses similarity measurements
with SAM. The methods are yet to take up temporal
context. The requirement of ground truth data is a
challenging issue in handling hyperspectral datasets with
deep learning methods. To prevent over-fitting, data
augmentation is employed in deep learning methods. The
spectral characteristics can be utilized to get better
classification performance.

In summary, the developed deep learning methodhigh
accuracy classification HSI classification, with
approximately 98% accuracy, approximately 6%
improvement over the existing deep learning methods,
and approximately 12% higher than the traditional
method. MDRNN is an accurate classification technique
that makes a significant contribution in the field of HSI
classification and has great potential for a wide range of
remote sensing applications.
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