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Abstract: This study deals with the investigation of the temporal and spatial instability of inviscid jets with the effects of the thermal

energy. The variation of surface tension causes Marangoni flow that affects drop formation and break-up of liquid jets. The governing

equations are reduced into one-dimensional model using an asymptotic analysis. The dispersion relation for thermo-capillary inviscid

liquid jets is derived to examine the behavior of the dimensionless parameter of the linear instability. Moreover, the growth rate and the

maximum wavenumber are displayed along the jet.
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1 Introduction

The subject of liquid jets has attracted many researchers
(e.g. Eggers, 1997; Middleman,1995; Lin, 2003).
Instability and break-up of thermo-capillary effects on
liquid jets have different disciplines, such as fertilizers
and ink-jet printing. Therefore, Rayleigh (1878)
investigated the problem of inviscid jets theoretically and
reported that surface tension was responsible for the jet’s
break-up. Weber (1931) applied Rayleigh?s analysis
approach to the study of liquid jets in the existence of
viscosity and concluded that viscosity increased the jet
wavelength . Tomotika (1935) examined the instability of
two viscous jets and observed that surface tension as well
as viscosity affected both liquids. The study addresses
two types of linear stability theory of liquid jets, i.e.
temporal and spatial instability, herein we are interested
in examining both instabilities, as we will find out in this
study.

Papageorgiou (1995) applied the asymptotic analysis
to the study of nonlinear solution of viscous jets and
indicated its consistency with the theoretical analysis.
Grant and Middleman (1965) examined Newtonian jet
stability to predict the stability of both turbulent and
high-speed laminar jets in stagnant air. Ashgriz and
Mashayek (1995) addressed and gave a general overview
of studying the subject of liquid jets. One of the many
different scenarios of studying the instability of liquid jets
is the thermal energy that causes variation of the surface
tension. Cheong et al. (2004) examined the effect of

gravity on the instability of liquid jets.The study showed
the consistency of the experiments with the theoretical
investigation ( numerical results). Alsharif et al. (2014)
explored the instability of a rotating viscoelastic jet. The
instability of thermo-capillary viscous liquid jets with
surfactants can be examined as done in Alsharif et al.
(2014).

The present study adopts the linear stability theory to
examine both temporal and spatial of thermo-capillary
inviscid jets. The governing equations are presented in
cylindrical coordinates and an asymptotic approach is
used to involve our equation in a single model.
Furthermore, the steady state solutions are obtained for
this problem. Moreover, we examined the linear stability
analysis of inviscid liquid jets with thermo-capillarity .

2 Problem Formulation

The flow resulting from an incompressible
thermo-capillary liquid jet is assumed to emerge from an
orifice having radius a. Thus, we use the cylindrical
coordinate (r,θ ,z) for this problem, where r is the radial
direction, θ is the azimuthal direction and z lies along the
axis of the jet. We have neglected the influence of the
surrounding air. Continuity equation, Navier-stokes
equation and nonisothermal equation of our system are as
follows:

∇.u = 0, (1)
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ρ
Du

Dt
=−∇p, (2)

∂T

∂ t
+ u.∇T = kt∇

2T (3)

where D
Dt

= ∂
∂ t
+ u.∇ and ρ is the fluid’s density. We can

write the relationship between the surface tension and
temperature as follows:

σ(T ) = σa −βp(T −Ta)∇ (4)

where

βp =−(
dα

dT
)T−T0,

(5)

where T is the temperature and σa is the surface tension at
the ambient temperature Ta respectively.

The normal stress condition is given as

P = σk (6)

where k is the mean curvature of the free surface

k =
1

r
(−

∂

∂ z
(

r

E

∂R

∂ z
)+

∂

∂R
(

r

E
)) (7)

where

E = (1+(
∂R

∂ z
)2)

1
2 (8)

and

n =
1

E
(−

∂R

∂ z
ez + er) (9)

The second boundary condition is the tangential,
which is written as follows:

(1− (
∂R

∂ z
))(

∂v

∂ z
+

∂u

∂ t
)+ 2

∂R

∂ z
(

∂u

∂ z
−

∂v

∂τ
) = 0 (10)

and the kinematic condition is

∂R

∂ t
− v+ u

∂R

∂ z
= 0 (11)

To describe the flow in the jet, it is convenient to write
our governing equations as follows

∂v

∂τ
+

∂u

∂ z
+

u

r
= 0 (12)

ρ(
∂u

∂τ
+ v

∂u

∂ r
+ u

∂u

∂ z
) =−

∂ p

∂ z
, (13)

ρ(
∂v

∂τ
+ v

∂v

∂ r
+ u

∂v

∂ z
) =−

∂ p

∂ z
, (14)

∂T

∂τ
+ u

∂T

∂ z
+ v

∂T

∂ r
= kr(

∂ 2r

∂ z2
+

1

r

∂T

∂ r
+

∂ 2T

∂ r2
) (15)

and finally the normal heat flux across the interface is
given by

k∇T.n =−H(T −Ta) (16)

where k and H represent the thermal conductivity and the
heat transfer coefficient respectively.

We use the following transformation to present our
equations in a non-dimensionless form,

z̄=
z

L
, r̄ =

r

a
, ū=

u

U
, v̄=

v

U
, t̄ =

U

L
t, p̄=

1

ρU2
p, T =

T

Ta

where a,U,Tα and L are the radii of the orifice, the jet’s
exit speed, the temperature of the ambient surrounding
and the axial length scale respectively. Thus, our
governing equations, after dropping over-bars, are given
by

ε
∂u

∂ t
+ u

∂u

∂ r
+ εu

∂u

∂ z
=−ε

∂ p

∂ z
, (17)

ε
∂v

∂ t
+ u

∂v

∂ r
+ εv

∂v

∂ z
=−

∂ p

∂ r
, (18)

ε
∂T

∂ t
+ εu

∂T

∂ z
+ v

∂T

∂ r
=

1

Pe
(ε2 ∂ 2T

∂ z2
+

1

r

∂T

∂ r
+

∂ 2T

∂ z2
)

(19)
the normal condition is

p =
k

We
, (20)

where

k =
1

r

{

−ε2 ∂

∂ z
(

r

E

∂R

∂ z
)+

∂

∂ r
(

r

E
)

}

, (21)

the tangential and normal heat flux conditions are

{

1− ε2(
∂R

∂ z
)2

}

(ε
∂v

∂ z
+

∂u

∂ r
)+ 2ε

∂R

∂ z
(ε

∂u

∂ z
+

∂v

∂ r
)

= ε
∂R

∂ z

∂σ

∂ r

{

(1+ ε2(
∂R

∂ z
)2)

}− 1
2

, (22)

and

∂T

∂ r

{

(1− ε2(
∂R

∂ z
)2

}
−1
2

−ε2 ∂T

∂ z

∂R

∂ z

{

(1− ε2(
∂R

∂ z
)2

}
−1
2

=−εBi(T − 1), (23)

where We = ρLU2

σ is the Weber number, Pe = ρLU

Mr
is the

Peclet number and Bi = LH
K

is the Biot number.
We expand all the variables in εr (see Eggers, 1997;

Hohman et al., 1984) as follows:

u = u0(t,z)+ ε(rz)u1(t,z)+ ...

v = (εr)v1(t,z)+ (εr)2v2(t,z)+ ...

p = p0(z, t)+ (εr)p1(z, t)+ ...

R = R0(t,z)+ εR1(t,z)+ ...

T = T0(t,z)+ (εr)2T2(t,z)+ ...
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The equation of motion in the axial direction is written
in a leading order

∂u0

∂ t
+ u0

∂u0

∂ z
=−

∂ p

∂ z
, (24)

from the tangential condition we have

u1 = 0

u2 =
1

4

∂ 2u0

∂ z2
+

3

2R0

∂R0

∂ z

∂u0

∂ z
,

from the normal stress condition, we get

p0 =
σ0

WeR0

,

p1 =
−R1

R2
0

+
4u0

R0

, (25)

p0 and u2 are substituted into Eqn. (24) to become in the
following form

∂u0

∂ t
+ u0

∂u0

∂ z
=−

∂

∂ z
(

σ0

R0We
)+

2Tz

R0We
, (26)

the energy equation to leading order gives

∂T0

∂ t
+ u0

∂T0

∂ z
=

1

Pe
(

∂ 2T0

∂ z2
+ 4T2). (27)

We use the normal heat flux equation to obtain T2, so that

T2 =
1

2R0

∂T0

∂ z

∂R0

∂ z
−

Bl

2R0

(T0 − 1), (28)

The Biot number is rescaled as Bi = εBi with
Bi = 0(1). In the leading order, the Kinematic equation
becomes

∂R0

∂ t
+ u0

∂R0

∂ t
+

R0

2

∂u0

∂ z
= 0. (29)

We use u2 and T2 to get a set of leading order equations as
follows

ut + u0uz =−
1

We
(

σ

R
)−

2βpTz

RWe
(30)

Rt =−
R0

2
u0z − uR0z, (31)

where

σ(T ) = 1−βp(T − 1). (32)

These equations are consistent with Furlani (2005).

u0uz =−
1

We
(

σ

R
)z −

2βpTz

RWe
, (33)

1

2

∂u0

∂ z
Ro + uo

∂Ro

∂ z
= 0, (34)
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Fig. 1: R0 versus the axial length z for the Peclet number, where

We = 30 and βp = 0.2.

uTz =
1

Pe

1

R2

∂

∂ z

(

R2 ∂T

∂ z

)

−
2Bi

RPe
(T − 1). (35)

At R(0)= u(0)= 1, Equ. (34) can be written as R2uo =
1, which can be substituted into (33) and (35) to get the
following equations

uouz =−
2σ

We

(

uoz√
u

)

−
2βpTz

√
u0

We
, (36)

uoTz =
1

Pe
u

∂

∂ z

(

1

uo

∂T

∂ z

)

−
2Bi

RPe

√
u0(T − 1), (37)

We solve the equations (36) and (37) using the
method of Rung-Kutta with initial u(0) = T (0) = 1.
Parau et al. (2006, 2007) used the methods of Newton and
Rung-kutta to obtain the results of rotating Newtonian
viscous jets. They reported that this method provided a
good agreement comparing to Newton?s method. Thus,
we use the Rung-Kutta method to find the solutions of the
steady state of thermo-capillary viscous liquid jets. In
Figures (1) and (2), the correlations between the radius
and the axial length z have been plotted for the Peclet and
Biot numbers, respectively. They also show a correlation
between the two numbers and the jet’s radius.

3 Temporal Instability Analysis

To see how the perturbations affect the solutions of the
steady state, found in the last section, we use the following
forms
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Fig. 2: R0 against the axial length z for the Biot number, where

We = 30 and Pe = 0.2.

u(z, t) = uo(z)+ δ ûexp(ikz̄+ω t̄), (38)

R(z, t) = Ro(z)+ δ R̂exp(ikz̄+ω t̄), (39)

T (z, t) = To(z)+ δ T̂ exp(ikz̄+ω t̄), (40)

P(z, t) = Po(z)+ δ P̂exp(ikz̄+ω t̄), (41)

where k = k(z) is the wavenumber of the disturbances ω =
ω(z) is the frequency of the disturbances and δ is a small
constant which is 0 < δ < ε2 (Uddin (2007)).

In Eq. (30), the full expression of the mean curvature
is used instead of the leading order pressure, which is in
the form

1

We

(

1

R(1+ ε2R2z)
1
z

−
ε2

R(1+ ε2R2z)
1
z

)

(42)

Several authors, including Lee (1974) and Eggers
(1997), adopt this idea. Consequently, the motion in the
axial direction is represented as follows:

ut + uouz = −
σ

We

∂

∂ z

(

1

R(1+ ε2R2z)
1
z

−
ε2

R(1+ ε2R2z)
1
z

)

−
2βpTz

RWe
, (43)

with

Tt + uTz =
1

Pe R2

∂

∂ z
(R2 ∂T

∂ z
)−

2βp

R Pe

√
u(T − 1). (44)

We substitute the equations (38)-(41) into (43), (31)
and (44), so the dispersion relationship is

Fig. 3: Behaviour of the growth rate versus the wavenumber for

Pe = 2 at varying R0, where We = 10.

(ω + iku0)
3 +

k2

Pe
(ω + iku0)

2 −
k2σ

2We
Ro

(

1

R2
− k2

)

× (ω + iku0)−
k4

2We Pe
Ro

(

1

R2
− k2

)

= 0 (45)

Peclet number is recalled as follows:

Pe = εPe ⇒ Pe =
Pe

ε
,

Growth rate occurs when 0 < kRo < 1. Our dispersion
relation reveals that the same dispersion relation for
invscid liquid jets is obtained when Pe → ∞ (see
Rayleigh, 1878).

4 Spatial Instability

In order to investigate spatial instability of the dispersion
relation for viscous liquid jets (45), we consider that the
wave number k is in a complex form (k = kr + iki) and the
growth rate is an imaginary complex number (l = −iω).
See Keller et al. (1973) for further details concerning this
type of instability. Spatial instability occurs when (k < 0).

5 Results and Discussion

To examine the linear instability, the behavior of the
dispersion relation was investigated (45). The present
study investigated the temporal and spatial instability
theory for thermo-capillary viscous jets. In addition, we
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numerically solved the dispersion relation (45) to
interpret the results obtained for this phenomenon. We
also identified the wavenumber of most unstable modes,
termed kmax and the maximum growth rate, termed Kmax

along the axial length z. The wavenumber of the most
unstable mode changed along the jet. Figure (3)
demonstrated that the effect of the increasing Peclet
number on the behavior of the growth rate, and by
observing this figure we can see that the increase in the
Peclet number led to a decrease in the growth rate.
Moreover, the numerical results in figure (4) indicated
that the ωmax increased gradually as the the Peclet number
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Fig. 6: ωmax versus the Weber number, where Pe = 20
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Fig. 7: Im(k) versus Re(k) for three values of the Weber number,

where Pe = 2.

reduced and after a short interval the ωmax approached to
the maximum value as shown in figure (3). However, the
ωmax decayed as the Peclet number increased and reached
to the minimum values after a shot interval (see figure 5).
It is clear that the kmax is proportional the axial length z;
therefore, the kmax is very sensitive to the axial length z as
shown in figure (6). Figure (7) shows that the highest
value of the Peclet number at different values of the jet’s
radius gives the most negative growth rate value. In other
words, when we increase the Peclet number, we obtain
the most negative growth rate. We also illustrate the
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relationship between the real and imaginary parts of the
wavenumber. A simple relationship exists between the
real and imaginary parts of the wavenumber. The graph
indicates that the increase in the Peclet number leads to
an increase in the most negative growth rate (see Figure
7). However, Figure (8) reveals that enhancing the Weber
number results in a higher growth rate.

6 Conclusion

Temporal and spatial instability analysis have been
examined for thermo-capillary inviscid liquid jets. An
asymptotic approach has been used to reduce the
governing system equations to one-dimensional equations
a leading order. Moreover, the temporal instability was
conducted to derive the dispersion relation for
thermo-capillary viscoelastic jets. Dispersion relation
helped identify the growth rate of different values of the
dimensionless parameters and the linear instability
enabled us to estimate the break-up lengths and time of
thermo-capillary viscous liquid jets. Liquid jets are very
crucial in terms of their applications. Therefore, we
recommend addressing compound liquid jet, which have
practical applications such as exploring liquid CO2
sequestration in the deep ocean and deep ocean oil spills
like what Tang experimented in 2004. Gao et al. (2017)
examined an underwater horizontal oil jet experimentally
and numerically using Navier-Stokes equations.
Therefore, our linear instability results can be used to
predict the droplet size distribution in ocean oil spills. We
can also apply our linear theory results to temperature
influence on the analysis of an underwater horizontal
injected oil jet. Theoretically, the oil jet with high
temperature must rise faster compared to isothermal one.
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