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Abstract: The study investigates the soliton-pair propagation in an optical dense three-level atomic media where the dissipation of

the atomic system is considered for unbalanced coupling between the allowed atomic transitions and the two classical pump fields.

Analytical solutions of the solitary wave-pair are derived and the existence conditions for such wave-pair propagation is highlighted.

The allowed soliton-pair velocities are defined.
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1 Introduction

Nonlinearity represents the origin of several intriguing
phenomena in classical and quantum physics. We adress
Rogue waves [1,2,3], bifurcation [4,5] Bistability [6,7,
8], chaos [9,10,11,12], and solitons [13,14,15] as few
examples. Russel discoveres Solitons in 1834 [16] . A
Scottish naval architect conducted experiments to define
the maximum resourceful plan for canal boats. He
observed wave translation. He documented his discovery
in a paper adopted as a report representing the first
scientific account of solitons in history. The phenomenon
was a water wave that shaped in a narrow channel and
displayed a few counter-intuitive properties. The wave
was stable,i.e. it neither flattened out nor steepened like
normal waves. Russel could follow it for a few
kilometers. Moreover, it did not merge with other waves,
i.e. a small wave moving quicker would instead overtake
a large slower one. Through a chain of measurements,
Russel managed to define the velocity of such waves , but
he couldn’t create the appropriate equation. In 1895,
Korteweg and De Vries [17] established a nonlinear
partial differential equation (i.e. the Korteweg-de Vries
equation) that described Russel’s solitary waves. Their
work maintained anonymity till 1965, but Zabusky and
Kruskal [18] numerically solved the KdV equation. In
1967, Gardner, Greene, Kruskal and Miura [19]
discovered an inverse scattering transform that facilitated

the analytical solution of the KdV equation. In 1973,
Robin Bullough [20] presented the first mathematical
report concerning the existence of optical solitons. He
also proposed the idea of a soliton-based transmission
system to increase the performance of optical
telecommunications. Solitons present powerful
applications in telecommunication. In 1988, Mollenauer
[21] and his group transferred soliton pulses over 4000
km. In 1991, Bell research team transferred soliton
errors-loose at 2.5 Gb/s for more than 14000 km. A year
ago, researchers from Karlsruhe and Lausanne [22]
showed a record-high speed optical communication via
soliton. Most of the previous analytical studies were
devoted to the lossless systems. The previous models
frequently neglected the system dissipation. Existence
conditions of the soliton propagation appear in case of
including the dissipation. The present paper investigates
the soliton-pair propagation in an atomic dissipative
medium. The soliton pair propagation in absorbing
atomic three-level system has been explored in a previous
paper [13], which only addressed the case for equal
coupling constants between the two coherent fields and
the two allowed atomic transitions. The present paper also
explores the analytical soliton-pair solutions for
unbalanced coupling between the two coherent lights and
the atomic transitions. In addition, limiting conditions of
the soliton-pair propagation are derived and the speed of
the soliton-pair is defined.
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2 Model

We consider a three-level system in lambda configuration.
The two allowed atomic transitions interact with two laser
fields applied to the stocks and pump transitions. The
atomic system has an excited state |0〉 and two ground
states |1〉 and |2〉. The two allowed atomic transitions are
only between the excited state and the ground states.
These atomic transitions are excited resonantly by two
classical fields with amplitudes E1 and E2 and frequencies
ω1 and ω2. The expression of the pump field is written as
follows

E(x, t) = E1(x, t)e
k1x−iω1t +E2(x, t)e

k2x−iω2t (1)

where k j represents the wavenumbers defined by

k1,2 =
ω1,2

c
. c designs the vacuum light speed. Here we

consider that the amplitudes of the classical light
amplitudes are slowly varying in space and time verifying
[13,14,15]:
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The total Hamiltonian of the system is given by

H = ∑
j=0,1,2

ε j | j〉 〈 j|+ ∑
l=1,2

g
′
l(El |0〉〈l|+ c.c) (3)

The first term describes the proper energy of the atomic
three-level system. The second term involves the
interaction between the two classical fields and the two
allowed atomic transitions |1〉-|0〉 and |2〉− |0〉. Where g

′
1

and g
′
2 are the coupling constants between the atomic

transitions |1〉-|0〉 and |2〉 − |0〉 and respectively the
classical light fields E1 and E2. ε j is the energy of the

atomic level | j〉 verified in the resonant case: ω1 = ε0−ε1
h̄

and ω2 =
ε0−ε2

h̄
.

We consider that the atomic system is initially prepared in
the way that the excited state |0〉 is almost empty and the
population is distributed equally in the ground levels |1〉
and |2〉. In addition, the coherence between the ground
levels at t=0 is negligible. We explore the soliton-pair
propagation in this three-level system with the same
velocity, so we can write the following:

E j(x, t) = E j(x− vt) (4)

where v represents the speed of the soliton-pair. Following
the same procedure of calculations in [13], we get in the
moving frame z = x− vt the following coupled non-linear
differential equations

{

Γ dα1
dz

= α3
1 −

g1
2

α1 +α2
2 α1

Γ dα2
dz

= α3
2 −

g2
2

α2 +α2
1 α2

(5)

where Γ = γ
v

is the normalized dissipation rate, here we
suppose that the spontaneous emission rates from the

excited state to the both ground states are the same. g j

=
gE jg

′
j

h̄(c−v)v are the effective normalized coupling constant

with gE j representing the propagation constants of the
optical fields inside the atomic media.

α j are the normalized solitons amplitudes defined by

α j =
g′j
h̄v

E j

3 Soliton-pair Solutions

In order to solve the coupled differential equations for the
soliton-pair propagation we divide the two differential
equations in (5) and we obtain

dα2

dα1

=
α3

2 −
g2
2

α2 +α2
1 α2

α3
1 −

g1
2

α1 +α2
2 α1

(6)

The above-mentioned differential equation has an implicit
solution in the form

1

2

(g1 − g2)

g2

ln
(

− g1

2

g2

2
+

g2

2
α2

1 +
g1

2
α2

2

)

+ ln(α1)−
g1

g2

ln(α2)= c1

(7)
where c1 is a free constant.
The implicit solution of (7) in general does not have an
explicit relation between the two amplitudes of the soliton-
pair. However, for unbalanced coupling (when one of the
coupling constant g j is much bigger than the other one) it
is possible to derive an explicit relation. In this work we
focus on the case where we consider

g1
g2

<< 1 . Therefore,

from (7) we get

α2
1 = k

(

− g1

2

g2

2
+

g2

2
α2

1 +
g1

2
α2

2

)

(8)

and

α2
2 =

2

kg1

α2
1 −

g2

g1

α2
1 +

g2

2
(9)

where k is a positive constant.
By substituting (9) in the first differential equation of (5)
we get a separable first-order differential equation for the
amplitude of the first soliton

dα1

dz
= Aα3

1 +Bα1

whose solution is given by

z(α1) =
1

B
ln(α1)−

1

2B
ln(Aα2

1 +B)+K

where A and B are constants defined by
A = − g2

Γ g1
+ 1

Γ + 2
Γ kg1

and B = 1
2Γ (g2 − g1). K is a free

constant. Note that the above equation gives a relation
between moving coordinates z and the amplitude of the
first soliton forming the soliton-pair. Therefore

α1 =±
√

B

e−2B(z−K)−A
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Following the same procedure we will get the following
differential equation for α2

dα2

dz
= Eα3

2 −Gα2

which has two explicit solutions given by

α2 =±
√

G

e2G(z−H)+E

where E and G are constants defined by E = 1
Γ + kg1

Γ (2−kg2)

, G = g2
2Γ + kg1g2

Γ (4−2kg2)
and H is a free constant.
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Fig. 1: Soliton pair shapes α1 and α2 for g1 = 1,g2 =
100,k = 10 and Γ = H = K = 1. (a) and (b) represent
soliton-pair with same directions of polarization. (c)
and (d)represent soliton-pair with opposite directions of
polarization.

To avoid any singularity for α1 and α2 we will suppose
that A < 0, E > 0 and G > 0. These conditions are
satisfied if k >

2
g2−g1

. Accordingly, we obtain the

following limits

L1 = lim
z→∞

α1 =

√

B

−A
; lim

z→−∞
α1 = 0

lim
z→∞

α2 = 0; lim
z→−∞

α2 =

√

G

E

Applying the limit to (9) when z approaches ∞ we get
(

2

kg1

− b

a

)

L2
1 +

g2

2
= 0 (10)

where g1 =
a

(c−v)v and g2 = b
(c−v)v , a and b are constants

given by a=
gE1

g′1
h

and b=
gE2

g′2
h

. Let’s define X =(c−v)v.

X verify 0 ≤ X ≤ c2

4
. Then from (10) we get

(

4X2

ka
− 2bX

a

)

L2
1 + b = 0

The quadratic equation

4L2
1

ka
X2 − 2bL2

1

a
X + b = 0

has two real solutions

X1,2 =
b

a
L2

1 ±
√

∆1

under the condition that

∆1 =

(

b

a

)2

L4
1 −

4L2
1b

ka
≥ 0

which is true if

L1 ≥
2√
k

(11)

Since we know that X should verify 0 ≤ X1,2 ≤ c2

4
which is

true for the smallest solution. Therefore the condition for
the second solution will give us

b

a
L2

1 +

√

(

b

a

)2

L4
1 −

4L2
1b

ka
≤ c2

4

which implies the two following conditions

L1 ≤ c

√

b

2a
(12)

and
(

L2
1 −

bc2

4a

)2

≥ L4
1 −

4aL2
1

kb

Let us define V = L2
1. Thus, we will get

(

4a

k
− 2bc2

4a

)

V ≥−(
b

a
)2 c4

16

Therefore
2bc2

4a
≥ 4a

k

Finally, we get the auxiliary condition

k ≥ 8a2

c2b
(13)

and the condition on L1

L1 ≤
bc2

4a
√

bc2

2a
− 4a

k

(14)
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The previous conditions (11),(12) and (14) can be written
in a double inequality

2√
k
≤ L1 ≤ max

(

c

√

b

2a
;

bc2

4a
√

bc2

2a
− 4a

k

)

(15)

The conditions (13) and (15) are the existence conditions
for the soliton-pair propagation. In other words if one of
the conditions is not satisfied the considered three-level
atomic medium can not support the propagation of any
soliton-pair. Under the existence conditions (15) and (13),
the equation

X = v(c− v)

has only one possible solution of the soliton-pair velocity
which is given by

v =
c−

√
c2 − 4X

2

where

X =
b

a
L2

1

(

1−
√

1− 4a

L2
1bk

)

.
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Fig. 2: Normalized velocity as function of the coupling
with the same parameters as FIG 1.

FIG 2 indicates the following aspects :
(i) velocity is lower than the speed of light.
(ii) When the rate of the coupling

g2
g1

increases, the velocity

of the soliton-pair reduces.
(iii) for very high rate of the coupling rate the velocity of
the soliton-pair is asymptotic to 0.276 of the light speed.

4 Conclusion

We explored the propagation of soliton-pair pulses in
three-level atomic media where each soliton from the pair
was unequally coupled to the allowed atomic state levels.
We have considered an optical dense media with atomic
dissipations. We have derived analytical expressions
describing the soliton-pair shapes. We have highlighted
the conditions of the soliton-pair propagation in such
media and defined the allowed soliton-pair velocity.
The present study revealed four possible configurations of
the soliton-pair pulses. Two of them can be interpreted as
a couple of solitons with same directions of polarization
and the others are interpreted as soliton-pair with opposite
directions of polarization. Because solitons have stable
shapes when propagating in the considered media, they
are insensitive to noise and dispersion. The results have
potential applications in data transfer with the soliton-pair
pulses, where a dissipative three-level medium could be a
realistic model for the optical communication media.
The authors are grateful to the anonymous reviewer who
carefully reviewed the paper and presented the beneficial
comments.
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