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Abstract: In this paper, constant-stress Accelerated Life Testing (ALT) is studied when the lifetime of test units follows Power

Generalized Weibull (PGW) distribution. The Maximum Likelihood Estimates (MLEs) and Bayes Estimates (BEs) of the model

parameters are obtained under type-II progressive censoring. Moreover, the approximate and credible Confidence Intervals (CIs) of the

parameters are derived. The optimal stress level is discussed under D-optimality criterion. Furthermore, a real dataset is analyzed to

show the suggested methods. Moreover, this real dataset is used to show the role of PGW distribution as an alternative to the other

well-known distributions. Finally, simulation studies are conducted to demonstrate the precision of the MLEs and BEs for the

parameters of PGW distribution.

Keywords: accelerated life testing, progressive type-II censoring, power generalized Weibull distribution, Bayes estimation, maximum
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1 Introduction

Experiments of reliability and life testing are done to investigate data of failure time which occurs under the normal
operating conditions. Due to the hardness of collecting such data which needs long time, we have tended to use ALT in
order to obtain adequate failure data in a compact time. In ALT, experiments are done at greater than normal levels of
stress to expedite failure occurring. Then, the collected life data is investigated and used to estimate the life
characteristics under normal operating conditions. The stress in ALT can be applied in different ways, the most
commonly-used methods are constant-stress, step-stress and progressive-stress. Nelson [32] explained the advantages
and disadvantages of each of such classifications.

The constant-stress ALT is practiced by operating every unit at a constant high stress till either failure occurs or the
test is stopped. Constant-stress models were reviewed by various authors; see Mohie El-Din et al. [27], Kim and Bai
[20], Watkins and John [39] and Mohie El-Din et al. [28]. Abdel-Hamid [1] studied the constant partially-accelerated life
tests for Burr type-XII distribution with type-II progressive censoring. Jaheen et al. [19] examined the constant partially
ALT under progressive type-II censoring for generalized exponential distribution. Guan et al. [16] obtained the optimal
constant-stress accelerated life tests with uncensored sampling for the generalized exponential distribution. Mohie
El-Din et al. [30] introduced the geometric process as a constant-stress accelerated model.

The step-stress ALT is practiced by increasing the stress on each unit gradually by pre-specified times or according to
the occurrence of a fixed number of failures. The step-stress models were analyzed widely in the literature; see Miller
and Nelson [23], Bai et al. [9], Gouno et al. [15] and Mohie El-Din et al. [26]. Balakrishnan et al. [13] considered the
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simple step-stress ALT under type-II censoring, considering a cumulative exposure model for exponential distribution.
Mohie El-Din et al. [24] utilized the simple step-stress ALT under progressive first-failure censoring, considering a
tampered random variable model for Weibull distribution. Mohie El-Din et al. [25] discussed BE for step-stress ALT of
PGW distribution under progressive censoring, using a tampered random variable model.

The progressive-stress ALT is employed by increasing the stress on each test unit continuously in time. If an ALT
involves linearly increasing stress, this test is referred to as a ramp-stress test. Yin and Sheng [40] obtained the MLEs of
parameters of the exponential progressive-stress model. Abdel-Hamid and AL-Hussaini [2] applied the
progressive-stress ALT under progressive censoring for Weibull distribution. Abdel-Hamid and Abushul [3] obtained the
BE of exponentiated exponential distribution under type-II progressive hybrid censoring, considering the inverse power
law and the cumulative exposure model. Mohie El-Din et al. [29] considered progressive-stress ALT for the extension of
the exponential distribution. Abd El-Raheem [5] discussed the optimal design of multiple progressive-stress ALT for
generalized half normal distribution.

In life testing and reliability inspections, tests are often ended before all units fail. As a result, the censored data is
used to reduce test time and cost. The most two traditional Censoring Schemes (CSs) in life testing and reliability
experiments are type-I and type-II censoring. Lately, progressive type-II CS has become quite familiar with analyzing
highly reliable data. This type of CS can be represented as follows: assume n identical items are set on a life test, the
integer m < n is a pre-specified number of failures, and R1,R2, ...,Rm are m pre-fixed integers satisfying
R1 + R2 + ...+ Rm +m = n. At the time of the primary failure t1:m:n,R1 of the surviving units is randomly removed.
Furthermore, at the time of the second failure t2:m:n,R2 of the surviving units is randomly withdrawn and so on. At the
time of the mth failure tm:m:n, the test is stopped and whole surviving Rm = n − m − (R1 + ...+ Rm−1) units are
withdrawn. For more features about progressive type-II censoring, see Balakrishnan and Aggarwala [12].

The purpose of this study is to apply the constant-stress ALT to units whose lifetime follows PGW distribution under
type-II progressive censoring. MLEs, BEs and some inferences for the parameters of the supposed model are studied. The
article is prepared as follows: In Section 2, a representation of the lifetime model and test assumptions are displayed. In
Section 3, the MLEs of the model parameters are derived. In Section 4, the BEs of model parameters using MCMC method
are obtained. In Section 5, the approximate and credible confidence bounds for the model parameters are established. The
optimal stress level is discussed in Section 6. In Section 7, a real dataset is analyzed to demonstrate the suggested methods
in Sections 3, 4 and 5. Section 8 includes the simulation outcomes. The conclusion is given in Section 9.

2 Model description and test assumptions

2.1 Power generalized Weibull distribution

The PGW distribution is an extension of Weibull distribution. It was founded by Bagdonavicius and Nikulin [10] as a
baseline distribution for the accelerated failure time model. It includes distributions with unimodal and bathtub hazard
shapes. Also, it allows for a broader class of monotone hazard rate. Besides, it is a right skewed heavy tailed distribution
which is not very common in lifetime model. The PGW distribution can be a possible alternative to the exponentiated
Weibull distribution for modeling lifetime data, see Nikulin and Haghighi[34]. In Section 7, we present a real example in
constant-stress ALT, wherein the PGW distribution is a possible alternative to Weibull, extension of the exponential,
generalized exponential, and exponentiated Weibull distributions. This example illustrates the applicability of PGW
distribution in lifetime studies and its role as an alternative to the other well-known distributions. These reasons have
motivated us to study the constant-stress model with PGW distribution under type-II progressive censoring. As a
consequence of the importance of PGW distribution, many authors considered the PGW distribution as a lifetime model.
Nikulin and Haghighi [33] proposed a chi-squared type statistic to test the validity of the generalized power Weibull
distribution based on the head-and-neck cancer censored data. Alloyarova et al.[8] constructed the
Hsuan-Robson-Mirvaliev (HRM) statistic for testing the hypothesis based on moment-type estimators and investigated
its properties. Nikulin and Haghighi [35] obtained MLEs of the parameters and illustrated the flexibility of the model by
using Efron’s [14] head-and-neck cancer clinical trial data. Bagdonavicius and Nikulin [11] proposed chi-squared
goodness of fit test for right censored data and applied the proposed test to PGW distribution. Voinov et al. [38]
constructed modified chi-squared goodness of fit tests for PGW probability distribution. Mohie El-Din et al. [25]
obtained MLEs and BEs based on progressive censoring using step-stress partially-accelerated life tests. Further, they
obtained the approximate and the bootstrap confidence intervals of the estimators. Recently, Kumar and Dey [21] studied
PGW distribution based on order statistics.
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The PGW distribution is determined by the probability density function (pdf):

f (t) = γνσν tν−1(1+(σ t)ν)γ−1 exp{1− (1+(σ t)ν)γ} , t,γ,ν,σ > 0, (1)

the corresponding cumulative distribution function (cdf) is

F(t) = 1− exp{1− (1+(σ t)ν)γ} , t,γ,ν,σ > 0, (2)

and the corresponding hazard rate function (hrf) is given by

h(t) = γνσν tν−1(1+(σ t)ν)γ−1. (3)

There are three special cases of the PGW distribution which are

1-Weibull distribution when γ = 1.
2-Extension of the exponential distribution [31] when ν = 1.
3-Exponential distribution when γ = 1 and ν = 1.

2.2 Assumptions and test procedures

The constant-stress ALT under a progressively CS is set as follows: Let S0 be the use-stress level , and let
S1 < S2 < ... < Sk be the k accelerated stress levels. Under each constant-stress level Si, i = 1,2, ...,k, ni identical units
are tested. Prior to the experiment, the number mi(≤ ni), i = 1,2, ...,k is fixed, and the progressive censoring scheme
(Ri1,Ri2, ...,Rimi

) with Ri j ≥ 0, i = 1,2, ...,k, j = 1,2, ...,mi and ∑
mi
j=1 Ri j +mi = ni is specified. Under each stress level

Si, i = 1,2, ...,k, at the time of the first failure ti1:mi :ni
, Ri1 units are randomly withdrawn from the remaining ni − 1

surviving units. At the time of the second failure ti2:mi :ni
, Ri2 units from the remaining ni − 2−Ri1 units are randomly

withdrawn. The test continues until the mith failure time timi :mi:ni
. At failure time timi:mi :ni

, all remaining units

Rimi
= ni − mi −∑

mi−1
j=1 Ri j are removed. When Ri j = 0, i = 1,2, ...,k, j = 1,2, ...,mi − 1, then Rimi

= ni −mi, which

corresponds to the classical constant-stress ALT with type-II CS. When Ri j = 0, i = 1,2, ...,k, j = 1,2, ...,mi, then
ni = mi, which corresponds to the classical constant-stress ALT with a complete sampling. With these notations the
observed progressive censored data under the stress level Si are ti1:mi:ni

< ti2:mi :ni
< ... < timi :mi:ni

, i = 1,2, ...,k.

The following assumptions are used throughout the paper in the framework of constant-stress ALT:

1.Under each constant-stress level Si, i = 0,1, ...,k, the failure time Ti follows PGW distribution.
2.The linked function between the life characteristic σ and the stress S takes one of the following shapes:

–Arrhenius model: ln(σ) = a+ b
−S

, b > 0, where S is the temperature.

–Inverse power model: ln(σ) = a+ b[ln(S)], b > 0, where S is the voltage.
–Exponential model: ln(σ) = a+ bS, b > 0, where S is a weathering variable.

For further information on these accelerated models, see Nelson [32]. Thus, ln(σ) is a linear function of the stress

function φ(S) = 1
−S

, ln(S) or S for the above three models. Furthermore, we assume that the linked function between
the parameter σi and the stress level Si is

ln(σi) = a+ bφi, i = 0,1, ...,k, (4)

where a and b(> 0) are unknown parameters, and φi = φ(Si) is an increasing function of S. From the life-stress-linked
function in (4), the parameter σi can be expressed as

σi = σ0 exp{b(φi −φ0)}= σ0θ hi , i = 0,1, ...,k, (5)

where σ0 is the parameter of the PGW distribution under use-stress level S0, θ = exp{b(φ1 − φ0)} = σ1
σ0

> 1 is the

acceleration factor from S0 to S1 and the transformed stress level

hi =
φi −φ0

φ1 −φ0

, (6)

so that 1 ≤ hi < ∞, i = 1,2, ...,k.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


204 M. M. Mohie El-Din et al.: Inference for a constant-stress accelerated...

3 Estimation via maximum likelihood method

This section contains the MLEs of the model parameters γ , σ0, ν and θ which are obtained under progressive type-II
censoring. Assuming ti j = ti j:mi :ni

, i = 1,2, · · · ,k and j = 1,2, · · · ,mi be the observed data under the stress level Si. Then
the likelihood function of γ , σ0, ν and θ is given by

L(γ,σ0,ν,θ ) =
k

∏
i=1

Ci

mi

∏
j=1

fTi
(ti j) [1−FTi

(ti j)]
Ri j , (7)

where Ci = ni (ni − 1−Ri1)(ni − 2−Ri1−Ri2) · · ·
(

ni −mi + 1−∑
mi−1
j=1 Ri j

)
.

From (1) and (2) in (7), we get

L(γ,σ0,ν,θ ) =
k

∏
i=1

Ci

mi

∏
j=1

γν(σ0θ hi)ν tν−1
i j (1+(σ0θ hiti j)

ν)γ−1Exp[(Ri j + 1)(1− (1+(σ0θ hiti j)
ν )γ)], (8)

So, the log-likelihood function is written as

ℓ(γ,σ0,ν,θ ) =
k

∑
i=1

logCi +(logγ + logν +ν logσ0)
k

∑
i=1

mi +ν logθ
k

∑
i=1

mihi

+(ν − 1)
k

∑
i=1

mi

∑
j=1

log ti j +(γ − 1)
k

∑
i=1

mi

∑
j=1

[
log(1+(σ0θ hiti j)

ν)
]

+
k

∑
i=1

mi

∑
j=1

[
(Ri j + 1)(1− (1+(σ0θ hiti j)

ν )γ )
]
,

(9)

the likelihood equations of γ , σ0, θ and ν are respectively

∂ℓ

∂γ
=

∑k
i=1 mi

γ
+

k

∑
i=1

mi

∑
j=1

[
log(1+(σ0θ hiti j)

ν )
]
−

k

∑
i=1

mi

∑
j=1

[
(Ri j + 1)(1+(σ0θ hiti j)

ν)γ log(1+(σ0θ hiti j)
ν )
]
= 0,

∂ℓ

∂σ0

=
ν ∑k

i=1 mi

σ0

+(γ − 1)
k

∑
i=1

mi

∑
j=1

[
νθ hiti j(σ0θ hiti j)

ν−1
]

(1+(σ0θ hiti j)ν )

−νγ
k

∑
i=1

mi

∑
j=1

[
θ hiti j(Ri j + 1)(1+(σ0θ hiti j)

ν )γ−1(σ0θ hiti j)
ν−1
]
= 0,

∂ℓ

∂ν
=

ν ∑k
i=1 himi

θ
+(γ − 1)

k

∑
i=1

mi

∑
j=1

[
νσ0θ hi−1hiti j(σ0θ hiti j)

ν−1
]

(1+(σ0θ hiti j)ν )

− γ
k

∑
i=1

mi

∑
j=1

[
ti jνσ0θ hi−1hi(Ri j + 1)(1+(σ0θ hiti j)

ν)γ−1(σ0θ hiti j)
ν−1
]
= 0,

and

∂ℓ

∂θ
=

∑k
i=1 mi

ν
+ logσ0

k

∑
i=1

mi +
k

∑
i=1

mi

∑
j=1

logti j + logθ
k

∑
i=1

mihi +(γ − 1)
k

∑
i=1

mi

∑
j=1

[
log(νθ hiσ0ti j)(σ0θ hiti j)

ν
]

(1+(σ0θ hiti j)ν)

− γ
k

∑
i=1

mi

∑
j=1

[
log(σ0θ hiti j)(Ri j + 1)(1+(σ0θ hiti j)

ν )γ−1(σ0θ hiti j)
ν
]
= 0.





(10)
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Now, we have a system of four nonlinear equations in four unknown parameters γ , σ0, ν and θ . It is evident that a
closed-form solution is too difficult to be obtained. So, an iterative procedure such as Newton-Raphson can be considered
to get numerical solutions of the nonlinear system in (10).

4 Bayes inference

BEs of the model parameters γ, σ0, ν and θ under progressive type-II censoring are obtained by considering the Square
Error (SE) loss function and Linear Exponential loss function (LINEX). Informative priors are used to obtain the BEs.
Since for PGW distribution not a single conjugate prior is known till date. Therefore, we assume that γ, σ0, ν and θ are
independent with informative priors as follows:

π1(γ) ∝ γµ1−1e−λ1γ , γ > 0, µ1, λ1 > 0, (11)

π2(σ0) ∝ σ
µ2−1
0 e−λ2σ0 , σ0 > 0, µ2, λ2 > 0, (12)

π3(ν) ∝ νµ3−1e−λ3ν , ν > 0, µ3, λ3 > 0, (13)

π4(θ ) ∝ e−β (θ−1), θ > 1, β > 0. (14)

The gamma prior is used for its flexibility and it accommodates different shapes reflected in prior beliefs. The
hyper-parameters µi and λi, i = 1,2,3, can be easily evaluated if we consider any two independent information for γ , σ0

and ν respectively. The informative priors in (11)-(14) can be converted as non-informative priors when µi = λi = 0,

i = 1,2,3 and β = lnθ
(θ+1) .

From (11)-(14), the joint prior of the parameters γ, σ0, ν and θ is given by:

π(γ,σ0,ν,θ ) ∝ γµ1−1σ
µ2−1
0 νµ3−1e−(γλ1+σ0λ2+νλ3+β (θ−1)), γ,σ0,ν > 0, θ > 1. (15)

The joint posterior density function of the parameters γ, σ0, ν and θ can be written from (8) and (15) as follows:

π∗(γ,σ0,ν,θ ) ∝ L(γ,σ0,ν,θ ) π(γ,σ0,ν,θ )

∝ γ(µ1−1)+∑k
i=1 mi σ

(µ2−1)+ν ∑k
i=1 mi

0 ν(µ3−1)+∑k
i=1 miθ ν ∑k

i=1 himie−(γλ1+σ0λ2+νλ3+β (θ−1))×

k

∏
i=1

mi

∏
j=1

(1+(σ0θ hiti j)
ν )γ−1 exp

{
(Ri j + 1)

(
1− (1+(σ0θ hiti j)

ν)γ
)}

.

(16)

The BEs of the function U(Θ) =U(γ,σ0,ν,θ ) under SE and LINEX loss functions are given respectively by

ŨSE(Θ) = E(U(Θ)), (17)

and

ŨLINEX (Θ) =−
1

c
log[E(e−c U(Θ ))], (18)

where E(.) is the expected value and c 6= 0 is the shape parameter of LINEX loss function.
Regrettably, we cannot compute the expectations in (17) and (18) explicitly. Therefore, Markov Chain Monte Carlo
(MCMC) method is used to approximate these expectations.

4.1 MCMC approach

In this subsection, MCMC technique is applied to generate samples from the posterior distribution and then compute the
BEs of γ, σ0, ν and θ .
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From the joint posterior density function in (16), the conditional posterior distributions of γ, σ0, ν and θ are given
respectively by:

P1(γ|σ0,ν,θ ) ∝γ(µ1−1)+∑k
i=1 mie−γλ1

k

∏
i=1

mi

∏
j=1

(1+(σ0θ hiti j)
ν)γ×

exp
{
(Ri j + 1)

(
1− (1+(σ0θ hiti j)

ν)γ
)}

,

(19)

P2(σ0|γ,ν,θ ) ∝σ
(µ2−1)+ν ∑k

i=1 mi

0 e−σ0λ2

k

∏
i=1

mi

∏
j=1

(1+(σ0θ hiti j)
ν )γ−1×

exp
{
(Ri j + 1)

(
1− (1+(σ0θ hiti j)

ν )γ
)}

,

(20)

P3(ν|γ,σ0,θ ) ∝ν(µ3−1)+∑k
i=1 mie−νλ3

k

∏
i=1

mi

∏
j=1

(1+(σ0θ hiti j)
ν )γ−1×

exp
{
(Ri j + 1)

(
1− (1+(σ0θ hiti j)

ν )γ
)}

,

(21)

P4(θ |γ,σ0,ν) ∝θ ν ∑k
i=1 himi e−β (θ−1)

k

∏
i=1

mi

∏
j=1

(1+(σ0θ hiti j)
ν )γ−1×

exp
{
(Ri j + 1)

(
1− (1+(σ0θ hiti j)

ν )γ
)}

.

(22)

The conditional posterior distributions of γ, σ0, ν and θ cannot be reduced analytically to well-known distributions.
Therefore, Metropolis-Hasting algorithm is used to generate random samples from these distributions; see Upadhyay and
Gupta [37].

The following algorithm can be used to compute BEs of U =U(γ,σ0,ν,θ ) under SE and LINEX loss functions.

Algorithm(1)

1.Begin with an initial guess point of (γ,σ0,ν,θ ) say (γ(0),σ
(0)
0 ,ν(0),θ (0)).

2.Set i = 1.
3.Generate γ(i), σ

(i)
0 , ν(i) and θ (i) from equations (19), (20), (21) and (22) respectively.

4.Set i = i+ 1.
5.Repeat steps ((2)-(4)) N times.
6.The approximate means of U and e−cU are given respectively by

E(U) =
1

N −M

N

∑
i=M+1

U(γ(i),σ
(i)
0 ,ν(i),θ (i)), (23)

E(e−cU ) =
1

N −M

N

∑
i=M+1

exp{−cU(γ(i),σ
(i)
0 ,ν(i),θ (i))}, (24)

where M is the burn-in period.

5 Confidence intervals

The approximate and credible CIs of the parameters γ, σ0, ν and θ are derived in this section.
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5.1 Normal approximation confidence interval

The approximate CIs of the four parameters are deduced by the asymptotic distributions of the MLEs of the unknown
parameters Θ = (γ,σ0,ν,θ ). This asymptotic distribution of the MLEs of Θ was introduced by Miller [22].

(
(γ̂ − γ),(σ̂0 −σ0),(ν̂ −ν),(θ̂ −θ )

)
∼ N(0,σi j) ,

where σi j, i, j = 1,2,3,4, is the variance-covariance matrix of the unknown parameters Θ =(γ,σ0,ν,θ ). The approximate
100 (1−α)% two sided CI of ϑ is given by:

(
ϑ̂l , ϑ̂u

)
= ϑ̂ ±Z1−α/2

√
σ̂ii, i = 1,2,3,4, (25)

where ϑ is γ, σ0, ν or θ and Zq is the 100q− th percentile of a standard normal distribution.

5.2 Credible confidence intervals

A 100(1−α)% Bayesian credible or posterior interval of a random quantity ϑ is the interval that has the posterior
probability (1−α), such ϑ lies in the interval where

p(l ≤ ϑ ≤ u) =

∫ u

l
π∗(ϑ |t)dϑ = 1−α.

The following algorithm is used to obtain credible CIs of γ , σ0, ν and θ .

Algorithm (2)

1.Perform steps ((1)− (6)) in algorithm (1).

2.Repeat the first step K times and arrange the results in ascending order as {γ̃ [1], γ̃ [2], · · · , γ̃ [K]},

{σ̃0
[1], σ̃0

[2], · · · , σ̃0
[K]}, {ν̃ [1], ν̃ [2], · · · , ν̃ [K]} and {θ̃ [1], θ̃ [2], · · · , θ̃ [K]}.

Then, the 100 (1−α)% credible CI of ϑ is expressed by

(
ϑ̃l , ϑ̃u

)
=
(

ϑ̃ [αK/2], ϑ̃ [(1−α/2)K]
)
, where ϑ is γ, σ0, ν or θ . (26)

6 Optimal stress level

Through the past three decades, the problem of optimal design ALT has received a great consideration in the reliability
literature, see, for example, Miller and Nelson [23], Bai et al. [9] and Gouno et al. [15]. Han and Ng [17] introduced a
comparative study between the optimal design of constant and step-stress ALT for exponential distribution under type-I
censoring. Guan et al. [16] derived the optimal plans of constant-stress ALTs for the generalized exponential distribution.
Han [18] considered time- and cost-constrained optimal designs of constant and step-stress ALTs for the exponential
distribution. Abdel-Hamid and AL-Hussaini [4] considered the problem of optimally designing a step-stress partially
ALT for progressively type-I censored data from generalized pareto distribution. Mohie El-Din et al. [28] obtained the
optimal designs of constant-stress ALTs for Lindley distribution. Abd El-Raheem [6] derived the optimal designs of
constant-stress ALT for the extension of the exponential distribution. Abd El-Raheem [7] expanded his results in Abd
El-Raheem [6] to the censored data.

In this section, we investigate the problem of choosing the optimal transformed stress level hi, i= 1,2, ...,k, of constant-
stress ALT for progressively type-II censored data from PGW distribution. For simplicity of discussion, we only consider
the case k = 2 stress levels (h1,h2) in the life test. Because the smallest transformed stress level is fixed at h1 = 1, the
problem becomes to solve the optimal stress level of h2 which fulfills the criterion.
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6.1 D-optimality

The D-optimality criterion is frequently used in designing ALT by maximizing the determinant of the Fisher information

matrix. The local Fisher information matrix, F, for MLEs (γ̂, σ̂0, ν̂ , θ̂ ) is the 4× 4 symmetric matrix of negative second
partial derivatives of ℓ(γ,σ0,ν,θ ) with respect to γ , σ0, ν , and θ , see Nelson [32]. If ϑ1 = γ , ϑ2 = σ0, ϑ3 = ν , and ϑ4 = θ ,
then

F =

(
−

∂ 2ℓ̂(γ,σ0,ν,θ )

∂ϑi∂ϑ j

)

4×4

, (27)

where the hate ˆ indicates that the derivative is calculated at (γ̂, σ̂0, ν̂, θ̂ ). The optimal transformed stress level h∗2 can be
obtained by

Maximize{det(F(γ̂, σ̂0, ν̂, θ̂ ))}. (28)

7 Application

In this section, we demonstrate the proposed procedures in this article with a real-data example. Moreover, the real dataset
is used to show that PGW can be a better model than the Extension of the Exponential (EE) distribution, Weibull (W)
distribution, Generalized Exponential (GE) distribution and the Exponentiated Weibull (EW) distribution.

7.1 Example

The progressively-censored data in Table 7.1 represents the failure times in hours of transformers at high voltage, see
Nelson [32] (page 161). In this life test the design voltage is 14.4KV . In Table 7.1, + denotes censored data.

Table 7.1: The failure times in hours of transformer life testing at high voltage

35.4KV 42.4KV 46.7KV

40.1 0.6 3.1

59.4 13.4 8.3

71.2 15.2 8.9

166.5 19.9 9.0

204.7 25.0 13.6

229.7 30.2 14.9

308.3 32.8 16.1

537.9 44.4 16.9

1002.3+ 50.2+ 21.3

1002.3+ 56.2 48.1+

By engineering experience, inverse power model is sufficient to describe the acceleration voltage relationship. So, the
acceleration model can be expressed as

ln(σi) = a+ b ln(Si), b > 0, i = 0,1,2,3. (29)

In this example, S0 = 14.4KV , S1 = 35.4KV , S2 = 42.4KV , S3 = 46.7KV and φi = ln(Si), i = 0,1,2,3.
For the data in Table 7.1 the progressive censoring schemes Ri j, i = 1,2,3, j = 1, ...,mi of each stress level are as follows:

–Under S1 = 35.4KV : n1 = 10, m1 = 8 and R1 j = 0, j = 1, ...,7, R18 = 2.
–Under S2 = 42.4KV : n2 = 10, m2 = 9 and R2 j = 0, j = 1, ...,7, R28 = 1, R29 = 0.
–Under S3 = 46.7KV : n3 = 10, m3 = 9 and R3 j = 0, j = 1, ...,8, R39 = 1.

Modified Kolmogorov-Smirnov goodness of fit test for progressively type-II censored data is used to check the validity of
the five distributions PGW, EE, W, GE and EW with the data in Table 7.1. The modified Kolmogorov-Smirnov statistic for
progressive type-II censored data was introduced by Pakyari and Balakrishnan [36]. Let T1:m:n < T2:m:n < ... < Tm:m:n be a
progressively type-II censored sample with progressive censoring scheme (R1,R2, ...,Rm) from a continuous distribution
function F(t,ϑ). Then the modified Kolmogorov-Smirnov statistic for progressive type-II censored data is given by

Dm:n = max{D+
m:n, D−

m:n}, (30)
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where
D+

m:n = max
i
{νi:m:n − ui:m:n},

D−
m:n = max

i
{ui:m:n −νi−1:m:n},

where νi:m:n = E(Ui:m:n) is the expected value of the i-th type-II progressively-censored order statistic from the uniform(0,
1) distribution, given by

νi:m:n = 1−
m

∏
j=m−i+1

(
j+Rm− j+1 + ...+Rm

j+ 1+Rm− j+1+ ...+Rm

)
,

and ui:m:n = F(ti:m:n, ϑ̂ ) for i = 1,2, ...,m.
The values of test statistic (Dm:n) and the corresponding P-values for each stress level Si, i = 1,2,3 are presented in

Table 7.2. Because of all P-values are greater than 0.05, the five models provide good fit to the given data. To compare

Table 7.2: Test statistic and the corresponding P-value of each stress level for the five models

Stress (voltage) Distribution 35.4KV 42.4KV 46.7KV

Test statistic (Dm:n) PGW 0.1722 0.2316 0.1997

P-value 0.757 0.36 0.524

Test statistic (Dm:n) EE 0.1715 0.2361 0.2014

P-value 0.822 0.366 0.535

Test statistic (Dm:n) W 0.1814 0.2250 0.1969

P-value 0.654 0.496 0.552

Test statistic (Dm:n) GE 0.1871 0.2224 0.1957

P-value 0.57 0.525 0.571

Test statistic (Dm:n) EW 0.1871 0.2246 0.1967

P-value 0.587 0.522 0.558

between the five models, we use Akaike Information Criterion (AIC) as a tool to compare different models. So, the method
of maximum likelihood is used to obtain the estimates of the parameters of the five distributions PGW, EE, W, GE and
EW. The AIC and the estimated parameters for the five distributions are summarized in Table 7.3. It is clear that the PGW
distribution provides a better fit compared to EE, W, GE and EW distributions regarding AIC.

Table 7.3: The AIC and estimated parameters for the five models

Distribution F(t) AIC Estimated parameters

PGW 1−exp{1− (1+(σt)ν )γ} 279.476 γ̂ = 0.5047, σ̂0 = 0.0060, ν̂ = 0.99 and θ̂ = 38.435

EE 1−exp{1− (1+σt)γ } 279.926 γ̂ = 0.4841, σ̂0 = 0.0012 and θ̂ = 22.7436

W 1−exp{−(σt)γ} 284.246 γ̂ = 0.7512, σ̂0 = 0.0005 and θ̂ = 15.063

GE (1−exp{−(σt)})γ 294.138 γ̂ = 0.34446, σ̂0 = 0.000171 and θ̂ = 17.0303

EW (1−exp{−(σt)ν})γ
303.545 γ̂ = 0.3712, σ̂0 = 0.0005, ν̂ = 0.9843 and θ̂ = 5.9936

The MLEs and BEs of the parameters γ , σ0, ν and θ of the PGW distribution are introduced in Table 7.4. For this
dataset, non-informative priors are considered for Bayesian analysis. From the results in Table 7.4, we noticed that BEs
of σ0 and θ give more accurate results than the MLEs under SE loss function through the lengths of the CIs.

Table 7.4: MLEs and BEs along with their lengths of 95% CIs inside the parentheses of γ , σ0, ν and θ for the real dataset

ϑ̂ MLE BE

γ̂ 0.5047 (0.5225) 1.5840(2.8341)

σ̂0 0.0006(0.0023) 0.00142(0.0017)

ν̂ 0.9900(1.0326) 2.00261 (2.5401)

θ̂ 38.435(88.9851) 17.564(52.6284)
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8 Simulation studies

A comparison between the performances of the MLEs and BEs under SE and LINEX loss functions in terms of their
Mean Square Errors (MSEs) and Relative Absolute Biases (RABs) for various choices of ni, mi and Ri j, i = 1,2, · · · ,k,
j = 1,2, · · · ,mi is performed through the simulation study. Moreover, the 95% asymptotic and credible CIs are
calculated. The progressive censoring schemes which are used in the simulation studies are shown in Table 8.1. Table 8.2
introducing MSEs of the MLEs and BEs in the case of informative priors of the model parameters. Moreover, Table 8.3
introduces RABs of the MLEs and BEs in the case of informative priors of the model parameters. Table 8.4 includes
lengths and coverage probabilities of 95% approximate and credible CIs. Finally, Table 8.5 displays the average optimal
stress level h∗k over 1000 repetition according to D-optimality criterion.
The following algorithm is performed to obtain the MLEs, BEs, approximate and credible confidence intervals of the
four parameters.

Algorithm (3)

1.Specify the values of ni, mi, k, S0, S1, · · · ,Sk and c.
2.For given values of the prior parameters (µ1,λ1), (µ2,λ2), (µ3,λ3) and β generate γ , σ0, ν and θ from (11), (12), (13)

and (14) respectively.
3.Generate k simple random samples of size mi from Uniform(0,1) distribution, (Ui1,Ui2, · · · ,Uimi

), i = 1,2, · · · ,k.
4.Determine the values of the censored schemes, Ri j, i = 1,2, · · · ,k, and j = 1,2, · · · ,mi such that ∑

mi
j=1 Ri j = ni −mi.

5.Set Ei j =U
1/( j+∑

mi
d=mi− j+1

Rid)

i j , j = 1,2, · · · ,mi, and i = 1,2, · · · ,k.

6.Obtain the progressive type-II censored samples (U∗
i1,U

∗
i2, · · · ,U

∗
imi
), where U∗

i j = 1−∏
mi

d=mi− j+1 Eid , j = 1,2, · · · ,mi,

i = 1,2, · · · ,k.
7.Use step 6, to generate random samples (ti1, · · · , timi

), i = 1,2, · · · ,k, from equations (2) and (5) as follows:

ti j =
1

σ0θ hi

[(
1− log(1−U∗

i j)
) 1

γ − 1

] 1
ν

, j = 1,2, · · · ,mi, i = 1,2, · · · ,k.

8.Use the progressive censored data to obtain the MLEs of the model parameters by solving the nonlinear system (10).
9.Compute the BEs of the model parameters relative to SE and LINEX loss functions, using algorithm (1), with N =

11000 and M = 1000.
10.Compute the approximate confidence bounds with confidence level 95% for the four parameters γ , σ0, ν and θ .
11.Compute 95% credible confidence intervals using algorithm (2) .
12.Replicate the steps ((3)− (11)), 1000 times.
13.Compute the average values of the MSEs and RABs associated with the MLEs and BEs of the four parameters.
14.Do steps ((1)-(13)) with different values of prior parameters, ni, mi and Ri j, j = 1,2, · · · ,mi, i = 1,2, · · · ,k.

Table 8.1: The progressive censoring schemes used in the simulation studies

ni mi C.S (Ri1, · · · ,Rimi
) C.S (Ri1, · · · ,Rimi

) C.S (Ri1, · · · ,Rimi
)

ni =





29 i = 1

16 i = 2

13 i = 3

7 i = 4

mi =





25 i = 1

13 i = 2

11 i = 3

6 i = 4

[1] Ri j =





4 i = 1, j = 1

3 i = 2, j = 1

2 i = 3, j = 1

1 i = 4, j = 1

0 other wise

[2] Ri j =





4 i = 1, j = m1

3 i = 2, j = m2

2 i = 3, j = m3

1 i = 4, j = m4

0 other wise

[3] Ri j =





1 i = 1, j = 17, · · · ,20

1 i = 2, j = 9,10,11

1 i = 3, j = 8,9
1 i = 4, j = 5

0 other wise

ni =






35 i = 1

20 i = 2

15 i = 3

10 i = 4

mi =






30 i = 1

15 i = 2

12 i = 3

8 i = 4

[4] Ri j =






5 i = 1, j = 1

5 i = 2, j = 1

3 i = 3, j = 1

2 i = 4, j = 1

0 other wise

[5] Ri j =






5 i = 1, j = m1

5 i = 2, j = m2

3 i = 3, j = m3

2 i = 4, j = m4

0 other wise

[6] Ri j =






1 i = 1, j = 16, · · · ,20

1 i = 2, j = 8, · · · ,12

1 i = 3, j = 7,8,9
1 i = 4, j = 5,6
0 other wise

ni =





45 i = 1

25 i = 2

20 i = 3

10 i = 4

mi =





37 i = 1

20 i = 2

16 i = 3

8 i = 4

[7] Ri j =





8 i = 1, j = 1

5 i = 2, j = 1

4 i = 3, j = 1

2 i = 4, j = 1

0 other wise

[8] Ri j =





8 i = 1, j = m1

5 i = 2, j = m2

4 i = 3, j = m3

2 i = 4, j = m4

0 other wise

[9] Ri j =





1 i = 1, j = 28, · · · ,35

1 i = 2, j = 14, · · · ,18

1 i = 3, j = 11, · · · ,14

1 i = 4, j = 6,7
0 other wise

ni =






50 i = 1

30 i = 2

25 i = 3

15 i = 4

mi =






44 i = 1

25 i = 2

21 i = 3

12 i = 4

[10] Ri j =






6 i = 1, j = 1

5 i = 2, j = 1

4 i = 3, j = 1

3 i = 4, j = 1

0 other wise

[11] Ri j =






6 i = 1, j = m1

5 i = 2, j = m2

4 i = 3, j = m3

3 i = 4, j = m4

0 other wise

[12] Ri j =






1 i = 1, j = 37, · · · ,42

1 i = 2, j = 16, · · · ,20

1 i = 3, j = 16, · · · ,19

1 i = 4, j = 10,11,12

0 other wise
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Table 8.2: MSEs for MLEs and BEs under SE (BSE) and LINEX (BLINEX) loss functions of γ , σ0, ν and θ with true values of

parameters (γ = 0.9181, σ0 = 1.0108, ν = 1.102 and θ = 3.2102), values of the prior parameters (µ1 = 84.29, µ2 = 102.17, µ3 =
1214.40, λ1 = 91081, λ2 = 101.08, λ3 = 1102 and β = 0.452), the number of stress levels (k = 4), and S0 = 50, S1 = 70, S2 = 100,

S3 = 120 and S4 = 160

∑k
i=1 ni ∑k

i=1 mi C.S ϑ MLE BSE BLINEX

c =−2 c = .001 c = 2

65 55 [1] γ 1.4661 0.0135 0.0125 0.0135 0.0145

σ0 0.8104 0.0098 0.0118 0.0098 0.0080

ν 0.1052 0.0086 0.0088 0.0085 0.0084

θ 0.0637 0.1871 0.2269 0.1871 0.1541

[2] γ 1.2999 0.0138 0.0127 0.0138 0.0151

σ0 1.0308 0.0113 0.0135 0.0113 0.0094

ν 0.0991 0.0086 0.0088 0.0086 0.0084

θ 0.0820 0.1438 0.1759 0.1438 0.1171

[3] γ 1.6429 0.0144 0.0130 0.0145 0.0153

σ0 0.9136 0.0063 0.0118 0.0062 0.0080

ν 0.0761 0.0085 0.0087 0.0085 0.0083

θ 0.0686 0.1401 0.1767 0.1436 0.1163

65 γ 1.0798 0.0120 0.0212 0.0120 0.0118

σ0 1.3024 0.0072 0.0147 0.0072 0.0069

ν 0.0877 0.0079 0.0012 0.0079 0.0021

θ 0.0840 0.1304 0.2025 0.1304 0.0861

80 65 [4] γ 1.3576 0.0068 0.0061 0.0068 0.0076

σ0 0.6766 0.0053 0.0067 0.0052 0.0040

ν 0.0817 0.0056 0.0055 0.0055 0.0052

θ 0.0605 0.1163 0.1523 0.1163 0.0882

[5] γ 1.3187 0.0091 0.0081 0.0091 0.0101

σ0 1.1521 0.0057 0.0071 0.0057 0.0044

ν 0.0564 0.0054 0.0056 0.0054 0.0053

θ 0.0677 0.1392 0.1771 0.1392 0.1086

[6] γ 1.3078 0.0064 0.0082 0.0063 0.0101

σ0 0.6471 0.0055 0.0069 0.0055 0.0043

ν 0.0597 0.0053 0.0056 0.0054 0.0052

θ 0.0652 0.1418 0.1809 0.1418 0.1102

80 γ 0.9873 0.0062 0.0129 0.0062 0.0049

σ0 0.5521 0.0052 0.0085 0.0052 0.0029

ν 0.0547 0.0052 0.0080 0.0052 0.0064

θ 0.0540 0.1029 0.1383 0.1029 0.0850

9 Conclusion

Constant-stress ALT model for PGW distribution is introduced under progressive type-II censored data. MLEs and BEs
in the case of informative priors of the model parameters γ, σ0, ν and θ are determined through a real dataset. Point
estimation of the model parameters γ, σ0, ν and θ has been investigated through maximum likelihood and Bayes
methods in terms of their MSEs and RABs. Also, approximate and credible CIs are established for the model parameters
γ, σ0, ν and θ . The calculations are done depending on different sample sizes and three different progressive censoring
schemes, one of them represents the traditional type-II censoring. From the results in Tables (8.2)-(8.4), we have noticed
the following:

1.The MSEs and RABs of MLEs and BEs of the parameters decrease as the sample size increases, except for few cases.
This may be due to variation in data.

2.The BEs of γ , σ0 and ν give more accurate results than MLEs through the MSEs and RABs.
3.The MLEs of θ give more accurate results through the MSEs than BEs.
4.The BEs of γ , σ0, ν and θ under LINEX loss function (c = .001) have the same MSEs and RABs as compared with

estimates under SE loss function, except for few cases.
5.The lengths of approximate and credible CIs decrease as the sample size increases.
6.The credible CIs of γ , σ0, ν and θ give more accurate results than approximate CIs through lengths.
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(continued)

∑k
i=1 ni ∑k

i=1 mi C.S ϑ MLE BSE BLINEX

c =−2 c = .001 c = 2

100 81 [7] γ 1.2380 0.0050 0.0044 0.0050 0.0057

σ0 0.5391 0.0032 0.0043 0.0032 0.0023

ν 0.0546 0.0035 0.0036 0.0035 0.0034

θ 0.0445 0.1035 0.1386 0.1035 0.0765

[8] γ 0.9093 0.0055 0.0048 0.0055 0.0063

σ0 0.9930 0.0033 0.0044 0.0033 0.0024

ν 0.0523 0.0035 0.0036 0.0035 0.0034

θ 0.0596 0.0969 0.1277 0.0969 0.0730

[9] γ 1.016 0.0044 0.0038 0.0044 0.0051

σ0 0.6497 0.0032 0.0043 0.0032 0.0023

ν 0.0597 0.0035 0.0036 0.0035 0.0033

θ 0.0587 0.1076 0.1406 0.1076 0.0816

100 γ 0.6537 0.0076 0.0031 0.0076 0.0048

σ0 0.3938 0.0031 0.0054 0.0031 0.0024

ν 0.0371 0.0033 0.0051 0.0033 0.0029

θ 0.0441 0.0984 0.1872 0.0985 0.1171

120 102 [10] γ 0.8749 0.0034 0.0030 0.0034 0.0039

σ0 0.4082 0.0022 0.0031 0.0022 0.0015

ν 0.0352 0.0025 0.0026 0.0025 0.0024

θ 0.0564 0.0834 0.1188 0.0834 0.0577

[11] γ 0.8965 0.0043 0.0040 0.0044 0.0047

σ0 0.6416 0.0020 0.0028 0.0020 0.0014

ν 0.0368 0.0025 0.0026 0.0025 0.0024

θ 0.0452 0.1017 0.1017 0.1017 0.0742

[12] γ 0.7483 0.0038 0.0032 0.0038 0.0045

σ0 0.5140 0.0020 0.0029 0.0020 0.0014

ν 0.0391 0.0025 0.0026 0.0025 0.0024

θ 0.0304 0.0939 0.1310 0.0939 0.0663

120 γ 0.8311 0.0030 0.0026 0.0030 0.0036

σ0 0.3378 0.0024 0.0034 0.0024 0.0017

ν 0.0286 0.0025 0.0026 0.0025 0.0024

θ 0.0416 0.1179 0.1602 0.1179 0.0864

Table 8.3: RABs for MLEs and BEs of γ , σ0, ν and θ with true values of parameters (γ = 0.9181, σ0 = 1.0108, ν = 1.102 and

θ = 3.2102), values of the prior parameters (µ1 = 84.29, µ2 = 102.17, µ3 = 1214.40, λ1 = 91081, λ2 = 101.08, λ3 = 1102 and

β = 0.452), the number of stress levels (k = 4), and S0 = 50, S1 = 70, S2 = 100, S3 = 120 and S4 = 160

∑k
i=1 ni ∑k

i=1 mi C.S ϑ MLE BSE BLINEX

c =−2 c = .001 c = 2

65 55 [1] γ 0.6926 0.0129 0.0176 0.0129 0.0082

σ0 0.8838 0.7449 0.7447 0.7449 0.745

ν 0.2856 0.1334 0.1381 0.1334 0.1292

θ 0.4617 0.4311 0.4221 0.4311 0.4451

[2] γ 0.7263 0.0197 0.0246 0.0197 0.0149

σ0 0.8653 0.7294 0.7297 0.7294 0.7105

ν 0.2334 0.1285 0.1458 0.1286 0.1016

θ 0.4291 0.3945 0.3815 0.3945 0.4125

[3] γ 0.7045 0.0161 0.0210 0.0162 0.0114

σ0 0.8650 0.7299 0.7355 0.7297 0.7194

ν 0.2454 0.1241 0.1203 0.1240 0.1279

θ 0.4423 0.3219 0.3201 0.3218 0.4018

c© 2019 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 8, No. 3, 201-216 (2019) / www.naturalspublishing.com/Journals.asp 213

(continued)

∑k
i=1 ni ∑k

i=1 mi C.S ϑ MLE BSE BLINEX

c =−2 c = .001 c = 2

65 γ 0.6843 0.0203 0.0250 0.0203 0.0156

σ0 0.8698 0.7389 0.7388 0.7389 0.7290

ν 0.2828 0.1705 0.1743 0.1705 0.1669

θ 0.4465 0.2596 0.2460 0.2596 0.2642

80 65 [4] γ 0.6726 0.0106 0.0127 0.0106 0.0089

σ0 0.8713 0.7159 0.7249 0.7159 0.7021

ν 0.1483 0.1141 0.1215 0.1141 0.1109

θ 0.4554 0.3856 0.3761 0.3856 0.3916

[5] γ 0.7032 0.0142 0.0174 0.0142 0.0116

σ0 0.8576 0.7283 0.7418 0.7283 0.7130

ν 0.2244 0.1264 0.1354 0.1264 0.1009

θ 0.4167 0.3514 0.3340 0.3514 0.3604

[6] γ 0.6974 0.0107 0.0091 0.0107 0.0184

σ0 0.8583 0.7107 0.6840 0.7107 0.7401

ν 0.2359 0.1154 0.1008 0.1153 0.1249

θ 0.4336 0.3009 0.3105 0.3008 0.2954

80 γ 0.6609 0.0170 0.0220 0.0170 0.0121

σ0 0.8561 0.7260 0.7306 0.7260 0.7150

ν 0.2252 0.1390 0.1399 0.1390 0.1385

θ 0.4295 0.2153 0.2022 0.2153 0.2225

100 81 [7] γ 0.6001 0.0087 0.0109 0.0087 0.0079

σ0 0.8674 0.6429 0.6655 0.6429 0.5912

ν 0.1246 0.0674 0.0677 0.0674 0.0666

θ 0.4401 0.3551 0.3540 0.3551 0.3564

[8] γ 0.7001 0.0101 0.0108 0.0100 0.0079

σ0 0.8266 0.5673 0.5845 0.5673 0.5312

ν 0.1046 0.0684 0.0696 0.0683 0.0642

θ 0.6541 0.0086 0.0074 0.0086 0.0105

[9] γ 0.6254 0.0056 0.0091 0.0056 0.0039

σ0 0.5812 0.3210 0.3432 0.3209 0.3050

ν 0.1023 0.0185 0.0214 0.0184 0.0158

θ 0.3006 0.1954 0.1749 0.1954 0.2012

100 γ 0.5891 0.0097 0.0102 0.0096 0.0074

σ0 0.7641 0.6008 0.6051 0.6008 0.6001

ν 0.2021 0.1092 0.1103 0.1092 0.1021

θ 0.2985 0.1950 0.1708 0.1950 0.1992

120 102 [10] γ 0.5708 0.0062 0.0081 0.0062 0.0054

σ0 0.6753 0.4691 0.4715 0.4690 0.4502

ν 0.0944 0.0155 0.0198 0.0155 0.0116

θ 0.3581 0.2157 0.2003 0.2156 0.2258

[11] γ 0.6181 0.0087 0.0092 0.0086 0.0064

σ0 0.7125 0.4381 0.4594 0.4381 0.4175

ν 0.0927 0.0482 0.0580 0.0482 0.0326

θ 0.5090 0.0058 0.0044 0.0057 0.0061

[12] γ 0.5524 0.0042 0.0049 0.0042 0.0037

σ0 0.5004 0.2501 0.2611 0.2500 0.2368

ν 0.0873 0.0097 0.0109 0.0097 0.0068

θ 0.2814 0.1758 0.1704 0.1758 0.1823

120 γ 0.5001 0.0052 0.0067 0.0051 0.0048

σ0 0.6213 0.5801 0.5417 0.5801 0.4197

ν 0.1892 0.0972 0.0996 0.0971 0.0854

θ 0.2712 0.1758 0.1675 0.1758 0.1802
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Table 8.4: Lengths and coverage probabilities of 95% approximate (Appro), credible (Cred) CIs for γ , σ0, ν and θ with true values

(γ = 0.9181, σ0 = 1.0108, ν = 1.102 and θ = 3.2102), the number of stress levels (k = 4), and S0 = 50, S1 = 70, S2 = 100, S3 = 120

and S4 = 160

∑k
i=1 ni ∑k

i=1 mi C.S ϑ Length of CI Coverage probability of CI

Appro Cred Appro Cred

65 55 [1] γ 5.0732 0.3189 0.9250 0.992

σ0 0.0654 0.0121 0.808 1

ν 0.4980 0.1498 0.933 1

θ 1.2085 0.0028 0.95 0.933

[2] γ 4.2532 0.38 0.875 0.992

σ0 0.0575 0.0123 0.792 1

ν 0.3951 0.1238 0.983 1

θ 0.9661 0.0022 0.95 0.875

[3] γ 4.7135 0.3795 0.925 1

σ0 0.0620 0.0128 0.767 1

ν 0.4504 0.1387 0.942 1

θ 1.0812 0.0025 0.975 0.908

65 γ 3.4704 0.3755 0.917 1

σ0 0.0519 0.0117 0.808 1

ν 0.3713 0.1447 0.958 1

θ 0.8485 0.0018 0.933 0.867

80 65 [4] γ 3.9314 0.3049 0.917 0.975

σ0 0.0548 0.0118 0.775 1

ν 0.4072 0.1413 0.925 1

θ 0.9648 0.0022 0.958 0.867

[5] γ 3.3843 0.3772 0.933 0.975

σ0 0.0493 0.0120 0.758 1

ν 0.3288 0.1291 0.925 1

θ 0.7841 0.0017 0.933 0.817

[6] γ 4.0317 0.3793 0.892 0.992

σ0 0.0537 0.0116 0.817 1

ν 0.3684 0.1187 0.967 1

θ 0.8813 0.0019 0.925 0.8

80 γ 4.0179 0.3780 0.9 0.95

σ0 0.0554 0.0125 0.875 1

ν 0.4002 0.1517 0.967 1

θ 0.8911 0.0020 0.925 0.683

100 81 [7] γ 3.6879 0.2922 0.925 0.95

σ0 0.0491 0.0109 0.808 1

ν 0.3748 0.1407 0.908 1

θ 0.8877 0.0019 0.975 0.775

[8] γ 3.8079 0.3794 0.9 0.933

σ0 0.0492 0.0123 0.858 1

ν 0.3505 0.1589 0.967 1

θ 0.8327 0.0018 0.925 0.733

[9] γ 3.4477 0.3758 0.9 0.9

σ0 0.0464 0.0115 0.9 1

ν 0.3331 0.1379 0.942 1

θ 0.7894 0.0018 0.908 0.717

100 γ 3.7465 0.3801 0.925 0.833

σ0 0.0509 0.0129 0.925 0.992

ν 0.3762 0.1538 0.967 1

θ 0.8514 0.0021 0.908 0.558
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(continued)

∑k
i=1 ni ∑k

i=1 mi C.S ϑ Length of CI Coverage probability of CI

Appro Cred Appro Cred

120 102 [10] γ 3.1611 0.2736 0.942 0.767

σ0 0.0465 0.0116 0.825 1

ν 0.3350 0.1486 0.908 1

θ 0.7572 0.0016 0.892 0.542

[11] γ 3.0229 0.3785 0.95 0.742

σ0 0.0424 0.0115 0.808 1

ν 0.2929 0.1331 0.933 1

θ 0.6853 0.0015 0.892 0.633

[12] γ 4.3055 0.3790 0.908 0.75

σ0 0.0526 0.0113 0.842 1

ν 0.3885 0.1199 0.95 1

θ 0.9620 0.0043 0.958 0.55

120 γ 3.3556 0.3748 0.958 0.45

σ0 0.0481 0.0121 0.85 0.967

ν 0.3477 0.1406 0.892 1

θ 0.7696 0.0018 0.95 0.317

Table 8.5: Average optimal stress level h∗k with true values of parameters (γ = 0.9181, σ0 = 1.0108, ν = 1.102 and θ = 3.2102), and

the number of stress levels (k = 2)

∑k
i=1 ni ∑k

i=1 mi C.S h∗k C.S h∗k C.S h∗k
65 55 [1] 2.5767 [2] 2.8531 [3] 3.7889

80 65 [4] 2.8323 [5] 3.0221 [6] 2.8506

100 81 [7] 2.7871 [8] 1.6616 [9] 2.9682

120 102 [10] 1.8697 [11] 1.6979 [12] 2.1555

7.The coverage probabilities of credible CIs of γ , σ0 and ν are greater than the corresponding coverage probabilities of
approximate CIs.

8.The coverage probabilities of approximate CIs of the parameter θ are greater than the corresponding coverage
probabilities of credible CIs.
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