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Abstract: In this paper, two-hybrid techniques, namely q-homotopy analysis Elzaki transform method (q-HAETM) and iterative Elzaki

transform method (IETM) have been applied to obtain the numerical solutions of time-fractional Navier-Stokes equations in polar

coordinate described in the Caputo sense. q-HAETM is the combination of the homotopy analysis method and Elzaki transform method,

and IETM is the combination of two reliable methods, i.e. iterative method and Elzaki transform method. Two example problems are

solved, and the obtained results are compared with the solutions solved by other techniques which show the efficacy and powerfulness

of the methods.
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1 Introduction

Fractional calculus is an essential discipline of mathematics which offers the differentiation and integration of arbitrary
order. Fractional calculus has become widespread due to its numerous applications in the field of solid mechanics, fluid
dynamics, financial mathematics, social sciences and other areas of science and engineering [1] -[13]. The solutions of
non-integer order differential equations are more complicated than integer-order differential equations, so
computationally efficient and reliable numerical methods are to be developed to handle them. Authors have written
different books [14]-[18] in which different types of studies and analyses on non-integer order calculus help the scientists
better understand the concepts of fractional calculus.

In this investigation, we have focused on the unsteady one-dimensional motion of the viscous fluid through a tube. The
equations of motion of a viscous fluid are the Navier-Stokes (NS) equations which may be written in [19] polar coordinate
as

∂

∂ t
u(r, t) = P+ v

(

∂ 2

∂ r2
u(r, t)+

1

r

∂

∂ r
u(r, t)

)

, (1)

where P = − ∂ p
ρ∂ z

and t, u, ρ , p and v are the time, velocity, density, pressure and kinematic viscosity of the fluid,

respectively. The aforementioned Eq. (1) can be formulated by replacing the first-order derivative of velocity concerning
time with the fractional derivative of order α (0 < α ≤ 1). Hence, the operator form of the time-fractional NS equation
has the form

Dα
t u = P+ v

(

∂ 2

∂ r2
u(r, t)+

1

r

∂

∂ r
u(r, t)

)

, (2)
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where Dα
t is the fractional derivative in the Caputo sense of order α (0 < α ≤ 1).

Momani and Odibat [19] investigated the polar form of the NS equation using the homotopy perturbation method (HPM).
The time-fractional NS equations have been deliberated by Ganji et al. [20] utilizing the Adomian decomposition method
(ADM). The classical NS equation in the fractional form was first addressed and solved by El-Shahed and Salem [21]
using Laplace transform (LT) and finite Hankel transforms. The same form of NS equations in polar coordinate has been
solved by Kumar et al. [22] and Ragab et al. [23] using modified Laplace decomposition method and Homotopy analysis
method (HAM). Recently, Xu et al. [24] has explored the solution of the NS equations with space-fractional derivative
by replacing the Laplacian operator with Riesz fractional derivatives. The analytical study of three-dimensional viscous
flow near an infinite rotating disk has been discussed by Rashidi and Shahmohamadi [25] using the variational iteration
method, and the Pade approximation. The time-fractional NS equation in cartesian coordinate is investigated by Jena and
Chakraverty [26] using hybrid techniques, namely homotopy perturbation Elzaki transform method.
The present paper aims to point out the semi-analytical techniques, namely q-HATM and IETM, that are used to solve
NS equations arising in fluid mechanics. The q-HATM and IETM are the couplings of homotopy analysis method and
iterative method with Elzaki transform. Their major advantage is that they can combine two different powerful techniques
to get rapid convergence for the mentioned problem. Although Elzaki transform method is the effective method for solving
fractional differential equations, it fails to handle nonlinear terms arising from the fractional differential equations. These
difficulties may be overcome by coupling this transform with the HAM and the iterative method. Although a number of
studies related to the usual integral transformations, such as Fourier, Laplace, etc. have been achieved, the number of the
studies involving the Elzaki transform (ET) are quite a few in the literature. ET is a novel transform which was presented by
ELzaki in 2010 [27]. It is an enhanced remodel of Sumudu and Laplace transforms. There are some differential equations
which may not be solved by Sumudu and Laplace transform, but may be merely explained by ET. The ET has several
properties, but the most useful property over the other integral transforms is its ‘unity’ feature, which plays an essential
role [28].
The remaining parts of the paper are arranged as follows: Basic properties of fractional calculus are presented in Section 2.
Some necessary definitions and theorems of ET are addressed in Section 3. q-HATM, and IETM are defined in Section 4
and Section 5, respectively. Two test problems are incorporated in Section 6 to validate the precision of the present
methods. Results and discussion are illustrated in Section 7. Section 8 is devoted to conclusion.

2 Basic definitions of fractional calculus

Definition 1.The integral operator aJα
t of the order α of function f (t) in Riemann-Liouville sense is written as [14,15]

aJα
t f (t) = 1

Γ (α)

∫ t
a (t − ξ )α−1

f (ξ )dξ ,

aJ0
t f (t) = f (t),

(3)

where α > 0, t ≥ a ≥ 0, and Γ (.) is the Gamma function.

Definition 2.The operator Dα
t of u(t) in the Caputo sense is well-defined as [15,18]

Dα
t u(t) =

{

1
Γ (m−α)

∫ t
0

um(ξ )
(t−ξ )α−m+1 dξ , m− 1 < α < m,

dm

dtm u(t) , α = m.
(4)

Following [14], we may have

Jα tm =
Γ (m+ 1)

Γ (m+α + 1)
tm+α

, (5)

Dα tm =
Γ (m+ 1)

Γ (m−α + 1)
tm−α

. (6)

Definition 3.
Dα

t Jα
t ψ (t) = ψ (t) , (7)

Jα
t Dα

t ψ (t) = ψ (t)−
m

∑
k=0

ψ(k)
(

0+
) tk

k!
, (8)

for t > 0 and m− 1 < α ≤ m [14,15,16,17,18].
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3 Elzaki transformation

The Elzaki transform (ET) of the function g(t) is defined as

E [g(t)] = G(s) = s

∫ ∞

0
g(τ)e

−τ
s dτ,τ > 0. (9)

The Elzaki transform is an effective integral transformation technique for solving those equations which may not be solved
by other transformations [27]. Operating integration by parts in Eq. (9) to find ET of some functions is as follows [27] :

1.E
[

∂g(x,t)
∂ t

]

= 1
s
G(x,s)− sg(x,0),

2.E
[

∂ 2g(x,t)
∂ t2

]

= 1
s2 G(x,s)− g(x,0)− s

∂g(x,0)
∂ t

,

3.E
[

∂g(x,t)
∂x

]

= d
dx

G(x,s),

4.E
[

∂ 2g(x,t)

∂x2

]

= d2

dx2 G(x,s) .

3.1 Elzaki transform of fractional order derivatives defined in the Caputo sense

Theorem 1.[28] If F (p) is Laplace transform of g(t), Elzaki transform G(s) of g(t) is given by

G(s) = sF

(

1

s

)

. (10)

Theorem 2.[28] If G(s) is the Elzaki transform of g(t), then

E [Dα g(t)] =
G(s)

sα
−

n−1

∑
k=0

sk−α+2g(k) (0) ,n− 1 < α ≤ n. (11)

4 q-homotopy analysis Elzaki transform method

To demonstrate the elementary idea of q-Homotopy analysis Elzaki transform method, we have considered the nonlinear
non-homogenous fractional PDE as follows:

Dα
t ψ (x, t)+Rψ (x, t)+Nψ (x, t) = φ (x, t) , (12)

where Dα
t is the fractional derivative in the Caputo sense, R and N are the linear and nonlinear differential operator,

respectively and φ (x, t) is the source term. Taking ET on both sides of Eq. (12) and using Eq. (11), we have

E [ψ (x, t)] =
n−1

∑
k=0

sk+2ψ(k) (x, 0)+ sα
E [φ (x, t)−Rψ (x, t)−Nψ (x, t)] . (13)

Define a nonlinear operator as

N [ξ (x, t ;q)] = E [ξ (x, t ;q)]−
n−1

∑
k=0

sk+2ξ (k) (x, t ;q)
(

0+
)

+ sα
E [Rξ (x, t ;q)+Nξ (x, t ;q)−φ (x, t)] , (14)

where q ∈
[

0, 1
n

]

is the embedding parameter, and ξ (x, t ;q) is the unknown function. Constructing a homotopy we get

(1− nq)E [ξ (x, t ;q)−ψ0 (x, t)] = h̄qH (x, t)N [ξ (x, t ;q)] , (15)

where E denotes the Elzaki transform, H (x, t) represents the non-zero auxiliary function, h̄ 6= 0 is an auxiliary parameter
and ψ0 (x, t) is the initial value of ψ (x, t).
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If q = 0 and q = 1
n
, we obtain ξ (x, t ; 0) = ψ0 (x, t), and ξ

(

x, t ; 1
n

)

= ψ (x, t), respectively. As q increases from 0 to 1
n
,

ξ (x, t ; q) varies from ψ0 (x, t) to the solution of Eq. (12). Using Taylor’s series expansion on ξ (x, t ; q), one has

ξ (x, t ; q) = ψ0 (x, t)+
∞

∑
m=1

ψm (x, t)qm
, (16)

where

ψm (x, t) =
1

m!

∂ mψ (x, t ; q)

∂qm

∣

∣

∣

∣

q=0

. (17)

If R, u0 (x, t), H (x, t) and h̄ are properly chosen, Eq. (16) converges at q = 1
n
. Hence, we have

ψ (x, t) = ψ0 (x, t)+
∞

∑
m=1

ψm (x, t)

(

1

n

)m

. (18)

Let us define the vector
→

ψm = {ψ0,ψ1, ...,ψm} . (19)

Differentiating Eq. (15) m-times with respect to q, setting q = 0 and dividing by m!, we have the m − th order
deformation equation [29,30] as follows:

E [ψm (x, t)− χmψm−1 (x, t)] = h̄H (x, t)ℜm

(

→

ψm−1 (x, t )

)

. (20)

Applying the inverse Elzaki transform to both sides of Eq. (20), we obtain

ψm (x, t) = χmψm−1 (x, t)+E
−1

[

h̄H (x, t)ℜm

(

→

ψm−1 (x, t )

)]

, (21)

where

ℜm

(

→

um−1 (x, t )

)

=
1

(m− 1)!

∂ m−1N (ξ (x, t ;q))

∂qm−1

∣

∣

∣

∣

q=0

, (22)

and

χm =

{

0, m ≤ 1 ,

n, m > 1 .
(23)

Theorem 3.If we can find a constant 0 < a < 1 such that ‖ψm+1 (x, t)‖ ≤ a‖ψm (x, t)‖ for each value of m. Moreover,

if the truncated series ∑r
m=1 ψn (x, t)

(

1
n

)m
is taken as approximate solution of ψ (x, t), the maximum absolute truncated

error is given in [31]
∥

∥

∥

∥

∥

ψ (x, t)−
r

∑
m=0

ψm (x, t)

(

1

n

)m
∥

∥

∥

∥

∥

≤
ar+1

nr (n− a)
ψ0 (x, t) . (24)

Proof.One may see the proof of this theorem in [31].

5 Iterative Elzaki transform method

To clarify the simple idea of this technique, let us apply the Elzaki transform to both sides of Eq. (12) and we get

E [ψ (x, t)] =
n−1

∑
k=0

sk+2ψ(k) (x, 0)+ sα
E [φ (x, t)−Rψ (x, t)−Nψ (x, t)] . (25)

Applying inverse Elzaki transform to Eq. (25), we obtain

ψ (x, t) = E
−1

[

n−1

∑
k=0

sk+2ψ(k) (x, 0)

]

+E
−1 [sα

E [φ (x, t)−Rψ (x, t)−Nψ (x, t)]] . (26)
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Let

f (x, t) = E
−1
[

∑n−1
k=0 sk+2ψ(k) (x, 0)

]

+E
−1 [sα

E [φ (x, t)]]

Kψ (x, t) =−E
−1 [sα

E [Rψ (x, t)]]
Wψ (x, t) =−E

−1 [sα
E [Nψ (x, t)]]











. (27)

Consequently, the Eq. (26) can be rearranged as

ψ (x, t) = f (x, t)+Kψ (x, t)+Wψ (x, t) , (28)

where f (x, t) is the known function, K and W are the linear and nonlinear operator of ψ . Hence, solution of Eq. (28) can
be revised in series form as

ψ (x, t) =
∞

∑
j=0

ψ j (x, t) , (29)

From Eq. (29), we get

K
∞

∑
j=0

ψ j (x, t) =
∞

∑
j=0

K (ψ j (x, t)) , (30)

the nonlinear operator Wcan be written as [32]

W

(

∞

∑
j=0

ψ j (x, t)

)

=W (ψ0)+
∞

∑
j=0

[

W

(

j

∑
i=0

ψi

)

−W

(

j−1

∑
i=0

ψi

)]

. (31)

Furthermore, using Eqs. (29)-(31) in Eq. (28), we obtain

∞

∑
j=0

ψ j (x, t) = f (x, t)+
∞

∑
j=0

K (ψ j (x, t))+W (ψ0)+
∞

∑
j=0

[

W

(

j

∑
i=0

ψi

)

−W

(

j−1

∑
i=0

ψi

)]

. (32)

Let us define the recurrence relation

ψ0 = f (x, t) ,
ψ1 = K (ψ0)+W (ψ0) ,

ψm+1 = K (ψm)+W (ψ0 +ψ1 +ψ2 + ...+ψm)−W (ψ0 +ψ1 +ψ2 + ...+ψm−1) .







(33)

From this, we get

ψ1 +ψ2 +ψ3 + ...+ψm+1 = K (ψ0 +ψ1 +ψ2 + ...+ψm)+W (ψ0 +ψ1 +ψ2 + ...+ψm) . (34)

So the m-term approximate solution of Eq. (12) may be written as

ψ = ψ0 +ψ1 +ψ2 +ψ3 + ...+ψm−1. (35)

One may see the convergence analysis of this method in [32].

6 Illustrative examples

To validate the efficacy of the two methods, two example problems have been investigated. Here, we have solved NS
equations in polar coordinate.

Example 1.Let us consider the time-fractional NS equation [19] as

∂ α ψ

∂ tα
= P+

∂ 2ψ

∂ r2
+

1

r

∂ψ

∂ r
,0 < α ≤ 1, (36)

with initial condition (IC)

ψ (r,0) = 1− r2
. (37)
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Implementation of q-HAETM

Applying the ET on Eq. (36) and simplifying, we get

E [ψ (r, t)] = s2
(

1− r2
)

+ sα
E

[

P+
∂ 2ψ

∂ r2
+

1

r

∂ψ

∂ r

]

. (38)

Defining the nonlinear operator, we obtain

N [ξ (r, t ;q)] = E [ξ (r, t ;q)]−
(

1− χm

n

)

s2
(

1− r2
)

−

sα
E

[

P
((

1− χm

n

))

+ ∂ 2ξ (r,t ;q)
∂ r2 + 1

r

∂ξ (r,t ;q)
∂ r

]

.
(39)

Using the above-mentioned procedure of q-HAETM, we have the m-th order deformation equation for H (x, t) = 1 as

E [ψm (r, t)− χmψm−1 (r, t)] = h̄ℜm

(

→

ψm−1 (r, t )

)

, (40)

and taking the inverse Elzaki transform on both sides of Eq. (40), we obtain

ψm (r, t) = χmψm−1 (r, t)+E
−1

[

h̄ℜm

(

→

ψm−1 (r, t )

)]

, (41)

where

ℜm

(

→

ψm−1 (r, t )

)

= E [ψm−1 (r, t )]−
(

1− χm

n

)

s2
(

1− r2
)

−

sα
E

[

P
((

1− χm

n

))

+
∂ 2ψm−1(r,t )

∂ r2 + 1
r

∂ψm−1(r,t )
∂ r

]

.

(42)

Substituting Eq. (42) into Eq. (41) and using Eq. (37), we obtain the solutions as

ψ0 = 1− r2
,(6.8)ψ1 =−h̄

(P− 4) tα

Γ (1+α)
, (43)

ψ2 =−h̄(h̄+ 1)
(P− 4) tα

Γ (1+α)
, (44)

ψ3 =−h̄(h̄+ n)2 (P− 4) tα

Γ (1+α)
, (45)

continuing likewise, we can get remaining ψm, m = 4, 5, 6 , .... Hence, the series solution of
Eq. (36) is written as

ψ (r, t) = ψ0 (r, t)+
∞

∑
m=1

ψm (r, t)

(

1

n

)m

.

For h̄ =−1 and n = 1, the above-mentioned equation can be rewritten as

ψ (r, t) = 1− r2 +
(P− 4) tα

Γ (1+α)
, (46)

which is the same as a result of ref. [19].

Implementation of IETM
Applying inverse Elzaki transform to Eq. (38), we get

ψ (r, t) =
(

1− r2
)

+E
−1

[

sα
E

[

P+
∂ 2ψ

∂ r2
+

1

r

∂ψ

∂ r

]]

, (47)

ψ (r, t) =
(

1− r2
)

+
Ptα

Γ (1+α)
E

−1

[

sα
E

[

∂ 2ψ

∂ r2
+

1

r

∂ψ

∂ r

]]

. (48)
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From Eq. (27), we obtain

f (r, t) =
(

1− r2
)

+
Ptα

Γ (1+α)
, (49)

Kψ (r, t) = E
−1

[

sα
E

[

∂ 2ψ

∂ r2

]]

, (50)

W ψ (r, t) = E
−1

[

sα
E

[

1

r

∂ψ

∂ r

]]

. (51)

From Eq. (33), we have

ψ0 =
(

1− r2
)

+
Ptα

Γ (1+α)
, (52)

ψ1 = K (ψ0)+W (ψ0)

= E
−1
[

sα
E

[

∂ 2ψ0

∂ r2

]]

+E
−1
[

sα
E

[

1
r

∂ψ0

∂ r

]]

=−4 tα

Γ (1+α)

(53)

ψ2 = K (ψ1)+W (ψ0 +ψ1)−W (ψ0)

= E
−1
[

sα
E

[

∂ 2ψ1

∂ r2

]]

+E
−1
[

sα
E

[

1
r

∂ (ψ1+ψ0)
∂ r

]]

−E
−1
[

sα
E

[

1
r

∂ψ
∂ r

]]

= 0

(54)

Computating similarly, we get
ψ3 = ψ4 = · · ·= 0. (55)

Thus, the solution of Eq. (36) obtained by IETM is

ψ = ψ0 +ψ1 +ψ2 + · · · · · ·=
(

1− r2
)

+
(P− 4)

Γ (1+α)
tα
. (56)

This solution is consistent with the solution in [23].

Example 2.Now, we have considered the NS Eq. of the form

∂ α ψ

∂ tα
=

∂ 2ψ

∂ r2
+

1

r

∂ψ

∂ r
, (57)

with IC
ψ (r,0) = r. (58)

Implementation of q-HAETM

Operating ET on both sides of Eq. (57) and simplifying, we obtain

E [ψ (r, t)] = s2 (r)+ sα
E

[

∂ 2ψ

∂ r2
+

1

r

∂ψ

∂ r

]

. (59)

Considering the nonlinear operator as

N [ξ (r, t ;q)] = E [ξ (r, t ;q)]−
(

1−
χm

n

)

s2r− sα
E

[

∂ 2ξ (r, t ;q)

∂ r2
+

1

r

∂ξ (r, t ;q)

∂ r

]

. (60)

and using the aforementioned procedure of q-HAETM, we have the m-th order deformation equation for H (x, t) = 1

E [ψm (r, t)− χmψm−1 (r, t)] = h̄ℜm

(

→

ψm−1 (r, t )

)

. (61)

Inverse ET on both sides of Eq. (61) reduces

ψm (r, t) = χmψm−1 (r, t)+E
−1

[

h̄ℜm

(

→

ψm−1 (r, t )

)]

, (62)
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where

ℜm

(

→

ψm−1 (r, t )

)

= E [ψm−1 (r, t )]−
(

1−
χm

n

)

s2 (r)− sα
E

[

∂ 2ψm−1 (r, t )

∂ r2
+

1

r

∂ψm−1 (r, t )

∂ r

]

. (63)

Putting Eq. (63) into Eq. (62) and using Eq. (58), we have

ψ0 = r,ψ1 =
−h̄

r

tα

Γ (1+α)
, (64)

ψ2 =
−h̄(h̄+ n) tα

rΓ (1+α)
+

h̄2 t2α

r3Γ (1+ 2α)
, (65)

ψ3 =
−h̄(h̄+ n)2

tα

rΓ (1+α)
+

h̄2 (h̄+ n) t2α

r3Γ (1+ 2α)
−

9h̄3t3α

r5Γ (1+ 3α)
. (66)

Continuing in this manner, the remaining ψm, m = 4, 5, 6 , ... can be calculated. Therefore, the series solution of Eq. (57)
is given as

ψ (r, t) = ψ0 (r, t)+
∞

∑
m=1

ψm (r, t)

(

1

n

)m

.

For h̄ =−1 and n = 1, the last equation can be reduced as

ψ (r, t) = r+
∞

∑
k=0

12 × 32 ×·· ·× (2k− 3)2

r2k−1

tkα

Γ (1+ kα)
. (67)

This is the exact solution of Eq. (57). Moreover, this solution is similar to the solution solved by Momani and Odibat
[19].

Implementation of IETM

Applying inverse ET to Eq. (59), we get

ψ (r, t) = r+E
−1

[

sα
E

[

∂ 2ψ

∂ r2
+

1

r

∂ψ

∂ r

]]

. (68)

From Eq. (27), we obtain

f (r, t) = r, (69)

Kψ (r, t) = E
−1

[

sα
E

[

∂ 2ψ

∂ r2

]]

, (70)

W ψ (r, t) = E
−1

[

sα
E

[

1

r

∂ψ

∂ r

]]

. (71)

From Eq. (33), we have

ψ0 = r, (72)

ψ1 = K (ψ0)+W (ψ0)

= E
−1
[

sα
E

[

∂ 2ψ0

∂ r2

]]

+E
−1
[

sα
E

[

1
r

∂ψ0

∂ r

]]

= tα

rΓ (1+α)
,

(73)

ψ2 = K (ψ1)+W (ψ0 +ψ1)−W (ψ0)

= E
−1
[

sα
E

[

∂ 2ψ1

∂ r2

]]

+E
−1
[

sα
E

[

1
r

∂ (ψ1+ψ0)
∂ r

]]

−E
−1
[

sα
E

[

1
r

∂ψ0

∂ r

]]

= t2α

r3Γ (1+2α)
,

(74)
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ψ3 = K (ψ2)+W (ψ0 +ψ1 +ψ2)−W (ψ0 +ψ1)

= E
−1
[

sα
E

[

∂ 2ψ2

∂ r2

]]

+E
−1
[

sα
E

[

1
r

∂ (ψ2+ψ1+ψ0)
∂ r

]]

−E
−1
[

sα
E

[

1
r

∂ (ψ0+ψ1)
∂ r

]]

= 9t3α

r5Γ (1+3α)
.

(75)

Proceeding in this way, the remaining ψm, m = 4, 5, 6 , ... can be defined. Thus, the solution of Eq. (57) obtained by IETM
is

ψ = ψ0 +ψ1 +ψ2 + · · ·= r+
∞

∑
k=0

12 × 32 ×·· ·× (2k− 3)2

r2k−1

tkα

Γ (1+ kα)
. (76)

This solution is consistent with the solution in [23].

7 Results and discussion

Plots of the solution for Eqs. (36)–(37) for h̄ = −1, n = 1, and α = P = 1 are depicted in Figure 1which indicates
that solution obtained by q-HAETM and IETM are identical with the exact solutions. Plots of solutions for different
values of α (= 0.2, 0.4, 0.6, 0.8, 1) at n = 1, P = 1, and t = 1 are exhibited in Figure 2. In Figure 3, different values
of h̄(=−0.2,−0.5,−0.9,−1,−1.2) are chosen to reduce the errors. The solution obtained by the present methods is
compared with the results of HPM and ADM, which are depicted in Table 1. The efficiency of q-HAETM and IETM can
be improved by taking more terms from the series solution. A similar simulation has been done for the solution of Eq.
(57)-(58) using the same parameters with the same values similar to the previous problem, and the obtained results are
depicted in Table 2 and Figures 4-6.

Fig. 1: Approximate solution of Ex.1 (left) and exact solution of Ex.1 at P = 1, α = 1 (right).
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Fig. 2: The behavior of the solution of Ex. 1 at P = 1, t = 1 for different values of α .

Fig. 3: Plot of the solution of Ex.1 at P = 1, r = 1 and α = 0.5 for different values of h̄.

Table 1: Comparison of results obtained by HPM and ADM with the present methods, i.e. q-HAETM and IETM at α = 1, h̄ =−1 and

n = 1 for Ex.1

r t HPM

(Ganji et al.

[20])

ADM (Momani

and Odibat

[19])

q-HAETM

(Present)

IETM

(Present)

Exact

Solution

0.25

0.50

0.75

1.00

0.5 -0.5625

-0.75

-1.0625

-1.5

-0.5625

-0.75

-1.0625

-1.5

-0.5625

-0.75

-1.0625

-1.5

-0.5625

-0.75

-1.0625

-1.5

-0.5625

-0.75

-1.0625

-1.5

0.25

0.50

0.75

1.00

0.9 -1.7625

-1.95

-2.2625

-2.7

-1.7625

-1.95

-2.2625

-2.7

-1.7625

-1.95

-2.2625

-2.7

-1.7625

-1.95

-2.2625

-2.7

-1.7625

-1.95

-2.2625

-2.7
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Fig. 4: 10-term approximate solution of Ex. 2 (left), exact solution of Ex.2 atα = 1 (right).

Fig. 5: The behavior of the solution of Ex.2 at h̄ =−1and t = 1for different values of α .

Table 2: Comparison of results obtained by HPM and ADM with the present methods, i.e. q-HAETM and IETM at α = 1, h̄ =−1 and

n = 1 for Ex.2.

r t HPM

(Ganji et al.

[20])

ADM (Momani

and Odibat

[19])

q-HAETM

(Present)

IETM

(Present)

Exact Solution

0.25

0.50

0.75

1.00

0.5 149791.1389

29.25075245

3.211685286

1.892327624

149791.1389

29.25075245

3.211685286

1.892327624

149791.1389

29.25075245

3.211685286

1.892327624

149791.1389

29.25075245

3.211685286

1.892327624

149791.1389

29.25075245

3.211685286

1.892327624

0.25

0.50

0.75

1.00

0.9 32438665.70

582.3037157

17.92314660

4.396399682

32438665.70

582.3037157

17.92314660

4.396399682

32438665.70

582.3037157

17.92314660

4.396399682

32438665.70

582.3037157

17.92314660

4.396399682

32438665.70

582.3037157

17.92314660

4.396399682
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Fig. 6: Plot of the solution of Ex.2 at r = 1 and α = 1 for different values of h̄.

8 Conclusion

In this article, q-HAETM and IETM have been implemented to find the solution of time-fractional NS equation. The
results we obtained in this study by considering the two methods are the same as the solution of Ganji et al. [20] as well as
Momani and Odibat [19]. q-HATM offers a suitable way to control the convergence region of the solution by introducing
the parameter h̄ and n (≥ 1). In addition, q-HATM does not require any linearization and perturbation. This helps us
overcome the difficulties of truncation errors, high computer memory, and more times. The obtained results demonstrate
that q-HAETM and IETM are powerful and useful tools for solving non-integer order PDEs.
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