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Abstract: In this paper, the point at issue is to deliberate point and interval estimations for the parameters of Weibull-Gamma

distribution (WGD) using progressively Type-II censored (PROG-II-C) sample under step stress partially accelerated life test

(SSPALT) model. The maximum likelihood (ML), Bayes, and four parametric bootstrap methods are used to obtain the point

estimations for the distribution parameters and the acceleration factor. Furthermore, the approximate confidence intervals (ACIs), four

bootstrap confidence intervals and credible intervals of the estimators have been gotten. The results of Bayes estimators are computed

under the squared error loss (SEL) function using Markov Chain Monte Carlo (MCMC) method. Gibbs within the Metropolis–Hasting

algorithm is applied to generate MCMC samples from the posterior density functions. Simulation results are carried out to explicate

the precision of the estimators for the aforementioned parameters.

Keywords: Partially accelerated life test; Maximum likelihood estimation; Bias Corrected Confidence Interval (Boot-BC); Accelerated

Bias Corrected Confidence Interval (Boot-BCa); MCMC approach.

1 Introduction

Strong competition among manufacturers and the desire not to lose, leading to testing products under severe conditions
(stress), such as high temperatures and high voltages to emphasize product quality and reduce test time, such tests called
accelerated life testing. There are three common types of the stresses. These types are step-stress, progressive-stress and
constant-stress see Nelson [1]. Such testing conducted under stresses is called accelerated life test (ALT) or partially
accelerated life test (PALT) according to the used strategy in designing the test . In a SSPALT unit starts at normal use
condition for a specified time then the unit is set under stress unless it fails. Generally, stress is applied until the test
unit fails or the test is terminated based on a certain censoring scheme, where the censoring scheme which is used in this
paper is PROG-II-C. The PROG-II-C scheme can be described as follows. First, the experimenter places n independent and
identical units on the life test. When the first failure occurs, say at time t(1), r1 units are randomly removed from remaining
n−1 surviving units. When the second failure occurs at time t(2), r2 units are randomly removed from remaining n−r1−2

surviving units. This experiment terminates when the m th failure occurs at time tm, and rm = n−m−∑m−1
i=1 ri surviving

units are removed from the test. For more information on progressive censoring, we refer the reader to Balakrishnan and
Aggarwala [2], Balakrishnan [3], Soliman et al. [4], Musleh and Helu [5] and EL-Sagheer [6]. El-Sagheer [7] studied
the estimation of WG parameters under normal conditions based on PROG-II-C data. The SSPALT have been studied by
several authors based on different schemes of censoring observations for example, see Goel [8], Bhattcharyya and Soejoeti
[9], Bai et al. [10], Abdel-Ghaly et al. [11], Abdel-Ghani [12] and El-Sagheer and Ahsanullah [13]. Ismail and Sarhan
[14] and El-Sagheer and Ahsanullah [13] discussed SSPALT through PROG-II-C data from exponential distribution and
Lomax distribution respectively. In this article SSPALT model appertaining to PROG-II-C data from WG distribution is
canvassed. The remainder of this article is organized as follows: Section 2 provides a description of WG distribution and
the tampered random variable (TRV) model. In Section 3 the maximum likelihood estimates (MLEs) of the parameters
under consideration are estimated in addition to the corresponding ACIs. Section 4 includes concerns with four types of
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bootstrap confidence intervals. Section 5 is devoted to the Bayesian approach that uses the famed MCMC technique. An
illustrative example is developed to explain the theoretical results in Section 6. Simulation study is presented in Section 7
to assess the performance of our estimates. Eventually conclusion is inserted in Section 8.

2 Model Description

A brief specification is given in this section about WG distribution. Also, the transformed probability density function
(pdf) of WG distribution under the TRV model is presented.

2.1 Weibull-Gamma Distribution

The WG distribution is suitable for the phenomenon of loss of signals in telecommunications which is called fading when
multipath is superimposed on shadowing, see Bithas [15]. TheWG distribution is disseminated by Nadarajah and Kotz
[16].

A random variable T is said to have WG distribution if its pdf given by:

f (t;α,θ ,β ) =
θβ

α
tθ−1

(

1+
1

α
tθ

)−(β+1)

, t > 0;α,θ ,β > 0, (1)

the corresponding survival function is

S (t) =

(

1+
1

α
tθ

)−β

, (2)

and the corresponding hazard rate function is given by

h(t) =
θβ

α
tθ−1

(

1+
1

α
tθ

)−1

, t > 0;α,θ ,β > 0. (3)

For more details about WG distribution and its properties see Bithas [15], Molenberghs and Verbeke [17] and Mahmoud
et al. [18].

2.2 Test Steps

The following assumptions are used throughout the paper:

(1)n identical and independent units are put on the life test and the life time of individual unit has WG distribution.
(2)At the beginning, each of the units functions under normal use condition. If it does not fail and exceeds a pre-specified

time τ , it is put under accelerated condition (stress).
(3)The test is terminated when the mth failure occurs, where m is prefixed before (m ≤ n) .
(4)At the time of the ith failure, a random number of the surviving items Ri = 1,2, ...,m− 1, are randomly selected and

removed from the test. Finally, at the time of the mth failure, the remaining surviving items Rm = n−m−∑m−1
i=1 Ri are

removed from the test and the test is terminated.
(5)The TRV model is applied. It was designed by Degroot and Goel [19]. According to this model the lifetime of a unit

under SSPALT can be written as

Y =

{

T,

τ + 1
λ (T − τ) ,

i f T ≤ τ,
i f T > τ,

(4)

where T is the lifetime of the units under normal condition, τ is the stress change time, and λ is the acceleration
factor, where (λ > 1).

(6)According to the TRV model, the pdf of WG(α,θ ,β ) distribution under SSPALT is given by

f (y) =











f1 (y) =
αθ
β yα−1

(

1+ 1
β yα

)−(θ+1)
,

f2 (y) =
αθλ

β

(

ψ (λ )α−1
)(

1+ 1
β (ψ (λ ))α

)−(θ+1)

,

0 < y ≤ τ,

y > τ > 0,
(5)

where ψ (λ ) = τ +λ (y− τ) .
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(7)Let δ1i and δ2i be indicator functions such that δ1i ≡ I(yi ≤ τ),δ2i ≡ I(yi > τ), so the number of failures before time
τ under normal conditions of the experiment, n1 = ∑m

i=1 δ1i and m− n1 = ∑m
i=1 δ2i is the number of failures after time

τ at stress conditions, then the observed progressive censored data are

yR
1;m,n < ... < yR

n1;m,n < τ < yR
n1+1;m,n < ... < yR

m;m,n, (6)

where R = (R1,R2, ...,Rm) and ∑m
i=1 Ri = n−m.

3 Maximum Likelihood Estimation

In this section, the MLEs of the model parameters are obtained. Let yi = yR
i;m,n , i= 1,2, ...,m, be the observed values of the

lifetime Y obtained from a PROG-II-C scheme under SSPALT, with censored scheme R = (R1,R2, ...,Rm). The likelihood
function of the observations y1 < ... < yn1

< τ < yn1+1 < ... < ym can be written in the following form:

L(α,θ ,β ,λ ) = c
m

∏
i=1

{

[

f1 (yi) (S1 (yi))
Ri

]δ1i

.

[

f2 (yi) (S2 (yi))
Ri

]δ2i

}

, (7)

where

c = n(n− 1−R1)(n− 1−R1−R2)...

(

n−m+ 1−
m−1

∑
i=1

Ri

)

. (8)

So L(α,θ ,β ,λ ) can be written as follows:

L(α,θ ,β ,λ ) = c
m

∏
i=1

{

[

αθ
β yα−1

i

(

1+ 1
β yα

i

)−φi(θ)
]δ1i

×
[

αθλ
β (ψi (λ ))

α−1
(

1+ 1
β (ψi (λ ))

α
)−φi(θ)

]δ2i

}

, (9)

where
φi (θ ) = θRi +θ + 1 and ψi (λ ) = τ +λ (yi − τ) . (10)

The log-likelihood function may then be written as

lnL(α,θ ,β ,λ ) = lnc+m lnα +m lnθ −m lnβ +
m

∑
i=1

δ2i lnλ

+(α − 1)
m

∑
i=1

δ1i lnyi −
m

∑
i=1

δ1i φi (θ ) ln

(

1+
1

β
yα

i

)

+(α − 1)
m

∑
i=1

δ2i lnψi (λ )−
m

∑
i=1

δ2i φi (θ ) ln

(

1+
1

β
(ψi (λ ))

α

)

, (11)

and thus we have the likelihood equations for α,θ ,β and λ respectively, as

∂ lnL

∂α
=

m

α
+

m

∑
i=1

δ1i lnyi −
α

β

m

∑
i=1

δ1i φi (θ )yα−1
i

(

1+ 1
β yα

i

) +
m

∑
i=1

δ2i lnψi (λ )−
α

β

m

∑
i=1

δ2i φi (θ )ψi (λ )
α−1

(

1+ 1
β ψi (λ )

α
) = 0, (12)

∂ lnL

∂θ
=

m

θ
−

m

∑
i=1

δ1i (Ri + 1) ln

(

1+
1

β
yα

i

)

−
m

∑
i=1

δ2i (Ri + 1) ln

(

1+
1

β
(ψi (λ ))

α

)

= 0, (13)

∂ lnL

∂β
=−m

β
+

1

β 2

m

∑
i=1

δ1i φi (θ )yα
i

(

1+ 1
β yα

i

) +
1

β 2

m

∑
i=1

δ1i φi (θ )(ψi (λ ))
α

(

1+ 1
β (ψi (λ ))

α
) = 0, (14)

and
∂ lnL

∂λ
=

1

λ

m

∑
i=1

δ2i +(α − 1)
m

∑
i=1

δ2i (yi − τ)

ψi (λ )
− α

β

m

∑
i=1

δ2i φi (θ )(yi − τ)(ψi (λ ))
α−1

(

1+ 1
β (ψi (λ ))

α
) = 0 . (15)

A system of nonlinear simultaneous equations in four unknowns vaiables α,θ ,β and λ is resulted. It is obvious that an
exact solution is not easy to get. Therefore, a numerical method such as Newton Raphson can be used to find
approximate solution of the above nonlinear system.

The algorithm has been implemented using the following steps:
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(1)Use the method of moments or some other proper estimates of the parameters as initial points of iteration, denote the
initials as (α◦,θ◦,β◦,λ◦) for the parameters (α,θ ,β ,λ ).

(2)Calculate
(

∂ lnL
∂α ,

∂ lnL
∂θ ,

∂ lnL
∂β ,

∂ lnL
∂λ

)

(αk,θk,βk,λk)
and the observed Fisher Information matrix I −1 (α,θ ,β ,λ ).

(3)Update (α,θ ,β ,λ ) as

(αk+1,θk+1,βk+1,λk+1) = (αk,θk,βk,λk)+

(

∂ lnL

∂α
,

∂ lnL

∂θ
,

∂ lnL

∂β
,

∂ lnL

∂λ

)

(αk,θk,βk,λk)

× I−1 (α,θ ,β ,λ ) .

(4)Put k = k+ 1, and then return to step 1.
(5)Continue the consecutive steps until |(αk+1,θk+1,βk+1,λk+1)− (αk,θk,βk,λk)| ≤ ε → 0.The final estimates of

(α,θ ,β ,λ ) are the MLEs of the parameters, denoted as
(

α̂, θ̂ , β̂ , λ̂
)

.

To set up (1− ζ )100% approximate confidence intervals for the parameters α,θ ,β and λ , on the form

(α̂L, α̂U ) = α̂ ± z
1− ζ

2

√

var(α̂)

(β̂L, β̂U) = β̂ ± z
1− ζ

2

√

var(β̂)

(θ̂L, θ̂U) = θ̂ ± z
1− ζ

2

√

var(θ̂ )

(λ̂L, λ̂U) = λ̂ ± z
1− ζ

2

√

var(λ̂ )















, (16)

where z
1− ζ

2

is the percentile of the standard normal distribution with left-tail probability 1 − ζ
2

and

var(α̂),var(θ̂ ),var(β̂ ),var(λ̂ ) represent the asymptotic variances of maximum likelihood estimates which can be
calculated using the inverse of the Fisher information matrix, for more details see Cohen [20]. The asymptotic
variance–covariance matrix for the maximum likelihood estimates can be put as follows

F−1 =













− ∂ 2 lnL
∂α2 − ∂ 2 lnL

∂α∂θ − ∂ 2 lnL
∂α∂β − ∂ 2 lnL

∂α∂λ

− ∂ 2 lnL
∂θ∂α − ∂ 2 lnL

∂θ 2 − ∂ 2 lnL
∂θ∂β − ∂ 2 lnL

∂θ∂λ

− ∂ 2 lnL
∂β ∂α − ∂ 2 lnL

∂β ∂θ − ∂ 2 lnL
∂β 2 − ∂ 2 lnL

∂β ∂λ

− ∂ 2 lnL
∂λ ∂α − ∂ 2 lnL

∂λ ∂θ − ∂ 2 lnL
∂λ ∂β − ∂ 2 lnL

∂λ 2













−1

↓(α̂,θ̂ ,β̂ ,λ̂ )

=









var(α̂) Cov(α̂θ̂) Cov(α̂β̂) Cov(α̂λ̂)

Cov(θ̂ α̂) var(θ̂ ) Cov(θ̂ β̂ ) Cov(θ̂ λ̂ )

Cov(β̂ α̂) Cov(β̂ θ̂ ) var(β̂ ) Cov(β̂ λ̂ )

Cov(λ̂ α̂) Cov(λ̂ θ̂ ) Cov(λ̂ β̂ ) var(λ̂ )









−1

, (17)

where

∂ 2 lnL

∂α2
=

−m

α2
−β

m

∑
i=1

δ1i φi (θ )yα−1
i

(

1+
yα

i

β +α lnyi

)

(β + yα
i )

2

−β
m

∑
i=1

δ2i φi (θ ) (ψi (λ ))
α−1

(

1+ (ψi(λ ))
α

β +α ln(ψi (λ ))
)

(

β +(ψi (λ ))
α)2

, (18)

∂ 2 lnL

∂α∂θ
=−α

m

∑
i=1

δ1i(Ri + 1)yα−1
i

(β + yα
i )

−α
m

∑
i=1

δ2i (Ri + 1)(ψi (λ ))
α−1

(

β +(ψi (λ ))
α) , (19)

∂ 2 lnL

∂α∂β
= α

m

∑
i=1

δ1i φi (θ )yα−1
i

(β + yα
i )

2
+α

m

∑
i=1

δ2i φi (θ )(ψi (λ ))
α−1

(

β +(ψi (λ ))
α)2

, (20)

∂ 2 lnL

∂α∂λ
=

m

∑
i=1

δ2i (yi − τ)

ψi (λ )
−αβ

m

∑
i=1

δ2i φi (θ )(yi − τ)
(

α − 1− (ψi(λ ))
α

β

)

(ψi (λ ))
α−2

(

β +(ψi (λ ))
α)2

, (21)

∂ 2 lnL

∂θ 2
=− m

θ 2
, (22)

∂ 2 lnL

∂θ∂β
=

1

β

m

∑
i=1

δ1i (Ri + 1)yα
i

(β + yα
i )

+
1

β

m

∑
i=1

δ2i (Ri + 1)(ψi (λ ))
α

(

β +(ψi (λ ))
α) , (23)
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∂ 2 lnL

∂θ∂λ
=−α

m

∑
i=1

δ2i (Ri + 1)(yi − τ)(ψi (λ ))
α−1

(

β +(ψi (λ ))
α) , (24)

∂ 2 lnL

∂β 2
=

m

β 2
+

1

β

m

∑
i=1

δ1i φi (θ )yα
i

(

−2− 2
β yα

i + 1
β

)

(β + yα
i )

2

+
1

β

m

∑
i=1

δ2i φi (θ ) (ψi (λ ))
α
(

−2− 2
β (ψi (λ ))

α + 1
β

)

(

β +(ψi (λ ))
α)2

, (25)

∂ 2 lnL

∂β ∂λ
= α

m

∑
i=1

δ2i φi (θ ) (yi − τ)(ψi (λ ))
α−1

(

β +(ψi (λ ))
α)2

, (26)

and

∂ 2 lnL

∂λ 2
=− 1

λ 2

m

∑
i=1

δ2i − (α − 1)
m

∑
i=1

δ2i (yi − τ)2

(ψi (λ ))
2

−αβ
m

∑
i=1

δ2i φi (θ )(yi − τ)2 (ψi (λ ))
α−2

(

β +(ψi (λ ))
α)2

(

α − 1− (ψi(λ ))
α

β

)

. (27)

4 Bootstrap Confidence Intervals

There are three types of resampling plans, non-parametric, semi-parametric and parametric. Bootstrap methods depend
on these three resampling plans. For more details about resampling plans see Efron [21]. Here, confidence intervals are
proposed based on the parameteric bootstrap methods where the parametric model for the data is known f (y; .) up to the

unknown parameters (α,θ ,β ,λ ) , so that bootstrap data are sampled from f
(

y; α̂, θ̂ , β̂ , λ̂
)

,where
(

α̂, θ̂ , β̂ , λ̂
)

are the

MLEs from the original data. A lot of papers dealt only with percentile bootstrap method ( Boot-p) based on the idea
of Efron [21] and bootstrap-t method (Boot-t) based on the idea of Hall [22], such as Soliman et al. [4], El-Sagheer and
Ahsanullah [13] and among others. In this paper, we deal with additional two types of Bootstrap CIs: (i) Boot-BC based
on the idea of Diciccio and Efron [10]. (ii) Boot-BCa based on the idea of Diciccio and Efron [23]. For more survey
of the parametric bootstrap methods, see Davison and Hinkley [24] and a more recently reviewed article by Kreiss and
Paparoditis [25]. The following algorithm is followed to obtain bootstrap samples for the four methods:

(1)Based on the original progressively type-II sample, y ≡ yR
1;m,n < ... < yR

n1;m,n < yR
n1+1;m,n < ... < yR

m;m,n , compute α̂, θ̂ ,

β̂ and λ̂ .

(2)Use α̂, θ̂ , β̂ and λ̂ to generate a bootstrap sample y∗ with the same values of Ri, i = 1,2, ...,m using algorithm
presented in Balakrishnan and Sandhu [26].

(3)As in Step1 based on y∗, compute the bootstrap sample estimates of α̂, θ̂ , β̂ and λ̂ say α̂∗, θ̂ ∗, β̂ ∗ and λ̂ ∗.

(4)Repeat the previous steps 2 and 3 B times and arrange all α̂∗, θ̂ ∗, β̂ ∗ and λ̂ ∗ in ascending order to obtain the bootstrap

sample
(

Ω̂
∗[1]
k ,Ω̂

∗[2]
k , ...,Ω̂

∗[B]
k

)

, k = 1,2,3,4, where Ω̂ ∗
1 = α̂∗, Ω̂ ∗

2 = θ̂ ∗, Ω̂ ∗
3 = β̂ , Ω̂ ∗

4 = λ̂ ∗.

4.1 Bootstrap-p Confidence Interval

Let Φ(z) =P(Ω̂ ∗
k ≤ z) be the cumulative distribution function of Ω̂ ∗

k .Define Ω̂ ∗
kBoot =Φ−1(z) for given z. The approximate

bootstrap-p 100(1− ζ )% confidence interval of Ω̂ ∗
k is given by

[

Ω̂ ∗
kBoot(

ζ
2
) , Ω̂ ∗

kBoot(1−
ζ
2
)
]

. (28)
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4.2 Bootstrap-t Confidence Interval

Consider the order statistics µ
∗[1]
k < µ

∗[2]
k < ... < µ

∗[B]
k where

µ
∗[ j]
k =

√
B(Ω̂

∗[ j]
k − Ω̂k)

√

Var
(

Ω̂
∗[ j]
k

)

, j = 1,2, ...,B; k = 1,2,3,4, (29)

where Ω̂k = α̂, Ω̂k = θ̂ , Ω̂k = β̂ and Ω̂k = λ̂ while Var
(

Ω̂
∗[ j]
k

)

is obtained using the inverse of the Fisher information

matrix as done before in (17). Let W (z) = P
(

µ∗
k < z

)

,k = 1,2,3,4 be the cumulative distribution function of µ∗
k .

For a given z, define

Ω̂ ∗
kBoot − t = Ω̂k +B

−1
2

√

Var
(

Ω̂ ∗
k

)

W−1 (z) . (30)

Thus, the approximate bootstrap-t 100(1− ζ )% confidence interval of Ω̂ ∗
k is given by

[

Ω̂ ∗
kBoot − t(

ζ
2
) , Ω̂ ∗

kBoot − t(1−
ζ
2
)
]

. (31)

4.3 Bootstrap Bias Corrected Confidence Interval

Let Φ(z) = ζ be the standard normal cumulative distribution function, with zζ = Φ−1(ζ ). Define the bias-correction

constant z◦ from the following probability P(Ω̂ ∗
k ≤ Ω̂k) = G(z◦),k = 1,2,3,4, where G(.) is cumulative distribution

function of the bootstrap distribution and

P(Ω̂ ∗
k ≤ Ω̂k) =

#
{

Ω̂
∗[ j]
k < Ω̂k

}

B
, j = 1,2, ...,B; k = 1,2,3,4.

Thus

z◦ = Φ−1

(

#
{

Ω̂
∗[ j]
k < Ω̂k

}

B

)

, j = 1,2, ...,B; k = 1,2,3,4. (32)

For a given ζ , and the bias-correction constant z◦,then

Ω̂ ∗
kBoot −BC = G−1

[

Φ
(

2z◦+ zζ

)]

. (33)

Thus, the approximate bootstrap-BC 100(1− ζ )% confidence interval of Ω̂ ∗
kBoot −BC is given by

[

Ω̂ ∗
kBoot −BC(

ζ
2
) , Ω̂ ∗

kBoot −BC(1−
ζ
2
)
]

. (34)

4.4 Bootstrap Bias Corrected Accelerated Confidence Interval

Let Φ(z) = ζ be the standard normal cumulative distribution function, with zζ = Φ−1(ζ ) and the bias-correction constant
z◦ which is defined in (32). Then

Ω̂ ∗
kBoot −BCa = G−1

[

Φ

(

z◦+
z◦+ zζ

1− a(z◦+ zζ )

)]

,k = 1,2,3,4, (35)

where a is called the acceleration factor wich is estimated by a simple jack-knife method. Let y
i

represent the original

data with the ith point omitted, say y
2
= yR

1;m,n < yR
3;m,n < ... < yR

n1;m,n < yR
n1+1;m,n < ... < yR

m;m,n, and Ω̂ i
k = Ω̂k(yi

) be the

estimate of Ωk constructed from this data, Ω1 = α, Ω2 = θ , Ω3 = λ and Ω4 = λ . Let Ω̄k be the mean of the Ω̂ i,
k s. Then

a is estimated by

a =
∑m

i=1

(

Ω̄k − Ω̂ i
k

)3

6
[

∑m
i=1

(

Ω̄k − Ω̂ i
k

)2
] 3

2

,k = 1,2,3,4. (36)

For more details see Efron and Tibshirani [27] and Davison and Hinkley [24]. If a = 0, equation (35) reduces to equation

(33). Then, the approximate bootstrap-BC 100(1− ζ )% confidence interval of Ω̂ ∗
kBoot −BCa is given by

[

Ω̂ ∗
kBoot −BCa(

ζ
2
) , Ω̂ ∗

kBoot −BCa(1−
ζ
2
)
]

. (37)
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5 Bayesian Estimation Using MCMC Technique

Bayesian statistics is interested in fitting a probability model to a set of data and summarizing the result by a probability
distribution on the parameters of the model. The given data comes from the likelihood function and the prior distribution
function and the resulting distributions called the posterior distributions. If the independent priors for the parameters
α,θ ,β and λ takes the following forms:

π (α) ∝ α−1 , α > 0,

π (β ) ∝ β−1 , β > 0,

π (θ ) ∝ θ−1 , θ > 0,

π (λ ) ∝ λ−1 , λ > 1







. (38)

Then, the joint prior of the parameters α,θ ,β and λ can be written as

π (α,θ ,β ,λ ) ∝ (αθβ λ )−1
,α > 0,θ > 0, β > 0,λ > 1. (39)

The joint posterior density function of α,θ ,β and λ , denoted by π∗(α,θ ,β ,λ |y) can be written as

π∗(α,θ ,β ,λ |y) = L(α,θ ,β ,λ )×π (α,θ ,β ,λ )
∫ ∞

1

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,θ ,β ,λ )×π (α,θ ,β ,λ )dαdθdβ dλ

(40)

Therefore, the Bayes estimate of any function of the parameters, say h(α,θ ,β ,λ ), using squared error loss function (SEL)
is

ĥ(α,θ ,β ,λ ) = Eα ,θ ,β ,λ |y [h(α,θ ,β ,λ )]

=

∫ ∞
1

∫ ∞
0

∫ ∞
0

∫ ∞
0 h(α,θ ,β ,λ )×L(α,θ ,β ,λ )×π (α,θ ,β ,λ )dαdθdβ dλ

∫ ∞
1

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(α,θ ,β ,λ )×π (α,θ ,β ,λ )dαdθdβ dλ

. (41)

Generally, the ratio of two integrals given by (41) cannot be obtained in a closed form. In this case, the MCMC technique
will be used to generate samples from the posterior distributions and then the Bayes estimates of the parameters α,θ ,β
and λ will be computed. The main theme of the MCMC technique is to compute an approximate value of integrals in (41).
An important sub-class of MCMC methods are Gibbs sampling and more general Metropolis within-Gibbs samplers. The
Metropolis algorithm is a random walk that uses an acceptance/rejection rule to converge to the target distribution. The
Metropolis algorithm was first proposed in Metropolis et al. [28] and It was then generalized by Hastings [29]. Made into
mainstream statistics and engineering via the articles Gelfand and Smith [30] and Gelfand et al. [31] which presented
the Gibbs sampler as used in Geman and Geman [32]. From (9), (39) and (40), the joint posterior density function of
α,θ ,β and λ can be written as

π∗(α,θ ,β ,λ |y) ∝ αm−1θ m−1β−(m+1)λ (∑m
i=1 δ2i)−1×

m

∏
i=1

{

[

yα
i

(

1+ 1
β yα

i

)−φi(θ)
]δ1i

×
[

(ψi (λ ))
α−1

(

1+ 1
β (ψi (λ ))

α
)−φi(θ)

]δ2i

}

. (42)

The conditional posterior densities of α,θ ,β and λ can be given as

π∗
1 (α|θ ,β ,λ ,y) ∝ αm−1

m

∏
i=1

{

[

yα
i

(

1+ 1
β yα

i

)−φi(θ)
]δ1i

×
[

(ψi (λ ))
α
(

1+ 1
β (ψi (λ ))

α
)−φi(θ)

]δ2i

}

, (43)

π∗
2 (θ |α,β ,λ ,y)≡ gamma

[

m,

m

∑
i=1

{

δ1i (Ri + 1) ln
(

1+ 1
β yα

i

)

+ δ2i (Ri + 1) ln
(

1+ 1
β (ψi (λ ))

α
)}

]

, (44)

π∗
3 (β |α,θ ,λ ,y) ∝ β−(m+1)

m

∏
i=1

{

[

(

1+ 1
β yα

i

)−φi(θ)
]δ1i

×
[

(

1+ 1
β (ψi (λ ))

α
)−φi(θ)

]δ2i

}

, (45)

and

π∗
4 (λ |α,θ ,β ,y) ∝ λ (∑m

i=1 δ2i)−1
m

∏
i=1

[

(ψi (λ ))
α−1

(

1+
1

β
(ψi (λ ))

α

)−φi(θ)
]δ2i

. (46)

Figure 1 shows that all the conditional posterior distributions are almost symmetrical and seem to be quite skewed.
Now, the following steps illustrate the method of the Metropolis–Hastings algorithm within Gibbs sampling to generate
the posterior samples as suggested by Tierney [33], and in turn obtain the Bayes estimates and the corresponding credible
intervals:
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Fig. 1: The Conditional Posterior Density Functions.

(1)Start with an
(

α(0) = α̂ , θ (0) = θ̂ , β (0) = β̂ and λ (0) = λ̂
)

.

(2)Put i = 1.
(3)Generate θ (i) from

gamma distribution

[

m,

m

∑
i=1

{

δ1i (Ri + 1) ln
(

1+ 1
β yα

i

)

+ δ2i (Ri + 1) ln
(

1+ 1
β (ψi (λ ))

α
)}

]

.

(4)Using the following Metropolis-Hastings method, generate α(i),β (i) and λ (i) from (43), (45) and (46) with the normal
suggested distribution

N(α(i−1)
,var (α)), N(β (i−1)

,var (β ))and N(λ (i−1)
,var (λ )), respectively.

Where var (α) , var (β ) and var (λ ) can be obtained from the main diagonal in inverse Fisher information matrix (17).

i-Generate a proposal α∗ from N(α(i−1),var (α)),β ∗ from N(β (i−1),var (β )) and λ ∗ from N(λ (i−1),var (λ )).
ii-Evaluate the acceptance probabilities

ρα = min

[

1,
π∗

1 (α
∗|θ (i),β (i−1),λ (i−1),y)

π∗
1 (α

(i−1)|θ (i),β (i−1),λ (i−1),y)

]

,

ρβ = min

[

1,
π∗

3 (β
∗|α(i)

,θ (i)
,λ (i−1)

,y)

π∗
3 (β

(i−1)|α(i),θ (i),λ (i−1),y)

]

,

ρλ=min

[

1,
π∗

4 (λ
∗|α(i),θ (i),β (i),y)

π∗
4 (λ

(i−1)|α(i),θ (i),β (i),y)

]

.











































. (47)

iii-Generate u1,u2 and u3 from a Uniform (0,1) distribution.

iv-If u1 ≤ ρα accept the proposal and set α(i) = α∗, else set α(i) = α(i−1).

v-If u2 ≤ ρβ accept the proposal and set β (i) = β ∗, else set β (i) = β (i−1).

vi-If u3 ≤ ρλ accept the proposal and set λ (i) = λ ∗, else set λ (i) = λ (i−1).

(5)Compute α(i),β (i) and λ (i).

(6)Put i = i+ 1.
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(7)Repeat steps (3− 6) N-times
(8)In order to guarantee the convergence and to remove the influence of the selection of initial values, the first M simulated

varieties are ignored. Then the selected samples are α(i),β (i) and λ (i), i = M+1, ...,N, for sufficiently large N , forms
an approximate posterior samples which can be used to obtain the Bayes MCMC point estimates of α,θ ,β and λ as

αMCMC = 1
N−M ∑N

i=M+1 α(i),

βMCMC = 1
N−M ∑N

i=M+1 β (i),

θMCMC = 1
N−M ∑N

i=M+1 θ (i),

λMCMC = 1
N−M ∑N

i=M+1 λ (i)







. (48)

(9)To calculate the credible intervals (CRIs) of Ωk where Ω1 = α, Ω2 = θ , Ω3 = λ and Ω4 = λ , we take the quantiles

of the sample as the endpoints of the intervals. Sort
{

Ω M+1
k ,Ω M+2

k , ...,Ω N
k

}

as
{

Ω
(1)
k ,Ω

(2)
k , ...,Ω

(N−M)
k

}

. Hence the

100 (1− γ)% symmetric credible interval of Ωk is

[

Ωk

( γ
2
(N −M)

)

, Ωk

((

1− γ
2

)

(N −M)
) ]

. (49)

6 Explanatory Example

In this section, a simulation example is presented to assess the estimation procedures. In this example, a PROG-II-C
sample from WG distribution under SSPALT model is generated. The algorithm of generation is performed according to
the algorithm described in Balakrishnan and Sandhu [26] as the following:

(1)Specify the values of n,m and Ri, i = 1,2, ...,m.

(2)Specify the values of the parameters α,θ ,β and λ .
(3)Specify the values of the stress change time τ.
(4)Generate a random sample with size n and censoring size m from the random variable Y given by (4), the set of data

can be considered as:

yR
1;m,n < ... < yR

n1;m,n < yR
n1+1;m,n < ... < yR

m;m,n,

where R = (R1,R2, ...,Rm) and ∑m
i=1 Ri = n−m.

(5)Use the PROG-II-C sample to compute the MLEs of the model parameters. The Newton–Raphson method is applied
for solving the nonlinear system to obtain the MLEs of the parameters.

(6)Compute the 95% bootstrap conidence intervals for the model parameters, using the steps described in Section 4.
(7)Compute the Bayes estimates of the model parameters based on MCMC algorithm described in Section 5.

A simulation data for progressive type-II censored sample under SSPALT model from Weibull-Gamma distribution
with true values α = 2.5, θ = 0.4, β = 1.5 and acceleration factor λ = 2, and τ = 0.7, using progressive censoring
schemes n = 30, m = 15 and R = (3,0,3,0,2,0,2,0,3,0,1,0,1,0,0) has been approximated to four decimal places and it
has been presented in Table 1.

Table 1. SSPALT simulation data with true values for α, θ , β and λ
Failure times under normal conditions Failure times under accelerated conditions

0.4145 0.7424 0.9136 0.9501 1.3307 1.6883 3.0142 9.8213
0.4948 0.7987 0.9441 1.1193 1.3850 2.1915 4.1789

In the MCMC approach, we run the chain for 12000 times and discard the first 2000 values as ‘burn-in’.

Table 2. Different point estimates for (α,θ ,β ,λ ) = (2.5,0.4,1.5,2).
Parameters (.)ML (.)Boot −p (.)Boot −t (.)MCMC

α 2.7195 3.3618 2.1797 2.6711
θ 0.3469 0.3529 0.3111 0.343
β 1.4094 1.4287 1.0968 1.375
λ 1.7878 1.8384 1.5715 1.8493
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Table 3. 95% confidence intervals for α,θ ,β and λ .
Method α Length θ Length

ACI [−1.738,7.1767] 8.9145 [−0.370,1.0638] 1.43378
Boot -p CI [1.6457,4.9103] 3.26454 [0.1470,0.7764] 0.629425
Boot -t CI [1.3668,2.6364] 1.26961 [0.1960,0.3403] 0.144343

Boot-BC CI [1.2999,4.1972] 2.8973 [0.1365,0.8522] 0.715704
Boot-BCa CI [1.3749,4.1836] 2.80869 [0.0925,0.7303] 0.637793

CRI [2.6347,2.6956] 0.06084 [0.1927,0.5379] 0.34513

Method β Length λ Length

ACI [−4.571,7.3893] 11.9599 [−2.077,5.6526] 7.72960
Boot -p CI [0.2224,2.9128] 2.69035 [0.7167,3.9532] 3.23659
Boot -t CI [0.1345,1.4016] 1.26705 [0.7263,1.7554] 1.02909

Boot-BC CI [0.2842,2.8691] 2.58489 [0.7891,5.3758] 4.58672
Boot-BCa CI [0.0402,2.5562] 2.51595 [0.8091,4.1715] 3.36237

CRI [1.3156,1.3990] 0.08348 [1.8192,1.8706] 0.05132

Table 4. MCMC results for α,θ ,β and λ .

Parameters Mean Median Mode Variance S.D Skewness

α 2.6711 2.6764 2.6871 0.00031 0.01771 −0.7293
θ 0.343 0.3349 0.3188 0.00789 0.08884 0.52349
β 1.375 1.3806 1.3919 0.00048 0.02199 −1.6770
λ 1.8493 1.8503 1.8523 0.00018 0.01331 −0.66505

7 Simulation Study

This section provides some results based on Monte Carlo simulations to assess the performance of the different methods.
All computations were computerized using (MATHEMATICA program version 9.0). PROG-II-C Weibull-Gamma
samples are generated according to SSPALT model using the algorithm proposed by Balakrishnan and Aggarwala [2].
The comparison between the different methods of the resulting estimators of α,θ ,β , and λ has been considered in their
mean square error (MSE) which is computed, fork = 1,2,3 and (Ω1 = α, Ω2 = θ , Ω3 = β , Ω4 = λ ),as

MSE(Ωk) =
1

M

M

∑
i=1

(

Ω̂
(i)
k −Ωk

)2

,

where M = 1000 is the number of simulated samples. Another criterion is used to compare (CIs) obtained by using
asymptotic distributions of the MLEs and MCMC credible intervals (CRIs). The comparison of them is made in terms
of the average confidence interval lengths (ACLs) and coverage probability (CP). The CP of a confidence interval is the
proportion of the time that the interval contains the true value of interest. In this study, the following censoring schemes
(CSs) are taken into consideration:

Scheme A : R1 = n−m, Ri = 0 for i 6= 1.

Scheme B : R m
2
= R m

2 +1 =
n−m

2
, Ri = 0 for i 6= m

2
and i 6= m

2
+ 1.

Scheme C : Rm = n−m, Ri = 0 for i 6= m.
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Table 5. MSE of ML and Bayes MCMC estimates for the parameters with (α,θ ,β ,λ ) = (2.5,0.4,1.5,2) at τ = 0.5.

MLE MCMC

(n,m) CS α θ β λ α θ β λ

(30,20) A
3.1948
(1.3837)

0.3611
(0.0249)

1.1239
(0.7984)

1.7313
(0.7697)

3.1971
(1.3910)

0.3608
(0.0251)

1.1159
(0.7916)

1.7319
(0.7639)

B
3.2044
(1.3893)

0.3613
(0.0297)

1.1302
(0.7668)

1.7071
(0.6612)

3.2012
(1.3822)

0.3629
(0.0302)

1.1314
(0.7642)

1.7066
(0.6646)

C
3.2668
(1.4570)

0.3763
(0.0341)

1.1233
(0.7684)

1.6439
(0.7761)

3.2642
(1.4537)

0.3779
(0.0350)

1.1191
(0.7595)

1.6419
(0.7758)

(40,20) A
3.2225
(1.3181)

0.3593
(0.0280)

1.0905
(0.7969)

1.6888
(0.7191)

3.2224
(1.3184)

0.3592
(0.0279)

1.0858
(0.7904)

1.6905
(0.7252)

B
3.1231
(1.2790)

0.3660
(0.0285)

1.1317
(0.7214)

1.7564
(0.6572)

3.1181
(1.2677)

0.3679
(0.0295)

1.1370
(0.7181)

1.7571
(0.6588)

C
3.2774
(1.4747)

0.3687
(0.0345)

1.0530
(0.7957)

1.6467
(0.8291)

3.2734
(1.4651)

0.3717
(0.0358)

1.0602
(0.7966)

1.6462
(0.8283)

(40,30) A
3.1866
(1.2653)

0.3562
(0.0222)

1.1459
(0.7339)

1.7403
(0.6213)

3.1859
(1.2650)

0.3575
(0.0228)

1.1479
(0.7307)

1.7388
(0.6192)

B
3.1429
(1.2216)

0.3641
(0.0252)

1.1861
(0.7385)

1.7562
(0.6026)

3.1405
(1.2202)

0.3663
(0.0261)

1.1942
(0.7348)

1.7570
(0.6057)

C
3.1798
(1.2970)

0.3783
(0.0293)

1.2008
(0.7378)

1.7078
(0.7092)

3.1769
(1.2938)

0.3817
(0.0309)

1.2098
(0.7342)

1.7067
(0.7086)

(60,40) A
3.1916
(1.2482)

0.3539
(0.0187)

1.1433
(0.7773)

1.6940
(0.6146)

3.1860
(1.2392)

0.3568
(0.0190)

1.1606
(0.7796)

1.6928
(0.6125)

B
3.1117
(1.1502)

0.3587
(0.0189)

1.1982
(0.6934)

1.7993
(0.5557)

3.1047
(1.1422)

0.3635
(0.0195)

1.2264
(0.6978)

1.8003
(0.5574)

C
3.1844
(1.2524)

0.3778
(0.0239)

1.1634
(0.6929)

1.6771
(0.6386)

3.1761
(1.2370)

0.3854
(0.0260)

1.1994
(0.6971)

1.6768
(0.6396)

Table 6. MSE of ML and Bayes MCMC estimates for the parameters with (α,θ ,β ,λ ) = (2.5,0.4,1.5,2) at τ = 0.7.

MLE MCMC

(n,m) CS α θ β λ α θ β λ

(30,20) A
3.1681
(1.3055)

0.3796
(0.0305)

1.3455
(0.5651)

1.9207
(0.8491)

3.1658
(1.3018)

0.3806
(0.0310)

1.3488
(0.5606)

1.9222
(0.8539)

B
3.1570
(1.2736)

0.3879
(0.0326)

1.3585
(0.5611)

1.8882
(0.8209)

3.1535
(1.2684)

0.3896
(0.0329)

1.3687
(0.5599)

1.8890
(0.8219)

C
3.2224
(1.3821)

0.3809
(0.0353)

1.3104
(0.6013)

1.8599
(1.0186)

3.2176
(1.3725)

0.3846
(0.0370)

1.3260
(0.6036)

1.8601
(1.0167)

(40,20) A
3.2204
(1.3908)

0.3754
(0.0289)

1.2800
(0.5912)

1.8660
(0.8714)

3.2186
(1.3853)

0.3765
(0.0293)

1.2869
(0.5905)

1.8675
(0.8767)

B
3.1053
(1.1502)

0.3838
(0.0274)

1.3741
(0.5323)

1.9430
(0.8237)

3.0995
(1.1412)

0.3870
(0.0281)

1.3915
(0.5373)

1.9432
(0.8259)

C
3.2360
(1.3782)

0.3494
(0.0340)

1.2430
(0.5740)

2.0051
(1.0839)

3.2293
(1.3677)

0.3558
(0.0366)

1.2715
(0.5844)

2.0040
(1.0787)

(40,30) A
3.1272
(1.1938)

0.3740
(0.0231)

1.3189
(0.5738)

1.8822
(0.7535)

3.1206
(1.1824)

0.3767
(0.0238)

1.3370
(0.5790)

1.8820
(0.7542)

B
3.1718
(1.2414)

0.3700
(0.0238)

1.3212
(0.5452)

1.8729
(0.7033)

3.1638
(1.2304)

0.3734
(0.0243)

1.3436
(0.5492)

1.8735
(0.7052)

C
3.1892
(1.2000)

0.3884
(0.0287)

1.3370
(0.5330)

1.7718
(0.7514)

3.1806
(1.1878)

0.3932
(0.0303)

1.3639
(0.5416)

1.7724
(0.7522)

(60,40) A
3.0440
(1.0265)

0.3785
(0.0185)

1.3406
(0.5225)

1.9167
(0.7151)

3.0354
(1.0134)

0.3819
(0.0189)

1.3672
(0.5297)

1.9171
(0.7172)

B
3.0409
(1.0288)

0.3736
(0.0192)

1.3655
(0.5129)

1.9553
(0.6031)

3.0304
(1.0119)

0.3787
(0.0197)

1.4014
(0.5233)

1.9551
(0.6024)

C
3.1580
(1.1387)

0.3764
(0.0225)

1.3266
(0.4919)

1.8555
(0.7247)

3.1484
(1.1221)

0.3835
(0.0242)

1.3697
(0.5041)

1.8547
(0.7230)

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


104 EL-Sagheer et al.: Inferences for Weibull-Gamma distribution . . .

Table 7. MSE of ML and MCMC estimates for the parameters with (α,θ ,β ,λ ) = (2.5,0.4,1.5,3) at τ = 0.5.

MLE MCMC

(n,m) CS α θ β λ α θ β λ

(30,20) A
3.2105
(1.3417)

0.3612
(0.0271)

1.0811
(0.8135)

2.4376
(1.3822)

3.2092
(1.3382)

0.3615
(0.0273)

1.0753
(0.8055)

2.4363
(1.3793)

B
3.2255
(1.3471)

0.3711
(0.0313)

1.1532
(0.7633)

2.4981
(1.2372)

3.2240
(1.3487)

0.3721
(0.0318)

1.1499
(0.7568)

2.4966
(1.2384)

C
3.2592
(1.3853)

0.3779
(0.0356)

1.1354
(0.7406)

2.3946
(1.4982)

3.2574
(1.3799)

0.3796
(0.0366)

1.1323
(0.7310)

2.3911
(1.4927)

(40,20) A
3.2983
(1.4231)

0.3478
(0.0283)

1.0101
(0.7928)

2.4290
(1.2835)

3.2975
(1.4238)

0.3483
(0.0286)

1.0089
(0.7938)

2.4247
(1.2764)

B
3.1729
(1.3412)

0.3733
(0.0288)

1.1054
(0.7521)

2.5103
(1.3222)

3.1711
(1.3368)

0.3757
(0.0296)

1.1138
(0.7488)

2.5097
(1.3285)

C
3.2492
(1.4129)

0.3820
(0.0391)

1.0849
(0.7644)

2.4365
(1.6098)

3.2483
(1.4154)

0.3863
(0.0415)

1.0955
(0.7688)

2.4347
(1.6153)

(40,30) A
3.2112
(1.2604)

0.3508
(0.0204)

1.1278
(0.7443)

2.5707
(1.2662)

3.2081
(1.2577)

0.3521
(0.0207)

1.1269
(0.7426)

2.5674
(1.2652)

B
3.1446
(1.2847)

0.3673
(0.0252)

1.1885
(0.7430)

2.6103
(1.2326)

3.1404
(1.2771)

0.3701
(0.0260)

1.1978
(0.7377)

2.6091
(1.2332)

C
3.2066
(1.2761)

0.3798
(0.0290)

1.1698
(0.7204)

2.4863
(1.4306)

3.2013
(1.2697)

0.3832
(0.0303)

1.1788
(0.7136)

2.4871
(1.4347)

(60,40) A
3.1793
(1.2245)

0.3596
(0.0200)

1.1518
(0.7293)

2.5429
(1.1937)

3.1746
(1.2185)

0.3624
(0.0205)

1.1678
(0.7262)

2.5417
(1.1914)

B
3.1213
(1.0857)

0.3652
(0.0181)

1.1784
(0.6858)

2.5900
(1.1607)

3.1139
(1.0752)

0.3700
(0.0187)

1.2071
(0.6877)

2.5921
(1.1601)

C
3.1769
(1.2038)

0.3842
(0.0266)

1.1476
(0.6796)

2.4384
(1.2943)

3.1675
(1.1870)

0.3925
(0.0294)

1.1858
(0.6870)

2.4371
(1.2953)

Table 8. Comparisons of ACL and CP of 95% CIs for the parameters with (α,θ ,β ,λ ) = (2.5,0.4,1.5,2) at τ = 0.5.

MLE MCMC

(n,m) CS α θ β λ α θ β λ

(30,20) A
10.4792
(0.9489)

1.2548
(0.9538)

12.2017
(0.9393)

8.7697
(0.9342)

0.0695
(0.9407)

0.3157
(0.9325)

0.0848
(0.9329)

0.0599
(0.9583)

B
9.9974
(0.9598)

1.2323
(0.9667)

11.4378
(0.9532)

7.6266
(0.9582)

0.0668
(0.9344)

0.3170
(0.9493)

0.0825
(0.9531)

0.0510
(0.9380)

C
11.4543
(0.9428)

1.7692
(0.9400)

13.5299
(0.9374)

8.0375
(0.9570)

0.0748
(0.9304)

0.3307
(0.9524)

0.0950
(0.9677)

0.0545
(0.9608)

(40,20) A
9.5655
(0.9636)

1.1506
(0.9545)

11.3585
(0.9459)

8.1057
(0.9585)

0.0667
(0.9637)

0.3139
(0.9445)

0.0774
(0.9641)

0.0556
(0.9527)

B
9.0243
(0.9668)

1.2187
(0.9477)

10.4495
(0.9519)

7.2425
(0.9334)

0.0607
(0.9360)

0.3216
(0.9519)

0.0729
(0.9419)

0.0493
(0.9387)

C
10.5390
(0.9535)

2.1387
(0.9452)

12.4174
(0.9345)

7.3565
(0.9688)

0.0711
(0.9466)

0.3254
(0.9622)

0.0887
(0.9362)

0.0507
(0.9583)

(40,30) A
9.3978
(0.9447)

1.0789
(0.9658)

11.3493
(0.9526)

7.9712
(0.9469)

0.0644
(0.9525)

0.2557
(0.9421)

0.0805
(0.9524)

0.0528
(0.9337)

B
8.6929
(0.9362)

1.0571
(0.9535)

10.5407
(0.9479)

7.1796
(0.9663)

0.0605
(0.9621)

0.2619
(0.9466)

0.0776
(0.9316)

0.0479
(0.9482)

C
9.5133
(0.9462)

1.3462
(0.9465)

11.9067
(0.9627)

7.4482
(0.9663)

0.0648
(0.9596)

0.2736
(0.9494)

0.0871
(0.9585)

0.0501
(0.9500)

(60,40) A
8.2498
(0.9577)

0.9356
(0.9345)

10.2342
(0.9616)

7.0203
(0.9497)

0.0557
(0.9425)

0.2214
(0.9563)

0.0748
(0.9626)

0.0471
(0.9374)

B
7.6968
(0.9474)

0.9283
(0.9451)

9.1651
(0.9516)

6.2891
(0.9369)

0.0525
(0.9464)

0.2254
(0.9403)

0.0754
(0.9567)

0.0416
(0.9611)

C
8.2351
(0.9559)

1.2439
(0.9351)

10.1585
(0.9664)

6.2907
(0.9614)

0.0568
(0.9329)

0.2393
(0.9623)

0.0866
(0.9402)

0.0431
(0.9671)
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Table 9. Comparisons of ACL and CP of 95% CIs for the parameters with (α,θ ,β ,λ ) = (2.5,0.4,1.5,2) at τ = 0.7.

MLE MCMC

(n,m) CS α θ β λ α θ β λ

(30,20) A
8.5831
(0.9592)

1.1294
(0.9586)

9.9531
(0.9479)

7.6929
(0.9603)

0.0571
(0.9665)

0.3325
(0.9335)

0.0685
(0.9694)

0.0511
(0.9348)

B
8.2770
(0.9404)

1.1986
(0.9672)

9.0829
(0.9606)

6.7076
(0.9336)

0.0550
(0.9543)

0.3403
(0.9583)

0.0641
(0.9523)

0.0450
(0.9604)

C
8.7695
(0.9305)

1.6389
(0.9690)

10.0805
(0.9680)

7.1370
(0.9552)

0.0587
(0.9346)

0.3361
(0.9698)

0.0717
(0.9687)

0.0469
(0.9466)

(40,20) A
7.8163
(0.9689)

1.0358
(0.9463)

8.8197
(0.9526)

6.9696
(0.9498)

0.0532
(0.9618)

0.3288
(0.9503)

0.0619
(0.9507)

0.0482
(0.9499)

B
6.9551
(0.9456)

1.1193
(0.9504)

8.0884
(0.9382)

6.1133
(0.9664)

0.0473
(0.9365)

0.3380
(0.9563)

0.0586
(0.9477)

0.0409
(0.9540)

C
7.8857
(0.9693)

1.9280
(0.9450)

10.0374
(0.9429)

7.1131
(0.9576)

0.0545
(0.9613)

0.3112
(0.9669)

0.0781
(0.9524)

0.0470
(0.9564)

(40,30) A
7.2025
(0.9355)

0.9396
(0.9598)

8.0338
(0.9641)

6.1997
(0.9678)

0.0492
(0.9528)

0.2688
(0.9339)

0.0577
(0.9352)

0.0414
(0.9420)

B
7.2256
(0.9399)

0.9419
(0.9488)

7.6113
(0.9469)

5.7719
(0.9554)

0.0492
(0.9645)

0.2667
(0.9545)

0.0586
(0.9359)

0.0380
(0.9413)

C
7.3175
(0.9624)

1.2022
(0.9694)

8.1875
(0.9453)

5.6696
(0.9412)

0.0501
(0.9474)

0.2809
(0.9570)

0.0660
(0.9695)

0.0384
(0.9404)

(60,40) A
5.6812
(0.9503)

0.7768
(0.9642)

6.5501
(0.9464)

5.2450
(0.9586)

0.0394
(0.9608)

0.2364
(0.9469)

0.0548
(0.9416)

0.0359
(0.9689)

B
5.4851
(0.9657)

0.7961
(0.9302)

6.2372
(0.9303)

4.8869
(0.9492)

0.0392
(0.9370)

0.2345
(0.9524)

0.0608
(0.9448)

0.0331
(0.9631)

C
5.8448
(0.9615)

1.0365
(0.9472)

6.6294
(0.9484)

4.7979
(0.9494)

0.0414
(0.9577)

0.2377
(0.9503)

0.0701
(0.9636)

0.0321
(0.9366)

Table 10. Comparisons of ACL and CP of 95% CIs for the parameters with (α,θ ,β ,λ ) = (2.5,0.4,1.5,3) at τ = 0.5.

MLE MCMC

(n,m) CS α θ β λ α θ β λ

(30,20) A
9.9533
(0.9634)

1.1508
(0.9302)

10.9302
(0.9600)

11.2387
(0.9486)

0.0655
(0.9686)

0.3158
(0.9378)

0.0753
(0.9650)

0.0768
(0.9557)

B
10.2560
(0.9650)

1.3081
(0.9627)

12.0157
(0.9389)

11.2822
(0.9341)

0.0705
(0.9316)

0.3255
(0.9556)

0.0839
(0.9504)

0.0751
(0.9410)

C
11.5007
(0.9672)

1.8467
(0.9332)

14.2324
(0.9642)

12.1692
(0.9692)

0.0768
(0.9495)

0.3325
(0.9367)

0.1044
(0.9632)

0.0844
(0.9631)

(40,20) A
9.9061
(0.9311)

1.0987
(0.9486)

10.5940
(0.9603)

11.559
(0.9337)

0.0674
(0.9323)

0.3043
(0.9457)

0.0697
(0.9327)

0.0766
(0.9622)

B
9.9373
(0.9658)

1.3614
(0.9593)

11.3537
(0.9330)

11.1615
(0.9362)

0.0660
(0.9619)

0.3284
(0.9301)

0.0794
(0.9306)

0.0751
(0.9441)

C
10.6516
(0.9561)

2.3701
(0.9481)

13.4752
(0.9611)

11.0654
(0.9381)

0.0707
(0.9563)

0.3391
(0.9430)

0.0955
(0.9348)

0.0761
(0.9560)

(40,30) A
9.8193
(0.9363)

1.0968
(0.9548)

11.7321
(0.9635)

12.1359
(0.9356)

0.0667
(0.9429)

0.2518
(0.9414)

0.0826
(0.9352)

0.0816
(0.9540)

B
9.0671
(0.9467)

1.1348
(0.9457)

11.2377
(0.9390)

11.0045
(0.9522)

0.0617
(0.9406)

0.2651
(0.9487)

0.0802
(0.9338)

0.0724
(0.9651)

C
10.0315
(0.9492)

1.3861
(0.9426)

11.9100
(0.9500)

11.0529
(0.9475)

0.0674
(0.9568)

0.2745
(0.9645)

0.0876
(0.9606)

0.0744
(0.9451)

(60,40) A
8.1445
(0.9574)

0.9380
(0.9340)

10.2425
(0.9606)

10.2517
(0.9469)

0.0550
(0.9438)

0.2249
(0.9550)

0.0743
(0.9322)

0.0691
(0.9670)

B
7.7193
(0.9325)

0.9613
(0.9690)

9.6541
(0.9609)

9.4565
(0.9317)

0.0532
(0.9308)

0.2295
(0.9424)

0.0785
(0.9322)

0.0637
(0.9315)

C
7.9766
(0.9500)

1.2382
(0.9454)

9.5908
(0.9540)

8.7440
(0.9409)

0.0547
(0.9329)

0.2439
(0.9552)

0.0827
(0.9395)

0.0593
(0.9338)
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8 Conclusion

Using PROG-II-C samples, the analysis of the SSPALT of WG failure model is performed based on Bayes and
non-Bayes methods. Four types of bootstrap confidence intervals are used to obtain 95% confidence intervals for the
unknown parameters. The importance of MCMC technique was noticeable in Bayesian estimation using
Metropolis-Hastings method. A simulated data set is presented to show how the MCMC and parametric bootstrap
methods work. A simulation study is computerized to inspect and compare the rendition of the proposed methods for
different sample sizes, different CSs, different acceleration factors and different change stress τ . From the results, we
observe the following:

(1)The increase in the values of n and m would be helpful and will effect on MSEs and average interval lengths.
(2)For the parameters θ and λ the increase of τ leads to the increase of their MSEs.
(3)The increase of τ leads to decreasing the average width of the CIs.
(4)The MSEs of the estimators and the width of the CIs increase as λ increases.
(5)The width of MCMC CRIs is shorter than approximate CIs for different sample sizes, schemes, τ and different λ .
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