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Abstract: The most commonly developed inventory models are the classical economic order quantity model, is governed by the integer

order differential equations. We want to come out from the traditional thought i.e. classical order inventory model where the memory

phenomena are absent. Here, we want to incorporate the memory effect that is based on the fact economic agents remember the history

of changes of exogenous and endogenous variables. In this paper, we have proposed and solved a fractional order economic order

quantity model with constant demand rate where the demand is fully backlogged during shortage time. Finally, a numerical example

has been illustrated for this model to show the memory dependency of the system. The numerical example clears that for the considered

system the profit is maximum in long memory affected system compared to the low memory affected or memory less system.

Keywords: Fractional order derivative, long memory effect and short memory effect, fractional order inventory model.

1 Introduction

Recently, fractional order integration and differentiation have been applied to the real world problem for its memory
property. But in this system growth of any processes is slower compared to the ordinary differential system. Fractional
order integration and differentiation are generalizations of integer-order integration and differentiation with including nth
derivatives and fractional n-fold integrals[1,2]. Usually, authors use Riemann-Liouville (RL) integration and Caputo
fractional order derivative to develop different problems [3,4,5,6,7,8,9,1]. Recently Baleanu and his collaborators
developed and used the new non-local fractional derivative with non-singular kernel in different physical problems[10,
11,12]. The fractional order derivative has different type of significance in different applications. In physical problem it
is used as the roughness parameter of the surface [13], in biological and financial system it is the indicator of memory [3,
4,5,6,7,8,9,1] etc.

The memory means the dependence of the process not only on the current state of the processes but also on the past
history of the process. Like the application in physics and biology it is recently using in economic analysis[4,5,6].
However, there are some areas of operation research where the application of fractional calculus has been started to
apply in the last few years. Our main interest is to include the application fractional calculus in the inventory models.

It is well known that rate of change of integer orders of a function at any particular point is determined by the
property of the function in the infinitely small neighborhood of the considered point. Hence, the integer order rate of
change of any function/system is assumed as the instant rate of change of the marginal output, when the input level
changes. Therefore, the dynamic memory effect is not present in classical calculus. Thus the classical calculus is not able
to include the previous state of the system [8,9]. In the fractional derivative, the rate of change is affected by all points of

∗ Corresponding author e-mail: vishnunarayanmishra@gmail.com

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/070305


178 R. Pakhira et al. : Study of Memory Effect in an Economic Order Quantity Model ...

the considered interval, so it is able to incorporate the previous /memory effects of any system. Here, the order of
fractional derivative will be treated as an index of memory. So, the fractional order system can remove amnesia from any
system [14].

Application of fractional order derivative is suitable to formulate and analyze the real-life phenomenon which has
memory effects. M. Saedian et al. studied fractional order susceptible-infected-recovered (SIR) epidemic model to
investigate the existence of memory effect in the biological system and to incorporate this effect they have used the
memory kernel function[3]. They have established in their paper[3] that the real epidemic process is clearly sustained by
a non-Markovian dynamics.

Tarasova et al. have developed many research articles[4,5,6,7] using the concept of the memory effect of fractional
order derivative and integration. In the paper[6] they gave an idea of economic interpretation of fractional derivatives
using the Caputo derivative. In [7] they discussed elasticity for the economic process with memory using fractional
differential calculus. They defined that generalization of point price elasticity of demand to the case of the processes with
memory. In these generalizations, they take into account dependence of demand not only from the current price (price at
the current time) but also changes of price for some time interval.

Pakhira et al. [8,9,15,16,17,18] developed some memory dependent inventory models including the fractional order
rate of change of the inventory level and fractional order effect of different costs. The inclusion of the memory effect in
the inventory model is necessary to handle practical business policy. In this paper, our aim is to develop a memory
dependent economic order quantity model where demand is completely backlogged during shortage[19]. Here, Caputo
fractional order derivative and Riemann-Liouville fractional order integration have been used to develop the economic
order quantity model where fully backlogged is permitted during shortage time. To formulate the fractional order
differential equation model we have used the memory kernel concept as develop in [3]. Here different costs are
established using fractional order integration. Finally the effects of inclusion of memory parameter are investigated using
numerical examples.

Our analysis clears that when the integral memory index is absent but the differential memory index is present, the
minimized total average cost is gradually decreasing with gradually increasing memory effect but optimal ordering
interval is gradually increasing. The numerical value of the minimized total average cost with the presence of the
differential memory index is low compared with presence of the integral memory index. It is clear from the numerical
results that total order quantity needs to be adjusted for short past experience effect but not for long experience.

The rest part of the paper is organized as follows: in the section 2, review of fractional calculus has been presented.
In the section 3, model formulation has been discussed. In the section-3.4 fractional order inventory model formulation
with memory kernel has been given. In the section 3.5 fractional order model Analysis has been presented. In the section
4, numerical examples are given and finally in the section 5, some conclusions are cited.

2 Review of fractional calculus

2.1 Euler gamma function

Euler’s gamma function is one of the best tools in fractional calculus which was proposed by the Swiss mathematicians
Leonhard Euler (1707-1783).The gamma function is continuous extension from the factorial notation. The gamma
function is denoted and defined by the formulae.

Γ (x) =

∫

∝

0
tx−1e−tdt (1)

where x > 0 Γ (x) is extended for all real and complex numbers. It has the basic properties[1].

Γ (x+ 1) = Γ (x),Γ
(

1
2

)

=
√

π
2

,Γ (− 7
6
) =− 6

7

(

Γ
(

1
6

))
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2.2 Riemann-Liouville fractional derivative[1]

Left Riemann-Liouville fractional derivative of any continuous function f (x) of order α where α ∈ (0,1] is defined as

aDα
x ( f (x)) =

1

Γ (m−α)

(

d

dx

)m ∫ x

a
(x− τ)m−α−1 f (τ)dτ (2)

where x > a

Right Riemann-Liouville fractional derivative of order is defined as follows

xDα
b ( f (x)) =

1

Γ (m−α)

(

−
d

dx

)m ∫ b

x
(τ − x)m−α−1 f (τ)dτ (3)

where x > 0

In terms of Riemman-Liouville definition the fractional derivative any constant is not equal to zero which creates a
difficulty between ordinary calculus and fractional calculus. To overcome this difference M. Caputo [20] gave the new
definition which is given below.

2.3 Caputo fractional order derivative

Left Caputo fractional derivative [20] for the function f (x) which has continuous, bounded derivatives in[a,b] is denoted
and defined as follows

C
a Dα

x ( f (x)) =
1

Γ (m−α)

∫ x

a
(x− τ)m−α−1 f m(τ)dτ (4)

where 0 ≤ m− 1 < α < m.
Right Caputo fractional derivative for the function f (x) which has continuous and bounded derivatives in [a,b] is defined
as follows

C
x Dα

b ( f (x)) =
1

Γ (m−α)

∫ b

x
(τ − x)m−α−1 f m(τ)dτ (5)

where 0 ≤ m− 1 < α < m. In terms of Caputo definition the derivative of any constant A is zero i.e.Ca Dα
x (A) = 0.

2.4 Fractional Laplace transforms method

The Laplace transform [1] of the function f (x) is defined as

F(s) = L( f (t)) =

∫ ∞

0
e−st f (t)dt (6)

where s > 0 , is called the transform parameter. The Laplace transformation [1] of nth order derivative is defined as

L( f n(t)) = snF(s)−
n−1

∑
k=0

sn−k−1 f k(0) (7)

where f n(t)denotesnthderivative of the function f with respect to t and for non – integer m it is defined in generalized
form [1,2]as,

L( f α(t)) = sα F(s)−
n−1

∑
k=0

sk f α−k−1(0) (8)

where,(n− 1)< α ≤ n
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Table 1: Different symbols and items for the EOQ models

(i)D(t) : Demand rate. (ii)Q :Total order quantity.

(iii)P :Per unit cost. (iv)C1tα :Inventory holding cost per unit.

(v)C3 :Ordering cost or setup cost per order. (vi)I (t) :Stock level or inventory level.

(vii)T :Ordering interval. (viii)HOCα ,β (T ) :Inventory holding cost

with fractional effect.

(ix)T ∗
α ,β :Optimal ordering interval with fractional

effect.

(x)TOCav
α ,β :Total average cost during the

total time interval.

(xi)TOC∗
α ,β :Minimized total average cost with

fractional effect.

(xii)(B, .) ,(Γ , .):Beta function and gamma

function respectively.

(xiii)SOCα ,β (T ) :Shortage cost with fractional

effect.

(xiv)POCα ,β (T ) :Total purchasing cost

with fractional effect.

(xv)C2 :Shortage cost per unit per unit time.

3 Model formulation

In this paper, the classical and fractional order EOQ models are formulated on the basis of the following assumptions:
(i)Time horizon is infinite.
(ii)Lead time is zero.
(iii)Demand rate is throughout the interval i.e. in 0 ≤ t ≤ t1 and t1 ≤ t ≤ Tboth interval.
(iv)Shortage is allowed in this model.
(v)There is permitted complete backlogging during shortage time.

3.1 Notations

The notations are used to develop the model are given in Table-1.

3.2 Classical inventory model

Here the positive inventory level I1 (t) and the negative inventory levelI2 (t) both reduce due to constant demand γ during
the time interval[0, t1] and [t1,T ] respectively. The classical or memory less inventory system with constant demand can
be governed by the following system of integer order differential equations :

d(I1(t))

dt
=−γ (9)

for 0 ≤ t ≤ t1.
d(I2(t))

dt
=−γ (10)

for t1 ≤ t ≤ T

with I1(t1) = 0,I2(t1) = 0

The classical model is followed from [19,21]. In the next section we shall establish the fractional order inventory control
model using the memory kernel method [3].

3.3 Fractional order inventory model formulation with memory kernel

To establish the influence of memory effects, the differential equation (9-10) can be written using the kernel functions in
the following form:

d(I1(t))

dt
=−

∫ t

0
K(t − t ′)γdt ′ (11)
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Fig. 1: Plot of memory kernel function k (x− ξ ) =
(x− ξ )α−2

Γ (α − 1)
forξ = 3 different values ofα .

d(I2(t))

dt
=−

∫ t

0
K(t − t ′)γdt ′ (12)

in which k(t − t ′) is the kernel function. This type of kernel guarantees the existence of scaling features as it is often

intrinsic in most natural phenomena. Thus, to generate the fractional order k(t − t ′) = (t−t′)α−2

Γ (α−1) where 0 < α ≤ 1 and Γ (α)

denotes the gamma function.
Using the definition of fractional derivative[1,2] we can re-write the Equation(11-12 ) to the form of fractional differential
equations with the Caputo-type derivative in the following form

d(I1(t))

dt
=−0D

−(α−1)
t (γ) (13)

d(I2(t))

dt
=−0D

−(α−1)
t (γ) (14)

Now, applying fractional Caputo derivative of order(α − 1) on both sides of the(13-14) and using the fact the Caputo
fractional order derivative and fractional order integral are inverse operators, the following fractional differential equations
can be obtained for the model

C
0 Dα

t (I1(t)) =−γ (15)

C
0 Dα

t (I2(t)) =−γ (16)

along with boundary condition I1(t1) = 0, I2(t1) = 0 Here, α controls the strength of memory. when α → 1, memory of
the system becomes weak and the small value of α ( close to 0.1 ) indicates long memory of the system.

It is clear from the figure that the pick of the curve gradually decreases depending on α . Here, we define memory effect
in two steps(i) long memory effect,(ii) low memory effect.

Long and Short memory effect:

The strength of memory is controlled by the order of fractional derivative or fractional integration.If order of fractional
derivative or fractional integrationis in the range (0,0.5) then the system has long memory effect and in[0.5,1) then is
short memory effect.
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3.4 Analysis of the fractional order economic order quantity model

Fractional order inventory model is governed by the two fractional order differential equation as follows

dα(I1(t))

dtα
=−γ (17)

for 0 ≤ t ≤ t1 , with I1(t1) = 0
dα(I2(t))

dtα
=−γ (18)

for t1 ≤ t ≤ T , with I2(t1) = 0

The inventory level can be found integrating the system (17-18) and using the boundary condition which gives

I1 (t) =
γ

Γ (1+α)
(tα

1 − tα) (19)

I2 (t) =
γ

Γ (1+α)
(tα

1 − tα) (20)

Since the inventory level decreases with respect to time t, so the maximum positive inventory level will occur at t = 0
which gives

M = I1 (0) =
γtα

1

Γ (1+α)
(21)

Here, the maximum backorder units are

S =−I2 (T ) =
γ

Γ (1+α)
(T α − tα

1 ) (22)

The order size during the total ordering interval [0,T ] , is denoted by Q and defined as

Q = M+ S =
γT α

Γ (1+α)
(23)

In reality, holding cost depends on time. It is not constant in the entire cycle of the system. Due to that reason, the
inventory holding cost per unit is assumed as a function of time in the form C1tα .

The inventory holding cost with memory effect is denoted by HOCα ,β [8] and defined as

HOCα ,β (T ) =
C1

Γ (β )

∫ t1

0
(t1 − t)β−1

tα I1 (t)dt =
C1γt

2α+β
1 (B(α + 1,β )−B(2α + 1,β ))

Γ (β )Γ (α + 1)
(24)

β is considered as integral memory index.

Shortage cost with fractional effect is denoted bySOCα ,β and defined as follows

SOCα ,β (T ) =−
C2

Γ (β )

∫ T

t1

(T − t)β−1
I2 (t)dt

=
C2γT α+β

Γ (β )Γ (α + 1)

(

1

α + 1
−

β − 1

α + 2

)

+

(

C2γtα+1
1

Γ (β )Γ (α + 1)
−

C2γtα+1
1

Γ (β )(α + 1)Γ (α + 1)

)

T β−1

+

(

C2γtα+2
1 (β − 1)

Γ (β )(α + 2)Γ (α + 1)
−

C2 (β − 1)γtα+2
1

2Γ (β )Γ (α + 1)

)

T β−2 +

(

C2 (β − 1)γtα
1

Γ (β )2Γ (α + 1)
−

C2γtα
1

Γ (β )Γ (α + 1)

)

T β (25)

where C2 is the shortage cost per unit per unit time.
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The purchasing cost for fractional order model is denoted by POCα ,β and defined as

POCα ,β (T ) = PXQ = P

(

γT α

Γ (α + 1)

)

(26)

Therefore, total average cost for the fractional order inventory model is

TOCav
α ,β (T ) =

HOCα ,β (T )+ SOCα ,β (T )+POCα ,β (T )+C3

T

= AT α+β−1 +B1T β−1 +CT β−2 +DTβ−3 +ETα−1 +FT−1 (27)

where A = C2γ
Γ (β )Γ (α+1)

(

1

(α + 1)
−

(β − 1)

(α + 2)

)

,B1 =
C2γ(β−1)tα

1
2Γ (β )Γ (α+1) −

C2γtα
1

Γ (β )Γ (α + 1)
, ,E =

Pγ

Γ (α + 1)
,C =

C2γtα+1
1

Γ (β )Γ (α + 1)
−

C2γtα+1
1

Γ (β )(α + 1)Γ (α + 1)
,D =

C2γ (β − 1)tα+2
1

(α + 2)Γ (β )Γ (α + 1)
−

C2γ (β − 1)tα+2
1

2Γ (β )Γ (α + 1)
and

F =
C1γt

2α+β
1 (B(α + 1,β )−B(2α + 1,β ))

Γ (β )Γ (α + 1)
+C3.

We consider three different cases of the total average cost depending on the different values of the memory indexes (i)
0 < α ≤ 1,0 < β ≤ 1 (ii)β = 1.0,0 < α ≤ 1 (iii) α = 1.0,0 < β ≤ 1.

(i)Case-1: we consider both memory exist i.e. differential memory index and integral memory indexes both fractional
i.e.0 < α ≤ 1,0 < β ≤ 1.

Here, the inventory model can be written as follows

{

MinTOCav
α ,β (T ) = AT α+β−1 +B1T β−1 +CT β−2 +DT β−3 +ET α−1 +FT−1

Sub jecttoT > 0
(28)

Where

A = C2γ
Γ (β )Γ (α+1)

(

1

(α + 1)
−

(β − 1)

(α + 2)

)

,D =
C2γ (β − 1)tα+2

1

(α + 2)Γ (β )Γ (α + 1)
−

C2γ (β − 1)tα+2
1

2Γ (β )Γ (α + 1)
,E =

Pγ

Γ (α + 1)
,B1 =

C2γ(β−1)tα
1

2Γ (β )Γ (α+1) −
C2γtα

1

Γ (β )Γ (α + 1)
,F =

C1γt
2α+β
1 (B(α + 1,β )−B(2α + 1,β ))

Γ (β )Γ (α + 1)
+ C3 and

C =
C2γtα+1

1

Γ (β )(α + 1)
−

C2γtα+1
1

Γ (β )(α + 1)Γ (α + 1)
.

(a)Primal geometric programming
To solve (28)analytically, the primal geometric programming method has been applied. The dual form of(28) has been
introduced by the dual variable (w).The corresponding primal geometric programming problem has been constructed in
the following:

Maxd(w) =

(

A

w1

)w1
(

B1

w2

)w2
(

C

w3

)w3
(

D

w4

)w4
(

E

w5

)w5
(

F

w6

)w6

(29)

Normalized condition is as

w1 +w2 +w3 +w4 +w5 +w6 = 1 (30)

Orthogonal condition becomes as

(α +β − 1)w1 +(β − 1)w2 +(β − 2)w3 +(β − 3)w4 +(α − 1)w5 −w6 = 0 (31)
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and the primal-dual relations are given as follows


































AT α+β−1 = w1d(w)

B1T β−1 = w2d(w)

CT β−2 = w3d(w)

DT β−3 = w4d(w)

ET α−1 = w5d(w)

FT−1 = w6d(w)

(32)

Using the above primal-dual relation the followings are given by


















































(

B1w1

Aw2

)

=

(

Cw2

B1w3

)α

(

B1w1

Aw2

)( 1
α )

=
Dw3

Cw4
(

B1w1

Aw2

)

(

β−α−2
α

)

=
Ew4

Dw5
B1w1

Aw2

=
Fw5

Ew6

(33)

along with

T =
Cw2

B1w3

(34)

Solving (30),(31),and (33) the critical valuew∗
1,w

∗
2,w

∗
3,w

∗
4,w

∗
5,w

∗
6 of the dual variables w1,w2,w3,w4,w5,w6can be

obtained and finally the optimum valueT∗ of T has been calculated from the equation of (34) substituting the critical
values. Now the minimized total average cost TOC∗

α ,β has been calculated by substitutingT∗ in (28) analytically. The

minimized total average cost and the optimal ordering interval is evaluated from (28) numerically.

(ii)Case-2: In this case we consider the rate of change of inventory level is fractional but integral memory index is absent
i.e.(β = 1.0,0 < α ≤ 1) .

In this case, the inventory model is
{

MinTOCav
α ,1 (T ) = AT α +B1T 0 +CT−1 +DT−2 +ETα−1

Sub ject to T > 0
(35)

where A =
C2γ

(α + 1)Γ (α + 1)
,C =

C2γtα+1
1

Γ (α + 1)
−

C2γtα+1
1

(α + 1)Γ (α + 1)
+

C1γt2α+1
1 (B(α + 1,1)−B(2α + 1,1))

Γ (α + 1)
+C3,

B1 =−
C2γtα

1

Γ (α + 1)
,D = 0 and E =

Pγ

Γ (α + 1)
.

Using the similar analogy as previous, the minimized total average cost and optimal ordering interval has been solved
from (35).

(iii)Case-3: Here, we consider presence of integral memory only i.e. rate of change of inventory level is unit but integral
memory index present i.e.α = 1.0,0 < β ≤ 1 .

Then, the inventory model is as,
{

MinTOCav
1,β (T ) = AT β +B1T β−1 +CT β−2 +DT β−3 +ET0 +FT−1

Sub ject to T > 0
(36)

where A =
C2γ

2Γ (β )Γ (2)
−

C2 (β − 1)γ

3Γ (β )Γ (2)
,B1 =

C2γ (β − 1)t1

2Γ (β )Γ (2)
−

C2γt1

Γ (β )Γ (2)
,C =

C2γt2
1

Γ (β )Γ (2)
−

C2γt2
1

2Γ (β )Γ (2)
,D =

C2 (β − 1)γt3
1

3Γ (β )Γ (2)
−

C2γ (β − 1)t3
1

2Γ (β )Γ (2)
,E =

Pγ

Γ (2)
and F =

C1γt
2+β
1 (B(2,β )−B(3,β ))

Γ (β )Γ (2)
+C3.

Using the similar way of case-1, the minimized total average cost and the optimal ordering interval has been solved from
(36).
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Table 2: Optimal ordering intervalT∗
α ,β and minimized total average cost TOC∗

α ,β for β = 1.0,0 < α ≤ 1

α β T ∗
α ,β TOC∗

α ,β

0.1 1.0 167.3164 4.1316

0.2 1.0 81.5273 9.4674

0.3 1.0 51.6472 16.6348

0.4 1.0 35.8339 25.9524

0.5 1.0 25.6802 37.5886

0.6 1.0 18.3754 51.4457

0.7 1.0 12.7205 66.9596

0.8 1.0 8.1426 82.7853

0.9 1.0 4.4270 96.2934

1.0 1.0 1.8715 103.1555

Table 3: Optimal ordering intervalT∗
α ,β and minimized total average costTOC∗

α ,β for α = 1.0,0 < β ≤ 1

t1 = 1.3456 t1 = .3456

α β T ∗
α ,β TOC∗

α ,β T ∗
α ,β TOC∗

α ,β

1.0 0.1 3.5850 100.5354 0.4144 100.1621

1.0 0.2 2.7919 101.0677 0.4062 100.2666

1.0 0.3 2.4492 101.5542 0.4001 100.3269

1.0 0.4 2.2540 101.9791 0.3956 100.3545

1.0 0.5 2.1278 102.3364 0.3921 100.3588

1.0 0.6 2.0403 102.6250 0.3895 100.3472

1.0 0.7 1.9772 102.8469 0.3875 100.3253

1.0 0.8 1.9307 103.0059 0.3861 100.2975

1.0 0.9 1.8964 103.1070 0.3853 100.2668

1.0 1.0 1.8715 103.1555 0.3843 100.2355

4 Numerical example

(a) To illustrate numerical results of the developed fractional order inventory model, we have considered the empirical
values of the various parameters in proper units as P = 20,C3 = 250,C1 = 2.5,C2 = 1.2,γ = 5, t1 = 1.3456 and required
solution has been made using Matlab minimization method.

Now, when we fix the system in absence of differential memory index (see table-3) and allow the integral memory index
then the minimized total average cost gradually decreases with gradually increasing memory effect for shortage started
later (here fort1 = 1.3456 ). But if shortage started quickly (fort1 = 0.3456 ) then we see that the minimized total average
cost becomes maximum atβ = 0.5 then it gradually decreases below and above. In this case the optimal ordering interval
is very low compare to the previous case. If the shortage start later then we see that minimized total average cost is high
in long memory affected system and gradually decreases i.e. profit increases when integral memory increases. In this
case the length of optimal ordering interval is long compare to the quickly shortage starting system but it not highly long
as in the case of long differential memory system. moderate compared the short stock period. Hence, from the concept of
real market of inventory system and mathematical results conclude that for moderate i.e. (here long stock period) stock
period is appropriate for the business.

In Table-4 we have presented the optimal ordering interval and minimized total average cost considering both memory
effects simultaneously. It is clear from the Table-4 that the optimal ordering interval is long for this long memory
affected system. The large optimal ordering interval implies that there may be some demurrage of inventory though the
profit is high. Thus the memory affected model will be more realistic in the range (α,β ∈ [0.6,1.0])In reality if we
consider more memory i.e. previous experiences then system will be disturbed due to its high restriction.

In the next we will investigate the effect of differential memory index on positive inventory level with respect to time.
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Table 4: Optimal ordering intervalT∗
α ,β and minimized total average costTOC∗

α ,β for(a) β = 0.7,0<α ≤ 1,(b)α = 0.7,0<

β ≤ 1

α β T ∗
α ,β TOC∗

α ,β

0.1 0.7 1.0000x104 0.4734

0.2 0.7 1.0000x104 1.6247

0.3 0.7 1.0000x104 4.4020

0.4 0.7 925.7379 9.6625

0.5 0.7 335.5743 18.0839

0.6 0.7 167.6143 30.7290

0.7 0.7 81.9894 48.2179

0.8 0.7 36.2569 69.8566

0.9 0.7 11.2350 91.6450

1.0 0.7 1.9772 102.8469

(a)

α β T ∗
α ,β TOC∗

α ,β

0.7 0.1 1.0000x104 7.0451

0.7 0.2 1.0000x104 7.4491

0.7 0.3 1.0000x104 8.8091

0.7 0.4 1.00000x104 12.9857

0.7 0.5 3.1723x104 24.1489

0.7 0.6 327.3122 37.2889

0.7 0.7 81.9894 48.2179

0.7 0.8 33.8214 56.5084

0.7 0.9 18.8792 62.5678

0.7 1.0 12.7205 66.9596

(b)
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Fig. 2: Positive inventory level versus time-t for different values of α .

c© 2021 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 7, No. 3, 177-190 (2021) / www.naturalspublishing.com/Journals.asp 187

6

Shortage time

4

Total avrage cost for α=0.5 when β=0.5

2

05
Ordering interval-T

10

15

20

30

25

40

45

50

55

35

(a)

5
4

Shortage time

3

Total avrage cost for α=0.5 when β=0.7

2
1

05

10

Ordering interval-T

15

60

50

40

20

30

20

(b)

5
4

Shortage time

3

Total avrage cost for α=0.5 when β=0.9

2
1

05

10

Ordering interval-T

15

40

45

50

30

60

65

55

35

20

(c)

5
4

Shortage time

3

Total avrage cost for α=0.5 when β=1.0

2
1

05

10

Ordering interval-T

15

60

50

55

45

40

35

30

65

20

(d)

5
4

Shortage time

3

Total avrage cost for α=0.7 when β=0.5

2
1

05

10

Ordering interval-T

15

80

70

60

40

50

20

(e)

5
4

Shortage time

3

Total avrage cost for α=0.7 when β=0.7

2
1

05

10

Ordering interval-T

15

60

65

70

75

80

85

55

50
20

(f)

5
4

Shortage time

3

Total avrage cost for α=0.7 when β=0.9

2
1

05

10

Ordering interval-T

15

85

75

80

70

65

60

55

90

20

(g)

6

Shortage time

4

Total avrage cost for α=0.7 when β=1.0

2

05
Ordering interval-T

10

15

20
60

80

85

90

70

75

65

(h)

5
4

Shortage time

3

Total avrage cost for α=0.9 when β=0.5

2
1

05

10

Ordering interval-T

15

85

90

95

100

105

80
20

(i)

5
4

Shortage time

3

Total avrage cost for α=0.9 when β=0.7

2
1

05

10

Ordering interval-T

15

90

95

100

105

110

115

20

(j)

5
4

Shortage time

3

Total avrage cost for α=0.9 when β=0.9

2
1

05

10

Ordering interval-T

15

130

120

110

90

100

20

(k)

5
4

Shortage time

3

Total avrage cost for α=0.9 when β=1.0

2
1

05

10

Ordering interval-T

15

130

120

110

90

100

20

(l)

5
4

Shortage time

3

Total avrage cost for α=1.0 when β=0.5

2
1

05

10

Ordering interval-T

15

115

120

125

100

105

110

20

(m)

5
4

Shortage time

3

Total avrage cost for α=1.0 when β=0.7

2
1

05

10

Ordering interval-T

15

135

120

130

125

115

110

105

20

(n)

5
4

Shortage time

3

Total avrage cost for α=1.0 when β=0.9

2
1

05

10

Ordering interval-T

15

110

100

120

130

140

150

20

(o)

5
4

Shortage time

3

Total avrage cost for α=1.0 when β=1.0

2
1

05

10

Ordering interval-T

15

160

130

150

140

120

110

100

20

(p)

Fig. 3: Total average cost versus ordering interval-T and shortage time-t1 for different values of α,β :(a-d)α = 0.5 and
β = 0.5,0.7,0.9,1.0,(e-h)α = 0.7, and β = 0.5,0.7,0.9,1.0,(i-l) α = 0.9 and β = 0.5,0.7,0.9,1.0,(m-p)α = 1.0, and
β = 0.5,0.7,0.9,1.0.

In figure-2 we have presented the positive inventory level with respect to t different values of the differential memory
index (α ). It is clear from the figure that the positive inventory level changes linearly for low memory affected system
but for long memory system then it initially falls rapidly and then decreases with slow rate

The graphical presentations of total average cost as a function of ordering interval (T ) and shortage time (t1) for different
values of memory indices are presented in figure 3(a− p). It is clear figures that the nature of that total average cost is
monotonic increasing function both the memory effect is high. But with the decrease of memory effect the average cost
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Table 5: Optimal ordering interval and minimized total average cost for α = 0.1 andβ = 1.0

.

Parameter Parameter Change(%) T ∗
α ,β TOC∗

α ,β

P +50% 249.7255 4.5664

10% 183.7947 4.2320

-10% 150.8405 4.0218

-50% 84.9788 3.4339

C3 +50% 167.3164 4.1316

10% 167.3164 4.1316

-10% 167.3164 4.1316

-50% 167.3164 4.1316

γ +50% 167.3164 6.1974

10% 167.3164 4.5447

-10% 167.3164 3.7184

-50% 167.3164 2.0658

t1 +50% 168.7113 3.8707

10% 167.5878 4.0709

-10% 167.0494 4.1982

-50% 166.0350 4.5593

C1 +50% 168.0579 4.1358

10% 167.4647 4.1324

-10% 167.1680 4.1307

-50% 166.5743 4.1273

C2 +50% 111.8959 5.5682

10% 152.2021 4.4345

-10% 185.7889 3.8192

-50% 333.5486 2.4455

function become convex downwards. Hence the total minimized average cost will be minimized for intermediate value of
the ordering interval and shortage time but in other cases the average cost function will be minimum at one end of the
interval.

4.1 Sensitivity analysis

The sensitivity analysis has been performed by changing each of the values of the considered parameter by
+50%,+10%,−10%,−50% into show effects on the optimal ordering interval T ∗

α ,1 and minimized total average cost
TOC∗

α ,1 taking one parametersP,C3,C1,C2,γ, t1 at a time and keeping the remaining parameters fixed. The corresponding
sensitivity estimations are placed in Table- 5 and 6 for the differential memory index α = 0.1&α = 0.9 respectively i.e.
in long memory effect or short memory effect.

It is clear from the Table-5 and Table-6 that in long memory effect shortage cost per unit per unit timeC2 constant
demand rate γare the most sensitive parameters but for low memory affected system the important parameters are per
unit cost (P ) and constant demand rate γ .
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Table 6: Optimal ordering interval and minimized total average cost for α = 0.9 andβ = 1.0

.

Parameter Parameter Change(%) T ∗
α ,β TOC∗

α ,β

P +50% 5.9717 140.4055

10% 4.7268 105.2241

-10% 4.1331 87.3026

-50% 3.0353 50.6686

C3 +50% 4.4270 96.2934

10% 4.4270 96.2934

-10% 4.4270 96.2934

-50% 4.4270 96.2934

γ +50% 4.4270 144.4401

10% 4.4270 105.9227

-10% 4.4270 86.6641

-50% 4.4270 48.1467

t1 +50% 5.4876 96.0662

10% 4.6139 96.1332

-10% 4.2549 96.5165

-50% 3.7372 98.0877

C1 +50% 4.1603 96.8519

10% 4.4646 96.4069

-10% 4.3890 96.1789

-50% 4.2315 95.7104

C2 +50% 3.3274 98.3645

10% 4.1237 96.8128

-10% 4.8004 95.6972

-50% 7.8473 92.0014

5 Conclusion

In this paper, we have developed a fractional order economic order quantity model using the concept of memory
dependency with the assumption that the demand is completely backlogged during the shortage time. To investigate the
memory dependent EOQ model here we have introduced two type memory indexes as (i) differential memory index and
(ii) integral memory index. Presence of differential memory index and in absence of integral memory index, profit
becomes highest in long memory effect but optimal ordering interval is long. So, long memory is not practical in real
life, the business man should consider moderate memory. It is clearly established from the numerical examples that in
presence of integral memory index and in absence of differential memory index the profit gradually increases with
increasing value of the memory effect. The sensitivity analysis shows that the parameter per unit cost of the total order
quantity is the most sensitive parameter for the market studies in low memory effect but in long memory the most
sensitive are parameters are shortage cost per unit and demand rate are the most sensitive parameter. In long memory
effect, profit becomes high compared to the low memory effect.Here, per unit cost is less sensitive in long memory
affected system compare to low memory affected system. Hence, total order quantity needs to be adjusted for short past
experience effect but not for long experience. For future research, the model can be extended for partial backlogging
demand during shortage. This work will help the business policy maker to include the level of past experience in the
marketing system.
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