
Appl. Math. Inf. Sci. 13, No. S1, 337-347 (2019) 337

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/13S137

Improved Hyper Elliptic Curve Cryptography with Hybrid

Bat Algorithm for Tasks Replication to Meet Deadlines in

Clouds

A. Ramathilagam1,∗ and S. Maheswari2

1Department of Computer Science and Engineering, P.S.R.Engineering College, Sivakasi, India
2Department of Computer Science and Engineering, National Engineering College, Kovilpatti, India

Received: 2 Mar. 2019, Revised: 2 May 2019, Accepted: 11 May 2019

Published online: 1 Aug. 2019

Abstract: This current work proposes a Hybrid Bat and Differential Evolution Algorithm (HBDEA) based on IaaS Cloud Partial

Critical Path (IC-PCP) Replication and Improved Hyper Elliptic Curve Cryptography (HBDEAIPR with IHECC). The proposed

HBDEAIPR algorithm applies a deadline constraint and a variable budget for replication to achieve its goals. Proposed Enhanced

IC-PCP with Replication (EIPR) algorithm is increasing the likelihood of completing the execution of a scientific workflow application
within a user-defined deadline in a public Cloud environment. The proposed HBDEA algorithm determines the parameters of tasks are

the early start time and latest finish time to replicate workflow tasks to mitigate effects of performance variation of resources so that

soft deadlines can be met. The proposed HBDEAIPR approach is verified by developing a IHECC system which authenticates the user

not only based on task deadlines. Also, it uses secret-key and encrypted value for genuine users authentication in CC environment.

Simulation experiments with well-known scientific workflow show that the proposed HBDEAIPR approach increases the likelihood of

deadlines being met and reduces the total execution time of applications as the budget available for replication increases.

Keywords: Cloud computing, Scientific workflows, task Replication, soft Deadline, bat algorithm, hybrid hyper elliptic curve

cryptography

1 Introduction

Scientific workflows are described as Direct Acyclic
Graphs (DAG) whose nodes represent tasks and vertices
represent dependencies among tasks. Because a single
workflow can contain hundreds or thousands of tasks [1],
this type of application can benefit large-scale
infrastructures. Among such infrastructures, over the past
decade, advances in commodity computing and
virtualization technologies have enabled the cost-effective
realization of large-scale data centers that run large
portion of today’s Internet applications and backend
processing. The economies of scale that arose allowed
data center infrastructure to be leased profitably to third
parties. Cloud Computing (CC) [2]-[5], quantum
computing [6]-[12], neural computing [10,11] and DNA
computing [13,14] are different ways of computations.
Thus emerged the Cloud Computing (CC) paradigm,
where in a pool of computing resources is shared between
applications that are accessed over the Internet. CC has

become a broad and popular term and applications, used
not only by the technology community but the general
public as well. It refers to applications delivered over the
Internet, as well to hardware and system software residing
in data centers that host those applications.

Research related to different aspects of CC has
accelerated steadily over the last three to five years;
workshops and conferences have been held and delivered
and an increasing number of publications are being
produced. General introductions into the field and its
research challenges have been studied in [15]-[16]. In the
recent work [17] discusses resource management
challenges and techniques with the perspective of VMwar
offerings. A topic that is receiving considerable attention
is data center networking, which has been surveyed in the
recent works [18]-[19]. This is because these
infrastructures are available in a pay-per-use system and
can provide dynamic scaling in response to the needs of
the application (a propriety known as elasticity).
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Therefore, resources for execution of the workflow can be
provisioned on demand, and their number can be
increased if there are enough budgets to support it. This
Cloud utilization model, where users obtain hardware
resources such as Virtual Machines (VMs), where they
deploy their own applications, it is called Infrastructure as
a Service IaaS.

These capabilities of clouds make them a suitable
platform to host deadline-constrained scientific
workflows. In this class of workflows, a specific soft
deadline for completion of the workflow is assigned,
along with the workflow specification, during the
application submission. A soft deadline is a deadline that,
when unmet, does not render the computation useless
[16]. Thus, although the maximal value of the
computation is achieved when the deadline is met,
investment is not lost if the deadline is missed by small
margins.

As the execution of the workflow in the cloud incurs
financial cost, the workflow may also be subject to a
budget constraint. Although the budget constraint of a
workflow may be a limiting factor. Its structure also
imposes a significant limitation. This is because
dependencies among task and the number of tasks ready
for execution in a given time may limit the amount of
resources being used in parallel for executing the
workflow. Because cloud resource providers charge
resource utilization by integer time intervals, such a
limitation in the workflow scalability causes situations
where cloud resources are available (i.e., their allocation
time interval is paid and there are still time before it
expires) but no task is ready to be executed.

Workflow scheduling is one of the task in the CC. It
tries to map the workflow tasks to the VMs based on
different functional and non-functional requirements [20].
A workflow consists of a series of interdependent tasks,
which are bounded together through data or functional
dependencies. These dependencies should be considered
in the scheduling [21]. However, workflow scheduling in
the cloud computing is a NP-hard optimization problem
and it is difficult to achieve an optimal schedule. Because
there are numerous VMs in a cloud and many user tasks
should be scheduled by considering various scheduling
objectives and factors.

The common objective of the workflow scheduling
technique is to minimize the makespan by the proper
allocation of the tasks to the virtual resources [22]-[23].
For example, a scheduling scheme may try to support the
promised Service Level Agreements (SLAs), the user
specified deadlines and cost constraints. Also, scheduling
solutions may consider factors such as resource
utilization, load balancing and availability of the cloud
resources and services in the scheduling decisions
[24]-[25].

A critical challenge in integrating workflow systems
with resource provisioning technologies is to determine
the right amount of resources required for the execution
of workflows. The resource capacity affects the total

execution time of application workflow and determines
the financial cost. Then, an efficient scheduling algorithm
is required to optimally dispatch tasks to the cloud
resources. It consists of taking the decision for mapping
tasks to computing resources by optimizing performance
metrics such as time and cost execution. These resources
are in units of Virtual Machines (VMs) instances.

Task scheduling is a NP-complete problem in the
general form. So, various approaches based on heuristics
have been proposed for scheduling workflows [26]-[27].
Nevertheless, this problem is still an open research
challenge and requires some efforts to reach an optimum
solution. Each approach takes into account some metrics
to ensure resources provisioning. However, they
implement limited contingency strategies to correct
delays caused by underestimation of tasks execution time
and inefficient management of cloud resources with
less-quality cloud applications. In order to overcome the
above mentioned problems, this research work presents a
new cloud resource management approach which is not
only automate the selection of an appropriate cloud but
also implements dynamic resource allocation. This work
proposes a Hybrid Bat and Differential Evolution
Algorithm (HBDEA) based on IaaS Cloud Partial Critical
Path (IC-PCP) Replication and Improved Hyper Elliptic
Curve Cryptography (HBDEAIPR with IHECC).

2 Literature Review

The resources allocation problem for workflow
applications is one of the most difficult challenges in the
cloud. In fact, the type and the number of allocated
resources affect the execution time of workflow and
determine the financial cost. Many researchers have come
up with new ways to face this challenge:

Caron et al.(2012) [27], presented two original
allocation strategies for non-deterministic workflows in
the cloud computing under budget constraints. The
proposed approach consists in transforming the
scheduling problem into a set of smaller and well studied
sub-problems. Concretely, it decomposes the
non-deterministic workflow in input into a set of
deterministic sub-workflows.

Jianfang et. al [28] proposed to solve the problems of
security threats on workflow scheduling in the cloud. It
consists in quantizing the security of tasks and VMs in
the cloud workflow scheduling and quantizing the users
satisfaction degree to tasks assigned to VMs. Then, it
establishes a scheduling model considering security,
completion time and cost in the cloud workflow
scheduling.

Varalakshmi et al. [29] proposed an Optimal
Workflow based Scheduling (OWS) algorithm for
scheduling workflows in the cloud. First, the Resource
discovery algorithm, indexes all the resources and this
helps in locating the free resources. Second, the
scheduling algorithm that takes user specified QoS
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parameters (execution time, reliability, monetary cost
etc.) as a key factor used for scheduling workflows. Using
a special metric called the QoS heuristic, the sub-task
cluster is assigned to its optimal resource. Third, in case
that resources are not available for allocating to a task,
compaction is performed. By using this, a significant
improvement in CPU utilization is achieved in CC
environment.The approaches already stated are not able to
exploit the elasticity of resources offered by the cloud. In
fact, the selection of resources is determined before
applications start. Although, there may be variations in
the cloud environment during the workflow execution
such as the unavailability of resources, the change of
communication time between resources and so on. Thus,
a dynamic mode is needed for scheduling workflow
activities in the cloud.

Nagavaram et al. [30] used a time constraint to drive
the resources allocation. The main idea in this module is
as follows. First parallelize the search method used in this
algorithm. Next, create a flexible workflow using the
Pegasus Workflow Management System. Finally, they add
a new dynamic resource allocation module, which can use
a fewer or a larger number of resources based on a time
constraint specified by the user. Evaluate proposed
implementation using several different datasets, and show
that the application scales quite well, and that the
dynamic framework is effective in meeting time
constraints.

Rahman et al. [31] presented an Adaptive Hybrid
Heuristic (AHH) for workflow scheduling in hybrid cloud
environment. AHH is not only capable of adapting to
changes in the cloud but also able to meet user’s budget
and deadline. It is designed to first generate a
task-to-resource mapping with minimum execution cost
using Genetic Algorithm (GA) within user?s budget and
deadline. This initial schedule is then utilized to distribute
the workflow-level budget and deadline to task levels.
Finally, the Dynamic Critical Path (DCP) heuristic is
employed to dynamically schedule the ready tasks
level-by-level based on the initial schedule, budget and
deadline constraints, as well as changed status of
resources.

Pandey et al. [32] presented a Particle Swarm
Optimization (PSO) based heuristic to schedule
applications to cloud resources that takes into account
both computation cost and data transmission cost.
Experiment with a workflow application by varying its
computation and communication costs. Compare the cost
savings when using PSO and existing Best Resource
Selection (BRS) algorithm. The results show that PSO
can achieve: a) as much as three times cost savings as
compared to BRS, and b) a good distribution of workload
onto resources. Additionally, when the remote resource
management systems are not able to allocate a task to the
resources due to the resource unavailability, the
recomputation of the PSO makes the heuristic
dynamically balance other tasks’ mappings.

Verma and Kaushal [33] presented Budget

Constrained Priority based Genetic Algorithm (BCPGA)
to optimize the execution cost and data transfer cost with
a budget constraint. Each workflow’s task is the assigned
priority using bottom level (b-level) and top level
(t-level). BCPGA, at first, calculates the b-level and
t-level of all workflow tasks and creates the initial
population which for all individuals the priority of each
task is set equal to the total of its b-level. Then, all the
tasks are assigned to the available VMs with their priority.
While termination criteria are not met, BCPGA evaluates
the fitness of the individual in the population, afterwards
it applies the selection operator to select the parent. Then,
it applies the crossover operator on the selected parent
using crossover probability to create the children and
applies the mutation operator on the newly created
children. Then, it validates each child according to the
fitness function. Finally, it adds the valid child to create
the new population.

Liu et al. [34] presented a novel
compromised-time-cost scheduling algorithm which
considers the characteristics of cloud computing to
accommodate instance-intensive cost-constrained
workflows by compromising execution time and cost with
user input enabled on the fly. The simulation performed
demonstrates that the algorithm can cut down the mean
execution cost by over 15% whilst meeting the
user-designated deadline or shorten the mean execution
time by over 20% within the user-designated execution
cost.

Yassa et al. [35] combined the Ant colony and
Max-min algorithm and focuses on total processing time
and cost. They tried to balance the total system load and
minimize the total makespan. In the Max-min algorithm,
large tasks have higher priority than smaller ones. This
scheme reduces the waiting time of the short jobs by
assigning large tasks to the slower resources. Thus, small
tasks are executed concurrently on the fastest resource to
finish large number of tasks during finalizing at least one
large task on the slower resource. In max min, if it cannot
execute the tasks concurrently, makespan becomes larger.
To overcome such limitations, a new modification is
applied for the Max-min scheduling algorithm. This
approach improves the total cost and time factor and is
only concerned with the number of the resources and
tasks. Improved max min provides an optimal solution
during the preliminary stage. Furthermore, during the
starting stage of ant algorithm, the searching speed is very
slow for the lacking of pheromones, but after the
pheromones reach a certain degree, the speed of the
optimal solution improves quickly.

Byun et al. [36] proposed the Partitioned Balanced
Time Scheduling (PBTS) algorithm for cost-optimized
and deadline-constrained execution of the workflow
applications on Clouds. The PBTS algorithm considers
only one type of cloud resource, chosen a priori, for its
provisioning and scheduling decision. Abrishami et al.
[37] proposed two algorithms for cost-optimized,
deadline-constrained execution of workflows in clouds.
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These algorithms do not consider all the data transfer
times during provisioning and scheduling, increasing the
execution budget. Proposed algorithm is based on one of
such algorithms (called IC-PCP), but also accounts for
data transfer times and Cloud resources boot time during
the provisioning and scheduling process. Furthermore, it
explores possibility of tasks replication to increase the
probability of meeting application’s deadlines.

3 Applications and System model

Consider workflow applications composed of dependent
tasks and modelled as Directed Acyclic Graphs (DAGs),
where each task can only start its execution after all its
predecessors have finished and the data have been
transferred to the machine where it is scheduled to
execute. Each workflow task has a computational demand
associated, which is translated into how long it takes to
run according to the Central Processing Unit (CPU)
capacity of each VM. Also, the data transmission between
two tasks occurs in the network that connects the VMs
where these two tasks are scheduled. If they are scheduled
to the same VM, the data transmission time between them
is zero. During the workflow execution, the necessary
data to each task can be kept into the storage available in
the VM where the task is running, or it can be stored in
extra storage from rented storage facilities. While the
VM-storage cost is included in the VM price, the extra
storage is charged independently. Moreover, this extra
storage is deployed over the network, and therefore there
exists a maximum transfer speed from this storage to the
VM where the task is being run.

A scientific workflow application is modelled as a
DAG G =(T,ET ) , where T is the set of tasks that
compose the workflow and ET is the set of dependencies
between tasks. Dependencies are in the form of edges
e(i, j)=(ti, t j), ti,t j εT, that establish a task t j that depends
on the data generated by ti for its execution, and therefore
t j cannot start before the execution of ti completes and
data generated by the latter is transferred to the location
where t j will be executed. Task ti is a parent task of t j and
t j is a child task of ti. Tasks without parents are called
entry tasks and tasks without children are called exit
tasks. For the correct operation of the proposed algorithm,
assume that a workflow can have only one entry task and
one exit task. This can be achieved with the insertion of
dummy tasks tentry and texit that have execution time
equals to 0. All the actual entry tasks are children of tentry

and all the actual exit tasks are parents of texit . The sets of
parents and children of a task t j are given respectively by
functions parents(t j) and children(t j). Each workflow G
has a soft deadline dl(G) associated to it. It determines the
time to complete its execution, counted from the moment
it is submitted to the workflow scheduler. The latter
manages the execution of the workflow, makes decision
on allocation of Virtual Machines (VMs), and schedules
and dispatches tasks for execution in the Cloud. Cloud
provider offers a set of n VM types denoted by
−−→
VM=vm1, ...,vmn. Each VM type offers different amount
of resources, and incurs a different cost per use. Let
−→
C =c1,c2, ...,cnbe the cost vector associated with the use
of each VM. VMs are charged per integer amount of time

units, and partial utilization of a time period incurs charge
for the whole period. Therefore, if the time period is one
hour, utilization of a VM per 61 minutes incurs in the
payment of two hours. There is no limit imposed on the
number of VMs of each type that can be running in any
moment for execution of the workflow.

Runtime of each task is defined in the runtime matrix
R. An element r jk of R specifies the estimated runtime of
task t j in A VM of typevmk. The minimum runtime
Rmin(ti) of a task ti is the smallest runtime for such a task
in the matrixR. Notice that rentryk= rexitk= 0 for all k.
Tasks cannot be pre-empted or check pointed. Therefore,
if the execution of a task fails or if a task is cancelled by
the scheduler, it has to be restarted. Each edge e(i, j) of G
has an associated data transfer time D(i,j). This is the
amount of time required to transfer the data required by
the non-entry and non-exit task t j from the VM where ti is
running to the VM where t j is running. Notice that, if
both ti and t j are running on the same VM, D(i,j)=0. The
existence of data transfer time among different VMs
implies that, for each task t j to be executed in a given
VM, vmk is deployed before the data transfer from
parents of t j start, and is decommissioned after all the
data transfers to its children are completed.

Important parameters of tasks are the early start time
(est) and latest finish time (lft). The former represents the
earliest time a task is able to start, which happens when
all its parent tasks finish as early as possible and the latter
represents the latest time a task can finish without missing
the deadline, which happens when all the children of a
task are executed as late as possible. Formally, est and lft
are defined as:

est(t j) =

{

0, if t j = tentrymaxtaε parents(t j )
(est(ta)+Rmin(ta)+D(ea, j))

otherwise
(1)

i f t(t j) =

{

dl(G), if t j = texit maxtsεchildren(t j )
(l f t(ts)−Rmin(ts)+D(e j,s))

otherwise
(2)

The schedule time st(t j) of a task t j is the time on which
the task has been scheduled for execution. This parameter
is defined during the scheduling process, and can assume
any value between est(t j) and l f t(t j). For this problem to
be solved, three sub-problems have to be solved, namely
provisioning, scheduling and authentication. The
provisioning problem consists in the determination of the
optimal number and type of VMs that can complete the
workflow within its deadline. The scheduling problem
consists in the determination of the placement and order
of execution of the different tasks that compose the
workflow in the VMs selected during the provisioning
stage. The provisioning, scheduling and authentication
problems are interconnected, as a different decision in
types and number of machines may result in a different
scheduling of tasks. Analyzing the security models are
used for the interfaces of the cloud provider.

4 Methodology

Utilization of the runtime matrix R in the model implies a
known a stable execution time for each task that
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composes the workflow. Similarly, the data transfer time
function D assumes a stable data transfer time between
VMs considers the workflow and cloud VM model. In
this research, a more efficient scheduling and
provisioning can be achieved if both problems are solved
as one rather than independently. Among the existing
approaches for combined provisioning and scheduling of
workflow applications in public cloud environments, the
IaaS Cloud Partial Critical Path (IC-PCP) algorithm [38]
works with the closest assumptions to the system and
application models. In the IC-PCP algorithm the
estimation of the time to complete the data transfer time
for each task in the VM becomes difficult if the number of
tasks become high and still computational complexity is a
main issue. The Enhanced IC-PCP with Replication
(EIPR) algorithm also enables the provisioning of more
VMs than the required for the execution of the workflow
within the deadline to further increase the likelihood of
deadline meeting. This is achieved with the enhancement
of the model described in the previous section with the
maximum number of replicas allowed for a single task
and the replication budget rb(G), which defines the
amount, in relation to the estimated cost of executing the
workflow determined during the original provisioning and
scheduling, that can be used to provision extra VMs to
enable further tasks replication. Notice that, if rb(G)= 0,
only opportunistic replication caused by idle time slots is
applied, and therefore the algorithm operates like existing
cost minimization approaches [39] with the advantage of
opportunistic tasks replication.

To handle resource provisioning problem, the
objective function (1) (2), the early start time (est) and
latest finish time (lft) is computed via the use of the
optimization algorithm. The major aim of the proposed
Hybrid Bat and Differential Evolution Algorithm
(HBDEA) with IHECC is not only solving resource
provisioning problem in scientific workflow application
within a user-defined deadline but also offering higher
level of security for each cloud users with an optimal
performance analysis, with the use of task replication.
The proposed HBDEAIPR with IHECC algorithm applies
a deadline constraint, higher level of security and variable
budget for task replication to achieve its goals. The
proposed HBDEAIPR is focused on producing the
effective resources and allocates the tasks optimally by
generating the fitness values. The resource management
has been done optimally by means of superior QoS
parameters. Figure 1 shows the overall working procedure
of the proposed HBDEAIPR system. In a high level, the
proposed algorithm performs three distinct steps:
Step 1: Combined provisioned of cloud resources
Step 2: Cloud resources management using the HBDEA

and task scheduling
Step 3: Data transfer-aware provisioning adjusts
Step 4: Task replication

Step 4.1: Authentication for each nodes
Step 4.2: Grouping of tasks

Fig. 1: Overall architecture of the proposed HBDEAIPR system.

Step 4.3: Filter genuine nodes
Step 5: Optimal task replication

4.1 Combined Provisioning and Scheduling

The first step of the EIPR algorithm consists in the
determination of the number and type of VMs to be used
for workflow execution as well as start and finish time of
each VM (provisioning) and the determination of
ordering and placement of tasks on such allocated
resources (scheduling). The provisioning and scheduling
problems are closely related, because the availability of
VMs affects the scheduling, and the scheduling affects
finish time of virtual VMs. Therefore, a more efficient
scheduling and provisioning can be achieved if both
problems are solved as one rather than independently.
Among the existing approaches for combined provisioned
and scheduling of workflow applications in public Cloud
environments, the IC-PCP (IaaS Cloud Partial Critical
Path) algorithm [40] works with the closest assumptions
to the system and application models described in the
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recent work.
The IC-PCP algorithm disregards deployment and

boot time of virtual machines, by assuming that the
earliest start time of the entry task is 0. However, virtual
machines provisioned from public Cloud providers are
not immediately available for task execution; VMs need
to be properly initialized and this time is not negligible.
To better model effects of such non-negligible
deployment and boot times of virtual machines in the
workflow scheduling process, the EIPR algorithm assigns
the average boot time of virtual machines, rather than 0,
to est(tentry), and st(tentry) before calculating est and l f t

of each task.

4.2 Hybrid Bat and Differential Evolution

Algorithm (HBDEA)

In the resource provisioning problem in PCP, the
objective function (1) (2), the early start time (est) and
latest finish time (lft) are calculated using the HBDEA
algorithm. The Bat algorithm [41] exploits the so-called
echolocation of the bats. Each bat is considered as the
number of tasks in a workflow G. The bats use sonar
echoes to search early start time (est) and latest finish
time (lft) for the execution of a task in a workflow G in
the Cloud on or before dl(G) and avoid obstacles. There
happens a special dancing behavior of the bees [42]-[44]
during the search for early start time (est) and latest finish
time (lft) for the execution of a task in a workflow G in
the Cloud on or before dl(G). It is generally known that
sound pulses of the executed tasks are transformed into a
frequency which reflects from obstacles. The bats
navigate from one VM to another VM to search early start
time (est) and latest finish time (lft) by using the time
delay from emission to reflection. The pulse rate is
usually defined as 10 to 20 times per second. The bats are
using wavelengths that vary in the range from 0.7 to 17
mm. To implement the HBDEA based resource
provisioning algorithm, the pulse frequency and the rate
have to be defined based on the est and lft time of the
task. The pulse rate of each task can be simply
determined in the range from 0 to 1, where 0 means that
there is no emission and 1 means that the bats emitting is
their maximum [45]-[47]. The bat algorithm used three
generalized rules for solving resource provisioning
problem in CC are described as follows:

1.All the bats use an echolocation to sense the
distance which finds the est and lft time of the task, they
also guess the difference between the food/prey and
background barriers in a somewhat magical way.

2.When searching for their prey, the tasks (bats)
fly randomly with velocity vi at position xi with fixed
frequency fmin, varying wavelength λ and loudness A0.
They can automatically adjust the wavelength (or
frequency) of their emitted pulses and adjust the rate of
pulse emission rε [0,1], depending on the proximity of

their target.
3.Although the loudness can vary in many ways,

we assume that it varies from a large (positive) A0 to a
minimum constant value Amin. Step 1: Objective function
f(x), x=(x1, ...,xd)

T

Step 2:Initialize the number of task in the bat population
xi and vi for i = 1 : n
Step 3: Define pulse frequency fi at xi

Step 4:Initialize pulse rates ri and the loudness Ai

Step 5: t < Tmax // number of iterations
Step 6:Produce new solutions by adjusting frequency and
updating velocities and locations/solutions
Step 7: Generate a new solution by flying randomly
if rand(0,1)< Ai and f (xi)< f (x))
Accept the new solutions
Increase ri and reduce Ai

endif

Rank the est, lft, and st of all tasks affected by the
scheduling of the PCP and find the current best est, lft,
and st results for all tasks
end
Step 8:Post-process results and visualization

The original BA is illustrated in Algorithm 1. In this
algorithm, the bat behaviour is captured into the fitness
function from equation (1-2) of the problem to be solved.
It consists of the following components:

–Initialization of number of tasks running in the
workflow initialization (lines 2-4),

–Generation of new est, lft, and st solutions for all tasks
(lines 6-7),

–Local search (lines 8-11),
–Generation of a new est, lft, and st solution by flying
randomly (lines 12-16)

–Find the current best results of est, lft, and st for all
tasks

Initialization of the task running in the workflow
application as bat population is performed randomly.
Generating new solutions is performed by moving virtual
bats from one VM to another VM according to the
following equations:

Qt
i = Qmin +(Qmax −Qmin)U(0,1) (3)

vt+1
i = vt

i +(xt
i − best)Q

(t)
i (4)

x
(t+1)
i = x

(t)
i + v

(t)
i (5)

where U(0, 1) is a uniform distribution. A random walk
with direct exploitation is used for the local search that
modifies the current best est, lft, and st solution according
to equation:

x(t) = best + εA
(t)
i (2U(0,1)− 1) (6)

where ε is the scaling factor, and A
(t)
i the loudness. The

local search is launched with the proximity depending on

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. S1, 337-347 (2019) / www.naturalspublishing.com/Journals.asp 343

pulse rate ri . The rate of pulse emission ri increases and
the loudness Ai decreases depending on the est, l f t, and
st solution. Mathematically, these characteristics are
captured with the following equations:

A
(t+1)
i = αA

(t)
i ,r

(t)
i = r

(0)
i [1− exp(−γε)] (7)

where α and γ are constants. Differential Evaluation (DE)
optimizes a resource provisioning local optima problem
by maintaining a task of candidate results and creates new
candidate results by combining the existing task time
results according to its simple formulae, and then keeping
whichever candidate solution has the fitness on the
optimization problem. DE supports a differential
mutation, a differential crossover and a differential
selection. In particular, the differential mutation randomly
selects two tasks resource provisioning results and adds a
scaled difference between these to the third solution. This
mutation can be expressed as follows:

u
(t)
i = wr0

+F.(w
(t)
r1 −w

(t)
r2 , f ori = 1, ...,NP (8)

where F ε [0.1, 1.0] denotes the scaling factor as a
positive real number that scales the rate of modification,
while r0, r1, r2 are randomly selected vectors in the
interval 1 . . . NP. The trial vector is built out of parameter
values copied from two different solutions.
Mathematically, this crossover can be expressed as
follows

Zi, j =

{

u
(t)
i, j rand j(0,1)≤CRV j = jrand

w
(t)
i, j otherwise

(9)

where CR ε [0.0,1.0] controls the fraction of parameters
that are copied to the trial solution. Note that, the relation
j = jrand assures that the trial vector is different from the
original solution Y(t). Mathematically, differential
selection can be expressed as follows:

w
(t+1)
i =

{

Z
(t)
i i f f (Z(t))≤ f (Y t

i )

w
(t)
i, j otherwise

(10)

In the technical sense, the crossover and mutation can be
performed in many ways in DE.

Step1: Objective function f(x), x=(x1, ...,xd)
T

Step2: Initialize the number of tasks in the bat population
xi and vi for i = 1 : n

Step3: Define pulse frequency fi at xi

Step4: Initialize pulse rates ri and the loudness Ai

While t < Tmax // number of iterations
Produce new est, lft, and st for all tasks by adjusting
frequency and updating velocities and locations/solutions
if rand(0,1)> ri

Alter the est, lft, and st for all tasks using differential
evaluators operations in Eqs. (6) and (8)
endif Generate a new solution by flying randomly
if (rand(0,1)< Ai and f (xi)< f (x))
Accept the new solutions

Increase ri and reduce Ai

endif

Rank the est, lft, and st of all tasks affected by the
scheduling of the PCP and find the current best est, lft,
and st results for all tasks
end

Step5: Post-process results and visualization.

4.3 Data-Transfer Aware Provisioning Adjust

The combined provisioning and scheduling detailed in the
previous section does not dictate the start and stop times
of VMs. To determine both values, the algorithm has to
consider not only start and end time of scheduled tasks,
but also the data transfers to the first scheduled task and
from the last scheduled task. If the first scheduled task in
a VM is not an entry task, data from parent tasks have to
be moved to the virtual machine before the task can run,
and thus, the VM needs to be provisioned before the start
time of its first task. This affects the start time of tasks
and the total provisioning time of the VM, and may cause
workflow execution delay and execution of VMs for an
extra billing period. For each non-entry task scheduled as
first task of a virtual machine, and for each non-exit task
scheduled as the last task of a virtual machine, the
algorithm meets the required communication time by
setting the start time of the machine D(i,j) earlier than st
of the first task, and/or setting the end time of the machine
D(i,j) later than the finish time of the last task, depending
on where the extra time is required. Finally, the beginning
of the first allocation slot of each virtual machine is
anticipated by the estimated deployment and boot time
for virtual machines, which was accounted for during the
scheduling process.

4.4 Authentication of task and resources using

Improved Hyper Elliptic Curve Cryptography

(IHECC)

In this research, IHECC method is applied for ensuring
higher security. The hyper elliptic curves [48] achieve the
better security level with a smaller key length as
compared to cryptosystems using elliptic curves. Hyper
elliptic curves are the basis for a relative new class of
public-key schemes. It is thus of great interest to develop
algorithms, which allow efficient implementations of
elliptic and hyper elliptic curve cryptosystem. In this
research, multiple clouds ensure the security to protect the
task replication. Each node in the tasks is authenticated
and ensuring that appropriate policies are enforced for
data sharing. The HECC have qg points on it, where q
denotes the number of elements in the field of definition
of the Jacobian. By choosing HECC this research can
achieve the same order of magnitude of the group order
with a smaller value of q when compared with elliptic
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curves. On the other hand, the group operation is much
more cumbersome in HECC than in normal elliptic
curves. A hyper elliptic curve C of genus g defined over a
field Fq of characteristic p is given by an equation of form

Y 2 + h(x)y = f (x) (11)

where f(x) is a monic polynomial of Fq[x] of degree
2g+ 1 and h(x) is a polynomial over Fq[x] of deg h≤g. A
point on curve C is denoted by P = (x,y), and its inverse
is defined as P = (x,y,h(x)). Call a point P that satisfies P
= P a ramification point. In contrast to ECC, points on a
hyper elliptic curve do not form a group. Rather than
points, divisors are deployed. A divisor D is a formal sum
of points ∑miPi, where miεZ .The degree of a divisor D is
defined as ∑mi.The jacobian variety Jc(Fq) is defined by
the quotient group D0/P ,where D0 is the divisor of the
degree 0 and P is the principal divisor. The principal
divisor is the divisor of a rational function on C which is a
finite formal sum of the zeros and poles. A semi-reduced
divisor can be expressed by two polynomials (u,v) of
Fq[x].

u(x) = πi(x−xi)
mi ,v(xi) = yi,degv < degu,v2 +hv− f ≡ 0modu

(12)

If degu ≤ g then the semi-reduced divisor is referred to as
a reduced divisor. Elements in Jc(Fq) are uniquely
identified as reduced divisors. In order to improve the
security of the task and resources management in the
cloud computing model, new divisors are introduced to
this work. Let D1 = (u1,v1), D2 = (u2,v2) be reduced
divisors of the Jacobian Jc(F2n). Denote by D3 the
addition of D1 +D2.

The data centers also have the responsibility of
security of data. The IHECC is used for security which
decides the access right for other people. In this
technique, the service provider site is only responsible for
the search operation, all other responsibilities are taken by
the data owner. The responsibility of cloud provider is
provides a security to client. And the tasks are
authenticated before its replication then the optimal task
is allocated.

4.5 Task Replication with Security

The aforementioned corrections enable virtual machines
to be ready to receive data and tasks in the moment that
they are required to meet times estimated during the
scheduling process. However, it does not account for
delays in the tasks execution caused by poor performance
of public cloud resources. IPR tries to mitigate such
effects with the utilization of task replication in idle slots
of provisioned VMs or on new VMs allocated for
enabling extra replication (if the replication budget
allows). Notice that, because the goal of this replication is
increasing the performance rather than fault tolerance,
space replication is the target of IPR. Therefore, tasks are

only replicated on different VMs, oppositely to a time
replication approach where the same task could be
scheduled multiple times in a single VM to increase
fault-tolerance.

5 Performance Evaluation

In this section, describe the experiments conducted to
evaluate the EIPR, Enhanced Artificial Bee Colony
(ABC) based IaaS Cloud Partial Critical Path (IC-PCP)
with Replication algorithm known as EAIPR , Enhanced
Artificial Fish Swarm Algorithm (AFSA) based IaaS
Cloud Partial Critical Path (IC-PCP) Replication
(EAFSAIPR) and proposed HBDEAIPR algorithm .
Experiments were conducted with the CloudSim toolkit
[36]. The simulation testbed consists of a data center
containing 500 hosts. Each host has 256 GB of RAM and
8 cores. The data center models Amazon AWS EC2
standard instance types, and the parameters relevant for
the experiments are presented in Table 1. The billing
period is 60 minutes. Table 1 and 2 shows the average

Table 1: VM Types Used in the Experiments

Type Memory Core Speed Cores Cost

(GB) (ECU) ($)

m1.small 1.7 1 1 0.06

m1.medium 3.75 2 1 0.12

m1.large 7.5 2 2 0.24

m1.xlarge 15 2 4 0.48

cost (U$) of Workflows Execution. Standard Deviation
for Each Case Is Presented in Parenthesis. Utilization of
the resources under different algorithms with their Policy
is also discussed in this table. The Budget on EIPR
represents the Extra Budget Available for Replication, in
Relation to the Amount Spent before the Replication.
Four workflow applications are used in these tests. They
are Montage (generation of sky mosaics), CyberShake
(earthquake risk characterization), LIGO (detection of
gravitational waves), and SIPHT (bioinformatics). These
applications were characterized in [49]. Figure 2 presents
the normalized execution time.

The average values observed for 50 executions are
presented along with the standard deviation (in
parenthesis). In most scenarios, HBDEAIPR significantly
reduces the execution time of applications compared to
EAIPR, EIPR and IC-PCP are illustrated in Figure 2. The
proposed HBDEAIPR method provides optimal task
replication with higher level of security. Utilization of
opportunistic replication (i.e., utilization of the available
gaps in the allocated VMs, without deployment of extra
VMs) introduces, in most cases, performance
improvements in the application execution times.
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Fig. 2: Execution time vs. different application sizes.

6 Perspective

Previous research in workflow scheduling in the context
of Clusters and Grids usually ignore costs related to
utilization of the infrastructure, and also have limitations
in the capacity of taking advantage of elastic
infrastructures. Existing research in execution of scientific
workflows in Clouds either tries to minimize the
workflow execution time ignoring deadlines and budgets
or focus on the minimization of cost while trying to meet

the application’s deadline. To address limitations of
previous research, propose a Hybrid Bat and Differential
Evolution Algorithm (HBDEA) based IaaS Cloud Partial
Critical Path (IC-PCP) algorithm that uses idle time of
provisioned resources to replicate workflow tasks to
mitigate effects of performance variation of resources so
that soft deadlines can be met. Hybrid Bat and
Differential Evolution Algorithm (HBDEA) based IaaS
Cloud Partial Critical Path (IC-PCP) Replication and
Improved Hyper Elliptic Curve Cryptography
(HBDEAIPR with IHECC). In this research, IHECC
method is applied for ensuring higher security. Curves are
the basis for a relative new class of public-key schemes. It
is thus of great interest to develop algorithms which allow
efficient implementations of elliptic and hyper elliptic
curve cryptosystem. In this research, multiple clouds
ensure the security to protect the task replication. To
reduce the impact of performance variation of public
Cloud resources in the deadlines of workflows, proposed
a new algorithm, called EIPR, which takes into
consideration the behavior of Cloud resources during the
scheduling process and also applies replication of tasks to
increase the chance of meeting application’s deadlines.
Future work will increase the capabilities of the EIPR
algorithm by enabling replication of tasks across multiple
Clouds. Another point that can be further explored is a
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new criteria for ranking candidate tasks for replication
and also workflow structure-aware scheduling of replicas,
where the structure of the workflow application is
considered not only during the selection of candidates for
replication but also during the replica′s scheduling. Also
investigate how the replication-based approach can be
used when the provisioning and scheduling process is
performed for multiple workflows whose requests arrive
at different rates.

References

[1] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G.

Mehta, and K. Vahi,Characterizing and Profiling Scientific

Workflows 29, 682-692 (2013).

[2] Y.Duan, G. Fu, N. Zhou, X. Sun, N. Narendra, B. Hu,

Everything as a Service (XaaS) on the Cloud: Origins,

Current and Future Trends, 2015 IEEE 8th International
Conference on Cloud Computing. IEEE, ISBN 978-1-4673-

7287-9, pp. 621628, 2015 doi:10.1109/CLOUD.2015.88.

[3] G. von Laszewski, J. Diaz, F. Wang and G. C. Fox,

Comparison of Multiple Cloud Frameworks, 2012 IEEE Fifth

International Conference on Cloud Computing, Honolulu,

HI, pp. 734-741, 2012, doi: 10.1109/CLOUD.2012.104
[4] S.He, L. Guo, Y. Guo, M. Ghanem, Improving Resource

Utilisation in the Cloud Environment Using Multivariate

Probabilistic Models, 2012 2012 IEEE 5th International

Conference on Cloud Computing (CLOUD). pp. 574581,

2012

[5] M. Mao, M. Humphrey, A Performance Study on the
VM Startup Time in the Cloud, Proceedings of 2012

IEEE 5th International Conference on Cloud Computing

(Cloud2012), pp. 423, ISBN 978-1-4673-2892-0, 2012,

doi:10.1109/CLOUD.2012.103.

[6] M. Abdel-Aty, Quantum information entropy and multi-qubit

entanglement, Progress in Quantum Electronics, 31(1), pp. 1-
49, 2007

[7] M. Abdel-Aty, An investigation of entanglement

and quasiprobability distribution in a generalized

JaynesCummings model, Journal of Mathematical Physics

44(4), pp. 1457-1471, 2003

[8] N. Metwally, M. Abdelaty, A.-S.F Obada, Entangled states
and information induced by the atom-field interaction, Optics

Communications 250(1-3), pp. 148-156, 2005

[9] M. Zidan, A.-H. Abdel-Aty, M. El-shafei, M. Feraig, Y. El-

Abou, H. Eleuch and M. Abdel-Aty, Quantum Classification

Algorithm Based on Competitive Learning Neural Network

and Entanglement Measure, Appl. Sci., 9, 1277, 2019.
[10] A. Sagheer, M. Zidan and M. M. Abdelsamea, A Novel

Autonomous Perceptron Model for Pattern Classification

Applications, Entropy, 21(8), 763, 2019.

[11] M. Zidan, A. Sagheer and N. Metwally, An Autonomous

Competitive Learning Algorithm using Quantum Hamming

Neural Networks, In Proceedings of the 2015 International
Joint Conference on Neural Networks (IJCNN), Killarney,

Ireland, pp. 1–7, 2015.

[12] M. Zidan, A.-H. Abdel-Aty, D. M. Nguyen, A. S. A.

Mohamed, Y. El-Abou, H. Eleuch H and M. Abdel-

Aty, A quantum algorithm based on entanglement measure

for classifying Boolean multivariate function into novel

hidden classes, Results in Physics, 15, 102549 (2019),

doi.org/10.1016/j.rinp.2019.102549
[13] M. Ogihara and A. Ray, Simulating Boolean circuits on a

DNA computer, Algorithmica 25:239250, 1999.
[14] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro, An

autonomous molecular computer for logical control of gene

expression, Nature, 429 (6990): 423429, 2004.
[15] Zhang, Q., Cheng, L., Boutaba, R., Cloud computing:

state-of-the-art and research challenges, Journal of Internet

Services and Applications, 1, 7-18 (2010).
[16] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,

Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I.,

Zaharia, M., A view of cloud computing, Communications of

the ACM, textbf53, 50-58 (2010).
[17] Gulati, A., Shanmuganathan, G., Holler, A., Irfan, A.,Cloud

scale resource management: challenges and techniques, In:

Proc. 3rd USENIX Workshop on Hot Topics in Cloud

Computing (2011).
[18] Abts, D., Felderman, A guided tour of data-center

networking, Communications of the ACM 55,44 (2012).
[19] Bari, M.F., Boutaba, R., Esteves, R., Zambenedetti

Granville, L., Podlesny, M., Rabbani, M.G., Zhang, Q.,

Zhani, M.F., Data center network virtualization: A survey,

IEEE Communications Surveys, 15, 909-928 (2013).
[20] Jayadivya S, Bhanu SMS., Qos based scheduling of

workflows in cloud computing,Int J Comput Sci Electr Eng

2315-4209 ISSN (2012).
[21] Kumar PaSA.,Priority Based Workflow Task Scheduling

In Cloud Computing Environments, Aust J Basic Appl Sci,

8,(2014).
[22] Rahman M, et al.,Adaptive workflow scheduling for

dynamic grid and cloud computing environment,Concurr

Comput: Pract Exp, 25, (2013).
[23] Bala A, Chana I,A survey of various workflow scheduling

algorithms in cloud environment, In: Proceedings of the
2nd national conference on information and communication

technology (NCICT); (2011).
[24] Motahari-Nezhad HR, Stephenson B, Singhal

S.,Outsourcing business to cloud computing services:

opportunities and challenges, IEEE Internet Comput,

10,(2009).
[25] Barrett E, Howley E, Duggan J., A learning architecture

for scheduling workflow applications in the cloud, In:

Proceedings of the 2011 ninth IEEE European conference on
web services (ECOWS) (2011).

[26] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S.

Nurcan, Workflow Tasks Allocation and Scheduling in Cloud

Computing Environments, In IEEE Cloud, 638-645 (2012).
[27] E. Caron, F. Desprez, A. Muresan, and F. Suter,

Budget constrained resource allocation for non-deterministic

workflows on an iaas cloud, Proceedings of the 12th

international conference on Algorithms and Architectures for
Parallel Processing - Volume Part I, ser. ICA3PP-12.

[28] C. Jianfang, C. Junjie, and Z. Qingshan, An optimized

scheduling algorithm on a cloud workflow using a discrete

particle swarm, Cybernetics and Information Technologies,

14, 25-39 (2014).
[29] Varalakshmi, P., Ramaswamy, A., Balasubramanian, A. and

Vijaykumar, P., An optimal workflow based scheduling and

resource allocation in cloud, In International Conference

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. S1, 337-347 (2019) / www.naturalspublishing.com/Journals.asp 347

on Advances in Computing and Communications ,411-420,

(2011)
[30] A. Nagavaram, G. Agrawal, M. Freitas, K. Telu, G. Mehta,

R. Mayani, and E. Deelman, A Cloud-based Dynamic
Workflow for Mass Spectrometry Data Analysis, in eScience,

47-54 (2011).
[31] M. Rahman, X. Li, and H. N. Palit, Hybrid Heuristic

for Scheduling Data Analytics Workflow Applications in

Hybrid Cloud Environment, Proceedings of the 25th IEEE

International Symposium on Parallel and Distributed, ser.
IPDPS Workshops. Anchorage (Alaska) USA: IEEE, 966-

974 (2011).
[32] Pandey S, et al., A particle swarm optimization-based

heuristic for scheduling workflow applications in cloud

computing environments, In: Proceedings of the 2010 24th

IEEE International Conference on advanced information
networking and applications (AINA) (2010).

[33] Verma A, Kaushal S., Budget constrained priority based

genetic algorithm for workflow scheduling in cloud, In:

Proceedings of the Fifth International Conference on

Advances in Recent Technologies in Communication and

Computing (ARTCom 2013) (2013).
[34] Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D. and Yang, Y., A

compromised-time-cost scheduling algorithm in SwinDeW-

C for instance-intensive cost-constrained workflows on

cloud computing platform, International Journal of High

Performance Computing Applications (2010).
[35] Yassa S., Multi-objective approach for energy-aware

workflow scheduling in cloud computing environments, Sci
World J. (2013).

[36] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, Cost

Optimized Provisioning of Elastic Resources for Application

Workflows, Future Gener. Comput. Syst., 27, 1011-1026

(2011).
[37] S. Abrishami, M. Naghibzadeh, and D. Epema, Deadline-

Constrained Workflow Scheduling Algorithms for IaaS
Clouds, Future Gener. Comput. Syst., 29,158-169 (2013).

[38] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, Cost

Optimized Provisioning of Elastic Resources for Application

Workflow, Future Gener. Comput. Syst., 27, 1011-1026

(2011).
[39] Calheiros, R.N. and Buyya, R., Meeting deadlines of

scientific workflows in public clouds with tasks replication,
IEEE Transactions on Parallel and Distributed Systems,

25,1787-1796 (2014).
[40] Suguna N.andK.G.Thanushkodi,An Independent Rough Set

Approach Hybrid with Artificial Bee Colony Algorithm

for Dimensionality Reduction,American Journal of Applied

Sciences, 8, 261-266 (2011).
[41] Li Bao and Jian-chaoZeng, Comparison and Analysis

of the Selection Mechanism in the Artificial Bee Colony

Algorithm,In Proc. IEEE Ninth International Conference on

Hybrid Intelligent Systems, 411-416 (2009).
[42] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D.

Rose, and R. Buyya,CloudSim: A Toolkit for Modeling

and Simulation of Cloud Computing Environments
and Evaluation of Resource Provisioning Algorithms,

Softw.,Pract. Exper., 41, 23-50 (2011).
[43] X.S. Yang.,A new metaheuristic bat-inspired algorithm,

Nature Inspired Cooperative Strategies for Optimization,

(NICSO 2010), 65-74 (2010).

[44] A.H. Gandomi, X.S. Yang, A.H. Alavi, and S. Talatahari,

Bat algorithm for constrained optimization tasks, Neural

Computing & Applications,1-17 (2012).
[45] P.W. Tsai, J.S. Pan, B.Y. Liao, M.J. Tsai, and V. Istanda,Bat

algorithm inspired algorithm for solving numerical

optimization problems,Applied Mechanics and Materials,

134-137 (2012).

[46] X.S. Yang.,Review of meta-heuristics and generalised

evolutionary walk algorithm, International Journal of Bio-

Inspired Computation, 3,77-84 (2011).
[47] Pelzl, J., Wollinger, T. and Paar, C., Special hyperelliptic

curve cryptosystems of genus two: Efficient arithmetic and

fast implementation,Embedded Cryptographic Hardware:

Design and Security (2004).

[48] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D.

Rose, and R. Buyya, CloudSim: A Toolkit for Modeling
and Simulation of Cloud Computing Environments and

Evaluation of Resource Provisioning Algorithms,Softw.,

Pract. Exper., 41, 23-50.

[49] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G.

Mehta, and K. Vahi,Characterizing and Profiling Scientific

Workflows, Future Gener. Comput. Syst., 29, 682-692 (2011).

A. Ramathilagam
is obtained her Ph.D
degree from Anna University,
Chennai in 2018. She
is a member of ISTE. She is
a reviewer for various reputed
journals. Her research interest
includes Computer Networks,
Distributed System, Grid
and Cloud Computing.

Currently, She is working as a Associate Professor in the
Department of Computer Science and Engineering, at
P.S.R.Engineering College. She has published 15 papers
in journals and conferences.

S. Maheswari is working
as an Associate Professor
at National Engineering
College,India. She received
PhD from Anna University.
Her current research interests
include Semantic web
service selection,Computer
Networks and SoA.

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Literature Review
	Applications and System model
	Methodology
	Performance Evaluation
	Perspective

