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Abstract: Mathematical analysis of Queueing systems shows a significant part in wireless communication network such as channel

control, energy saving schemes etc. Here, we consider a M/M/1 Queue with the server operating in three modes -Active mode,

maintenance mode , sleep mode/close down period (with transitions from the maintenance mode to the sleep mode/close down period

and active mode), subject to catastrophes. Catastrophes occur only when there are customers in the system and they wipe out the entire

system resulting in the system being rendered inactive for a random period of time. Explicit expressions have been obtained for the

transient probabilities and steady state probabilities of the close down period, maintenance state and system size along with the many

performance measures. Influence of the different parameters on the steady state probabilities, system performance measures are studied

using numerical examples.
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1 Introduction

The development of queueing theory has its origin in the
study of congestion of telephone systems. Over the years,
the study of queueing systems has grown tremendously,
primarily due to the fact that queueing systems have
enormous applications in wireless networks,
telecommunication networks etc. A comprehensive over
view of the fundamental techniques and standard results
in queueing theory are given in the monographs of [1],
[2], [3], [4], [5], [6], and [7].Wireless communications is
one of the fastest growing segments of the
communication industry. The rapid growth of wireless
systems in areas such as Wireless sensor networks,
automated factories, remote telemedicine etc. promise a
bright future for wireless networks. WiMAX evolved to
satisfy the requirement of having a wireless internet
access and other broadband services which work well in
those areas where it is difficult to provide wired
infrastructure and economically not viable.
The IEEE 802.16 standard allows for subscriber stations

to move around. On account of the movement of
subscriber stations, the idea of power saving is a very
substantial issue for the battery powered mobile stations
[MSs]. The IEEE 802.16 e standard outlines sleep mode
and idle mode operations on MAC layer to save the
energy of the MSs. The idea behind the power saving
mechanism is to employ sleep mode operation to
minimize MS power usage due to minimum power
consumption in sleep mode.
Various researchers have proposed different analytical
models and acquired the performance of the close down
period operations in the IEEE 802.16e system. See [8],
[9], [10], [11], [12], [13], [14], [15],[16], [17], [18]. [19],
[20], [21], [22], [15]. Several models analysed related to
this area in [22]. In [23], analyzed the transient behaviour
of a M/M/1 queue with the server operating in three
modes- Active mode, maintenance mode , sleep mode.
Transient analysis of M/M/1 queue with the server
operating in three modes- Active mode, maintenance
mode analyzed in [24] , sleep mode wherein at the the end
of the maintenance period, a server either enters into
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active mode or it goes to sleep mode.
An important aspect in the dynamics of communication
networks is the study of dramatic but relatively rare
events which result in abrupt and often catastrophic
changes in the network state. Such catastrophic events are
commonly regarded to as phase transition. [25] gives an
extensive survey of research phase transition in
communication networks. When a catastrophe occurs, it
invariably paralyzes/ destroys the systems and the system
needs to start fresh. See [26], [27], [28]. Events that cause
site failure, which propagate through a network in [29],
[30], [31], [32], [33], [34], [35], [36], [37]. The
Performance analysis measures for M/M/1 queue with the
server operating in three modes- Active mode,
maintenance mode , sleep mode subject to Catostrophe
derived by [38].
This has motivated us to study and analyze the behavior
of a M/M/1 queue where the server operates in three
modes-active mode, maintenance mode , sleep
mode/close down period, with transitions from the
maintenance mode to the sleep mode/close down period
and active mode, subject to catastrophes. The
organization of the paper is as follows: Section 2
describes the mathematical model and closed-form
expressions for the transient probabilities of the system
are derived through the approach of integral equations;
Section 3 provides an expression for the total power saved
up to any time t. Steady state probabilities of the system
are derived in section 4. Some fundamental performance
measures under steady state conditions are deduced in
section 5. Numerical examples are explained to illustrate
The effect of system parameters on the various
performance measures are illustrated by numerical
examples in section 6. Section 7, concludes the paper.

2 Model description and Analysis

Consider a M/M/1 queue with infinite capacity. The
arrivals follow a Poisson process with arrival rate λ while
the service times are exponentially distributed with mean
1
µ .The system enters the close down state (sleep state) D

when the server completes the services of all customers in
the system. The close down period is assumed to follow
an exponential distribution with mean 1

ξ
. If a new

customer arrives into the system during the close down
period, the close down period is interrupted and the server
resumes service. If no customer arrives into the system
for the entire duration of the close down period, then the
system enters the preventive maintenance state M. The
server remains in the maintenance mode for a random
time is exponentially distributed with mean 1

η . Any

customer arriving to the system during the preventive
maintenance state will not be permitted to enter the
system and will be lost ever. Once the maintenance of the
server is completed, the server returns to the sleep mode

with probability (1− p) and enters its functioning state
(active state) with probability p ready to serve new
customers. Customers arrive into the system as a Poisson
process with arrival rate λ , during the working state,
which comprises the active period (idle and busy) and
close down period. Catastrophes are assumed to arrive as
a Poisson process with rate γ . Once a catastrophe strikes
the system, all the customers are wiped out from the
system and the system enters the maintenance state.
We adopt the following notations: X(t) - number of
customers in the system at time t when the server is in
active state
J(t) - the state of the server at time t.
Then X(t) ∈ {0,1,2...} and J(t) = A if the server is in
active state, D if the server is in sleep state, M if the
server is in maintenance state
The process X(t),J(t),t ≥ 0 is Markovian. The state
space of the system is
Ω = {(0,D) ,(0,M)}⋃{(0,A) ,(1,A) ,(2,A) , ...}
For brevity, the states (0,D) and (0,M) are denoted by D
and M respectively; and the states (n,A), n = 0,1,2, ... are
simply denoted by 0,1,2,...

The state transition diagram is as follows,

Fig. 1 Transition Diagram

Let p(n, t) = p [X (t) = n] ,n = 0,1,2... be the
probability that, n customers in the system at time t when
the server is in active state, p(M, t) = p [X (t) = M] be the
probability that the server is in maintenance state (and
that no customer arrives to the state) at time t, and
p(D, t) = p [X (t) = D] be the probability that the server
is in sleep mode at time t.

Using Probability laws, we derive the following
integral equations,

p(M, t) =
∫ t

0
p(D,u)ξ e−η(t−u)du+

∞

∑
n=1

∫ t

0
p(n,u)γe−η(t−u)du (1)
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p(D, t) =

∫ t

0
p(1,u)µe−(λ+ξ )(t−u)du

+
∫ t

0
p(M,u)η(1− p)e−(λ+ξ )(t−u)du (2)

p(0, t) = e−λ t +
∫ t

0
p(M,u)η pe−η(t−u)du (3)

p(1, t) =
∫ t

0
p(D,u)λ e−(λ+µ+γ)(t−u)du

+

∫ t

0
p(0,u)λ e−(λ+µ+γ)(t−u)du

+

∫ t

0
p(2,u)µe−(λ+µ+γ)(t−u)du (4)

p(n, t) =

∫ t

0
p(n− 1,u)λ e−(λ+µ+γ)(t−u)du

+

∫ t

0
p(n+ 1,u)µe−(λ+µ+γ)(t−u)du (5)

Taking Laplace Transform of (1) to (5),

p∗ (M,s) =
ξ

s+η
p∗ (D,s)+

∞

∑
n=1

γ

s+η
p∗ (n,s) (6)

p∗ (D,s) =
µ

s+λ + ξ
p∗ (1,s)+

η(1− p)

s+λ + ξ
p∗ (M,s) (7)

p∗ (0,s) =
1

s+λ
+

η p

s+λ
p∗ (M,s) (8)

p∗ (1,s) =
λ

s+λ + µ + γ
[p∗ (D,s)+ p∗ (0,s)]

+
µ

s+λ + µ + γ
p∗ (2,s) (9)

p∗ (n,s) =
λ

s+λ + µ + γ
p∗ (n− 1,s)

+
µ

s+λ + µ + γ
p∗ (n+ 1,s),n ≥ 2 (10)

Laplace Transform of the generating function,

G∗ (u,s) = p∗(D,s)+ p∗(M,s)+
∞

∑
n=0

p∗(n,s)un (11)

From Equations (6) to (10),

G∗ (u,s) = p∗(D,s)+ p∗(M,s)+ p∗(0,s)

+
λ u2 [p∗(D,s)+P∗(0,s)]− µup∗(1,s)

−λ u2 +(s+λ + µ + γ)u− µ
(12)

The zeros of λ u2 +(s+λ + µ + γ)u− µ = 0
are

θ1 =
(s+λ+µ+γ)−

√
(s+λ+µ+γ)2−4λ µ
2λ and

θ2 =
(s+λ+µ+γ)+

√
(s+λ+µ+γ)2−4λ µ
2λ

The zeros satisfy the following conditions
where 0 < θ1 < 1 < θ2 Invoking the analyticity of
G∗(u,s), we have
λ u2 [p∗(D,s)+ p∗(0,s)]− µup∗(1,s) = 0

p∗(D,s)+ p∗(0,s) =
µ p∗(1,s)

λ θ1

(13)

On substituting (13) in (12),

G∗ (u,s) = p∗(D,s)+ p∗ (M,s)+ p∗ (0,s)+
∞

∑
n=1

(

λ θ1

µ

)n−1

un p∗ (1,s) (14)

Comparing Equations (11) and (14),

p∗ (n,s) =

(

λ θ1

µ

)n−1

p∗ (1,s);n = 2,3, ... (15)

Using Equations (15) in (9),

p∗ (1,s) = λ θ1
µ [p∗ (D,s)+ p∗ (0,s)]

p∗ (1,s) =
(s+λ + µ + γ)−

√

(s+λ + µ + γ)2 − 4λ µ

2µ

[p∗ (D,s)+ p∗ (0,s)] (16)

Inverting equation (16),

p(1, t) = β e{−(λ+µ+γ)t}I1

(

2
√

λ µt
)

t
c©

[p (D, t)+ p(0, t)] (17)

where β =
√

λ
µ and c©denotes convolution and

In(.) is the modified Bessel Function of order n defined in
[39],
where we have used the formula in [40].

L−1

[(

(s+λ+µ+γ)−
√

(s+λ+µ+γ)2−4λ µ
2λ

)n]

=

(

λ
µ

) n
2 In

(

2t
√

λ µ
)

t

Rewriting equations (7),(6) and (8) we have

p∗ (D,s) =
µ(s+η)+η(1− p)γ

(

1− λ θ1
µ

)−1

(s+λ + ξ )(s+η)−η(1− p)ξ

p∗(1,s) (18)
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p∗ (M,s) =
ξ

s+η







µ(s+η)+η(1− p)γ
(

1− λ θ1
µ

)−1

(s+λ + ξ )(s+η)−η(1− p)ξ







p∗(1,s)+
γ

s+η

(

1− λ θ1

µ

)−1

p∗(1,s)

(19)

p∗ (0,s) =
η p

s+λ

{

ξ

s+η






µ(s+η)+η(1− p)γ
(

1− λ θ1
µ

)−1

(s+λ + ξ )(s+η)−η(1− p)ξ







p∗(1,s)+
γ

s+η

(

1− λ θ1

µ

)−1

p∗(1,s)

}

+
1

s+λ
(20)

By sustituting (18) and (20) in (16) we get,

p∗ (1,s) = 1
s+λ

(

λ θ1
µ

)

∑∞
n=0 (H

∗ (s))n

p∗ (1,s) =
1

s+λ

(

λ θ1

µ

)

1

1−H∗ (s)
(21)

where

H∗(s) =
λ θ1

µ
[H1(s)+H2(s)+H3(s)] (22)

where

H1(s) =
µ (s+η)−η(1− p)γ ∑∞

n=0

(

λ θ1
µ

)n

(s+λ + ξ )(s+η)−η(1− p)ξ
;

H2(s) =
η pξ

(s+λ )(s+η)




µ (s+η)−η(1− p)γ ∑∞
n=0

(

λ θ1
µ

)n

(s+λ + ξ )(s+η)−η(1− p)ξ



 ;

H3(s) =
η pγ

(s+λ )(s+η)

∞

∑
n=0

(

λ θ1

µ

)n

We have the inverse Laplace transform,

L−1 (θ1) = e−(λ+µ+γ)t
(µ

λ

)1/2 I1

(

2
√

λ µt

)

t

L−1 (θ n
1 ) = e−(λ+µ+γ)t

(µ

λ

)n/2 nIn

(

2
√

λ µt
)

t

By using the notation

Φ1;n (t) = L−1 (θ n
1 )

By inverting (22), we get

H(t) =
λ

µ
Φ1;1(t) c© [H1(t)+H2(t)+H3(t)] (23)

where

H1(t) = µ
∞

∑
l=1

η l(l − p)lξ l

l!(l − 1)!
e−(λ+ξ )tt l c©e−ηtt l−1 +

∞

∑
l=1

∞

∑
n=0

η l+1(l − p)l+1ξ l

l!l!
e−(λ+ξ )tt l

c©e−ηtt l c©
(

λ

µ

)n

Φ1;n(t);

H2(t) = η pξ e−λ t c©
[

µ
∞

∑
m=0

ηm(1− p)mξ m

m!m!

e−(λ+ξ )ttm c©e−ηttm +
∞

∑
m=0

∞

∑
n=0

γηm+1(1− p)m+1ξ m

m!(m+ 1)!

e−(λ+ξ )ttm c©e−ηttm+1 c©
(

λ

µ

)n

Φ1;n(t)

]

;

H3(t) = η pγe−λ t c©e−ηt c©
∞

∑
n=0

(

λ

µ

)n

Φ1;n+1(t)

Inverse Laplace Transform of (21),

p(1, t) = e−λ t c©Φ1;1(t) c©
∞

∑
n=0

(

H c©(n)(t)
)n

(24)

where H c©(n) is the n-fold convolution of H(t). Taking
Inverse Laplace transform of (18), we get

p(D, t) = µ

[

e−(λ+ξ )t +
∞

∑
l=1

η l(l − p)lξ l

l!(l − 1)!

e−(λ+ξ )tt l c©e−ηtt l−1 +
γ

µ
c©
{

∞

∑
l=0

∞

∑
n=0

η l+1(1− p)l+1ξ l

l!l!
e−(λ+ξ )tt l c©e−ηtt l c©

(

λ

µ

)n
(µ

λ

)n

Φ1;n(t)

}]

c©p(1, t) (25)

Taking Inverse Laplace transform of (19), we get

p(M, t) = ξ µ

[

e−(λ+ξ )t c©eηt +
∞

∑
l=1

η l(l − p)lξ l

l!(l − 1)!
e−(λ+ξ )tt l c©e−ηtt l−1

+
γ

µ
c©
{

∞

∑
l=0

∞

∑
n=0

η l+1(1− p)l+1ξ l

l!l!
e−(λ+ξ )tt l

c©e−ηtt l c©
(

λ

µ

)n

Φ1;n(t)

}]

c©p(1, t) (26)
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Taking Inverse Laplace transform of (20), we get

p(0, t) = e−λ t + ξ µ

[

e−(λ+ξ )t c©eηt +
∞

∑
l=1

η l(l − p)lξ l

l!(l − 1)!
e−(λ+ξ )tt l c©e−ηtt l−1 +

γ

µ

c©
{

∞

∑
l=0

∞

∑
n=0

η l+1(1− p)l+1ξ l

l!l!
e−(λ+ξ )tt l c©e−ηtt l

c©
(

λ

µ

)n

Φ1;n(t)

}]

c©p(1, t) (27)

Taking Inverse Laplace transform of (15), we get

p(n, t) = Φ1;n−1(t) c©p(1, t),n = 2,3, ... (28)

3 TOTAL POWER SAVED UP TO TIME t

Power is saved by switching the server to sleep or
maintenance mode.During the sleep or maintenance
modes, less power is consumed. The rate of power saving
in these modes are different. We calculate them
separetely.
Mean time spent in sleep in the interval[0, t] :

Let Y(t) be the total sleep in [0,t]. Using J(t), we
obtain the stochastic integral representation of Y(t) as
follows:

Y (t) =
∫ t

0
δJ(u),Ddu, (29)

where δ j,k is the kronecker delta function defined by,

δ j,k =

{

1 if j = k

0 otherwise

We obtain,

E(Y (t)) =

∫ t

0
E(δJ(u),D)du =

∫ t

0
P{J(u) = D}du (30)

Taking laplace transform on both sides of equation(30)
and using equations (18) and (20), we get

y∗(s) =

(

1

s

)





µ (s+η)+η (1− p)γ ∑∞
n=0

(

λ θ1
µ

)n

(s+λ + ξ )(s+η)−η (1− p)ξ

{

λ θ1

(s+λ )µ

∞

∑
n=0

(H∗(s))n

}]

y∗(s) =
λ θ1

s(s+λ )

{

∞

∑
l=0

∞

∑
n=0

η l(1− p)lξ l

(s+λ + ξ )l+1(s+η)l

(H∗(s))n +
∞

∑
l=0

∞

∑
k=0

∞

∑
n=0

η l+1(1− p)l+1ξ lγ

µ(s+λ + ξ )l+1(s+η)l

(

λ θ1

µ

)k

(H∗(s))n

}

(31)

where y∗(s) = L(E(Y (t))),
Inverting y∗ (s), we get

E(Y (t)) = λ
∞

∑
l=0

∞

∑
n=0

η l(1− p)lξ l c©e−λ t c©Φ1;1(t)

c©e−ηt t l−1

(l − 1)!
c©e−(λ+ξ )t t l

l!
c©H c©(n)t +

λ γ
∞

∑
l=0

∞

∑
n=0

∞

∑
k=0

η l+1(1− p)l+1ξ l c©eλ t c©Φ1;1(t)

c©e−ηt t l

l!
c©e−(λ+ξ )t t l

l!
c©

(

λ

µ

)

Φ1;1(t) c©H c©(n)t (32)

Mean time spent in Maintenance mode in the
interval[0, t] :
Let Z(t) be the total maintenance time of the server in
[0,t].

Z(t) =

∫ t

0
δJ(u),Mdu, (33)

E(Z(t)) =

∫ t

0
E(δJ(u),M)du =

∫ t

0
P{J(u) = M}du (34)

Taking laplace transform on both sides of equation(34)
and using equations (19) and (20), we get z∗(s)
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where z∗(s) = L(E(Z(t))),
Inverting z∗ (s), we get

E(Z(t)) =
√

λ µ
∞

∑
l=0

∞

∑
n=0

η l(1− p)lξ l+1 c©e−λ t c©

Φ1;1(t) c©e−ηt t l

l!
c©e−(λ+ξ )t t l

l!
c©H

c©(n)t

+

√

λ

µ
γ

∞

∑
l=0

∞

∑
n=0

∞

∑
k=0

η l+1(1− p)l+1ξ l+1 c©eλ t c©

Φ1;1(t) c©e−ηt t l+1

l + 1!
c©e−(λ+ξ )t t l

l!

c©
(

λ

µ

)

Φ1;k(t) c©H
c©(n)t

γ

µ

√

λ µ
∞

∑
k=0

∞

∑
n=0

e−λ t c©Φ1;1(t)e
−ηt

c©
(

λ

µ

)

Φ1;k(t) c©H c©(n)t (35)

4 STEADY STATE DISTRIBUTION

We define the steady state probabilities of the queueing
system by the equations:

p(D) = lim
t→∞

p(D, t)

p(M) = lim
t→∞

p(M, t)

p(n) = lim
t→∞

p(n, t),n = 0,1,2...

Then,by using the final value theorem for Laplace
transform, we get

p(D) = lim
s→0

sp∗(D,s) (36)

p(M) = lim
s→0

sp∗(M,s) (37)

p(n) = lim
s→0

sp∗(n,s),n = 0,1,2... (38)

p(D) = lim
s→0

s

{

µ(s+η)+η(1−p)γ
(

1− λθ1
µ

)−1

(s+λ+ξ )(s+η)−η(1−p)ξ

}

p∗(1,s)

p(D) =
µη+

η(1−p)γ
1−ρ

(λ+ξ )η−η(1−p)ξ
p1

p(D) =
µ + (1−p)γ

1−ρ

λ + pξ
p1 (39)

p(M) =





ξ

η





µ +
(1−p)γ

1−ρ

λ + pξ



+
γ

η (1−ρ)



 p1 (40)

p(0) =
η p

λ





ξ

η





µ + (1−p)γ
1−ρ

λ + pξ



+
γ

η (1−ρ)



 p1 (41)

p(n) = ρn−1 p1 (42)

By total probability
p(D)+ p(M)+ p(0)+∑∞

n=1 p(n) = 1

p(1) =
λ

µ

(

1

ξ
+

p

λ

)[(

1+
(1− p)γ

(1−ρ)µ

)

(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

(43)

p(M) may be written as

p(M) =

[

µ

λ + pξ

ξ

η

(

1+
(1− p)γ

(1−ρ)µ

)

+
γ

η

1

1−ρ

]

[

µ

λ + pξ

(

1+
(1− p)γ

(1−ρ)µ

)(

1+
ξ

η
+

pξ

λ

)

+
1

1−ρ

(

1+
γ

η
+

pγ

λ

)]−1

=
1

η

[(

1+
(1− p)γ

(1−ρ)µ

)

+
γ

η

1

1−ρ

(

λ

µ

(

1

ξ
+

p

λ

))]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ + p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

(44)

p(0) may be written as

p(0) =

[

µ

λ + pξ

pξ

λ

(

1+
(1− p)γ

(1−ρ)µ

)

+
pγ

λ

1

1−ρ

]

[

µ

λ + pξ

(

1+
(1− p)γ

(1−ρ)µ

)(

1+
ξ

η
+

pξ

λ

)

+

1

1−ρ

(

1+
γ

η
+

pγ

λ

)]−1

=

[

p

λ

(

1+
(1− p)γ

(1−ρ)µ

)

+
γ

µ

p

1−ρ

(

1

ξ
+

p

λ

)]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

(45)

p(D) may be written as

p(D) =
1

ξ

(

1+
(1− p)γ

(1−ρ)µ

)[(

1+
(1− p)γ

(1−ρ)µ

)

(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

(46)
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p(n) may be written as

p(n) = ρn−1 λ

µ

(

1

ξ
+

p

λ

)[(

1+
(1− p)γ

(1−ρ)µ

)

(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

(47)

where

ρ =
(λ + µ + γ)−

√

(µ −λ + γ)2 + 4λ γ

2µ

5 Steady-state Performance Measures

Mean and Variance of the number of customers in the
system:
Let X be the number of customers in the steady-state
condition and Π (z) be its probability generating function.
Then we obtain

Π (z) = E
(

zX
)

= p(D)+ p(M)+ p(0)+∑∞
n=1 p(n)

Π (z) =

(

1−ρ

1−ρz

)











λ
µ

(

1
ξ
+ p

λ

)

[

(1−ρ)+ (1−ρ)γ
µ

(

1
η + 1

ξ
+ p

λ

)]

[

z+
(

1−ρz
1−ρ

)(

γ
η + pγ

λ

)]

(

1
η + 1

ξ
+ p

λ

)

+ λ
µ

(

1
ξ
+ p

λ

)(

1+ γ
η + pγ

λ

)













(

1−ρz

1−ρ

)

[

(1−ρ)+
(1−ρ)z

µ

]

[

(1−ρ)+ (1−ρ)γ
µ

(

1
η + 1

ξ
+ p

λ

)]

(

1
η + 1

ξ
+ p

λ

)

+ λ
µ

(

1
ξ
+ p

λ

)(

1+ γ
η + pγ

λ

)











Differentiating (41) with respect to z and substituting z =
1, we get

E (X) =
λ

µ

(

1

ξ
+

p

λ

)[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

To find E(X2) = E [X (X − 1)] − E (X), Diff Π (z)
twice with respect to z,

E
(

X2
)

=

[

λ

µ

(

1

ξ
+

p

λ

)

(

1+ρ

(1−ρ)2

)]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

Variance of X as E
[

X2
]

− [E (X)]2

V (X) =

λ
µ

(

1
ξ
+ p

λ

)(

1+ρ

(1−ρ)2

)

(

1+
(1−p)γ
(1−ρ)µ

)(

1
η + 1

ξ
+ p

λ

)

+
λ
µ

(

1
ξ +

p

λ

)

1−ρ

(

1+ γ
η + γ p

λ

)

−















λ
µ

(

1
ξ
+ p

λ

)

(

1+
(1−p)γ
(1−ρ)µ

)(

1
η + 1

ξ
+ p

λ

)

+
λ
µ

(

1
ξ +

p

λ

)

1−ρ

(

1+ γ
η + γ p

λ

)















2

6 System throughput

The system throughput U , the rate at which customers
exit the queue, there are one or more customers in the
system, with the exit rate µ

U = [1− p(0)− p(D)− p(M)]µ

Using equations (37),(38) and (39), we get

U =
λ

1−ρ

(

1

ξ
+

p

λ

)[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

The effective arrival rate λe f f (the total arrival rate
when the server is available) is defined as,

λe f f = [1− p(M)]λ

λe f f = λ





(

1+
(1− p)γ

(1−ρ)µ

)(

1

ξ
+

p

λ

) λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
pγ

λ

)]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

There are several general descriptions of our queuing
system,
Under Steady state,

P(serverisbusy) =
∞

∑
n=1

p(n) = p(1)+
∞

∑
n=2

p(n) =
p(1)

1−ρ
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=

[

1

1−ρ

λ

µ

(

1

ξ
+

p

λ

)][(

1+
(1− p)γ

(1−ρ)µ

)

(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

P(serverisavailable) = 1− p(M)

=





(

1+
(1− p)γ

(1−ρ)µ

)(

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ p

λ

)]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

P(customer is served immediately upon
arrival)=p(0)+ p(D)

=





(

1+
(1− p)γ

(1−ρ)µ

)(

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

γ p

λ

]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

PW =P[an arriving customers has to wait for service]=1−
[p(0)+ p(D)]

=





(

1+
(1− p)γ

(1−ρ)µ

)

1

η
+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

λ

)]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

The probability of atleast k or more customers in the
system is given as,

P(X ≥ k) =
∞

∑
n=1

p(n) =
∞

∑
n=1

ρn−1p(1)

=

(

ρk−1

1−ρ

)

p(1)

P(X ≥ k) =

[(

ρk−1

1−ρ

)

λ

µ

(

1

ξ
+

p

λ

)]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

η
+

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

η
+

γ p

λ

)





−1

P(server is busy/server is available)=
∑∞

n=1 p(n)

1−p(M)

=

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

[(

1+
(1− p)γ

(1−ρ)µ

)

(

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ p

λ

)





−1

P(server is idle/server is available)=
p(0)+p(D)
1−p(M)

=





(

1+
(1− p)γ

(1−ρ)µ

)

1

η
+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ

λ

)]

[(

1+
(1− p)γ

(1−ρ)µ

)(

1

ξ
+

p

λ

)

+

λ
µ

(

1
ξ
+ p

λ

)

1−ρ

(

1+
γ p

λ

)





−1

7 Numerical Illustrations

We study the effects of the various parameters on the
following steady state probabilities: p(0) -the server in
idle mode, p(M)-maintenance mode and p(D)-sleep
mode; the system throughput U, and the average number
of customers E(X) in the system. The parameters are so
chosen that they satisfy the condition that
λ < µ ,ξ > 0,η > 0 and γ > 0

Fig. 2 p(0) -for fixed value of ξ = 2
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Fig. 3 p(0) -for fixed value of η = 4

Fig. 4 U-for fixed value ofξ = 2

Fig. 5 U-for fixed value ofη = 4

Figure 2 shows that p(0) is a decreasing function of η ,
while Figure 3 shows that p(0) is an increasing function of
ξ and in both the cases p(0) is a decreasing function of ρ .

Figures 4 and 5 reveal that the system throughput U

decreases slowly for increasing values of η and ξ while
decreasing for increasing values of ρ .

Fig. 6 p(M)-for fixed value ofξ = 2

From figures 6 and 7 we see that p(M) is a decreasing
function of η and ξ and is an increasing function of ρ .

In figures 8 and 9, we see that the close down
probability p(D) is an increasing function of η , is a

Fig. 7 p(M)-for fixed value of η = 4

Fig. 8 p(D) -for fixed value of ξ = 2

Fig. 9 p(D)-for fixed value of η = 4

gradually decreasing function of ρ ; p(D) is a sharply
decreasing function of ξ . Figures 10 and 11 show that ,

Fig. 10 E(X)-for fixed value of ξ = 2

E(X) is a decreasing function of η and ξ for fixed values
of ρ .

8 Conclusion

We have studied a M/M/1 system with server operating
in three modes subject to catastrophes. Explicit
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Fig. 11 E(X)-for fixed value of η = 4

expressions for the transient probabilities of the system in
the three different modes are obtained. Further Mean time
spent in sleep and maintenance mode have been derived.
The steady state probabilities and performance measures
such as mean of the system size, availability of the server,
system throughput and mean waiting time of an arbitrary
customer in the system have been obtained. Finally,
graphical illustrations have been presented and the effects
of various parameters on the system performance
measures are studied.
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