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Abstract: The Rough Ideal based Rough Edge Cayley Graph is defined on the Rough semiring (T,∆ ,∇) along with its Rough Ideal

J and this graph consists of 2n−m3m elements. The complexity in studying the Rough Ideal based Rough Edge Cayley Graph is made

simpler by defining the category graph. Wiener index of the Rough Ideal based Rough Edge Cayley Graph is obtained through this

category graph and the concepts are illustrated through examples.
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1 Introduction

Informations found around the world are imprecise,
incomplete, uncertain and vague. To give a conclusion to
the information that we have obtained by various means,
we have to deal with uncertainity. In early 1980’s to deal
with the uncertainities in the information sysytem Rough
set theory was intoduced by Z.Pawlak [16]. Rough set is
defined as a pair called lower and upper approximations,
which are defined on any subset of the universal set. The
concept of Rough lattice was discussed by B.Praba and
R.Mohan [7]. In this, for any given information system
the authors have proved the set of all rough sets T to be
the lattice called rough lattice with respect to the two
operations praba∆ and praba∇ on T. Manimaran, et.al
[5], [8] studied the properties on ideals and
homomorphism of this semiring in detain

Changzhang Wong, Degang Chen [3] in their paper
pointed out that there are still some incomplete
propositions in Rough sets and have discussed on Rough
groups. B.Davvaz[4] has discussed about the roughness
based on fuzzy ideals. Wei Cheng, et.al[14] have
discussed on fuzzy group and rough ideals in semigroups.
Edge rough graph was first introduced by Meilian Liang,
et.al [6]. Roughness in Cayley graphs was discussed by
M.H. Shahzamanian,et.al [12]. Ali Reza Naghipour and
Meysam Rezagholibeig[1] discussed on the refinement of
the unit and unitary Cayley graphs of the finite rings.

Yingbin Ma and Zaiping Lu [15] have discussed on the
Rainbow connection numbers of Cayley graphs.

Rough Ideal based Rough Edge Cayley graph was
introduced by B.Praba, et al [9], [10]. In this paper, the
authors have made an Algebraic graph theoretical study
on an Rough semiring along with its Rough Ideal. In this
work, the Wiener index of an Rough Ideal based Rough
Edge Cayley graph is obtained through the category
graph. This paper is as follows: In section 2, we give the
preliminaries. In section 3, we introduce Category Graph
corresponding to a Rough Ideal based Rough Edge
Cayley Graph and obtain the degree and cardinalities of
each category of vertices. In section 4, we obtain the
Wiener index of Rough Ideal based Rough Edge Cayley
Graph. In section 5, we give the conclusion.

————

2 Preliminaries

2.1 Rough Set Theory

In this section we consider an approximation space I =
(U,R) where U is a non empty finite set of objects, called
universal set and R be an equivalence relation defined on
U.

Definition 1.[16] For any approximation space, the

equivalence classes induced by R is defined by
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[x] = {y ∈U | (x,y) ∈ R}. For any X ⊆ U, the lower

approximation is defined as R−(X) = {x ∈U | [x]⊆ X}
and the upper approximation is defined by

R−(X) = {x ∈U | [x]∩X = φ}. The rough set

corresponding to X is RS(X) = (R− (X) ,R− (X)).

Definition 2.[7] If X ⊆ U, then the number of

equivalence classes(Induced by R) contained in X is

called as the Ind.weight of X. It is denoted by IW (X).

Definition 3.[7] Let X ,Y ⊆U. The Praba ∆ is defined as

X∆Y =X∪Y, i f IW (X∪Y )= IW (X)+IW (Y )−IW (X∩Y ).
If IW (X ∪Y ) > IW (X)+ IW (Y )− IW (X ∩Y ), then identify

the equivalence class obtained by the union of X and Y.

Then delete the elements of that class belonging to Y. Call

the new set as Y. Now obtain X∆Y. Repeat the process until

IW (X ∪Y ) = IW (X)+ IW (Y )− IW (X ∩Y ).

Definition 4.[7] Praba ∇ of X and Y is denoted by X∇Y

and it is defined as

X∇Y = {x | [x]⊆ X ∩Y} ∪ PX∩Y , where X ,Y ⊆ U and

PX∩Y contains those elements of U whose corresponding

equivalence classes are not a subset of X ∩Y but will

have non empty intersection with X and Y.

Theorem 1.[8] For any approximation space I = (U,R),
(T,∆ ,∇) is a semiring called the Rough semiring.

Remark.[8] Without loss of generality let us assume that
there are n-equivalence classes {X1,X2, ...,Xn} in U . Out
of which there are m classes {X1,X2, ...,Xm} (say) have
cardinalities greater than one and the remaining n-m
clsses have cardinality equal to one. Note that
|T | = 2n−m3m. Let B = {xi | xi ∈ Xi, i = 1,2, ...,m} and
J = {RS(X) | X ∈ P(B)} then J is an ideal of the Rough
semiring called the Rough ideal .

2.2 Rough Ideal based Rough Edge Cayley

Graph

[9], [10] In this section, we consider an approximation
space I = (U,R) where U is the non empty finite set of
objects and R is an equivalence relation on U . Let
(T,∆ ,∇) be the rough semiring induced by I. Let B be the
set of representative elements of Xi, i = 1,2, ...,m and J

be the rough ideal as in the previous section. We also
assume that M is the union of none, one or more
equivalence classes whose cardinality is equal to one and

M
′

is the union of one or more equivalence classes whose
cardinality is equal to one.

Definition 5.[9], [10] Rough Ideal based Rough Edge

Cayley Graph

Rough Ideal based Rough Edge Cayley Graph denoted

G(T (J)) =
(

V,E
)

where V ∈ T and E =
{

(

RS(X),RS(Z)
)

| RS(X)∇RS(Y) = RS(Z),RS(Y) ∈ J

}

Remark.[9], [10] Note that each element of T is connected
to RS(φ). Hence to have a better understanding of the
Rough Ideal based Rough Edge Cayley Graph, we are
considering the edge RS(X)∇RS(Y) = RS(φ) for any
RS(Y) 6= RS(φ) in J.

2.3 Category Graph

[10] Cardinality of T (|T |) is 2n−m3m. We divide the
vertices (the elements of T) into 13 categories in such a
way that all elements belonging to a particular category
will behave similarly. The vertices are grouped in
categories by the following conditions:

(a)the degree of each vertex in a particular category will
be same.

(b)the distances from any vertex of a particular category to
elements of other ctegories will be same.

Definition 6.Category Graph[10]

The category graph corresponding to a given Rough Ideal

based Rough Edge Cayley graph is defined as follows:

The vertices of the category graph (CG) are

C1,C2, ...,C13. Two vertices Ci and C j are connected if

elements in Ci are connected to elements in C j by an edge

in the Rough Ideal based Rough Edge Cayley graph.

3 Degrees and Cardinalities of each category

in a category graph

Now in the following theorems we are going to establish
the degrees of all elements in a particular category and the
cardinality of each category in a category graph
corresponding to the Rough Ideal based Rough Edge
Cayley Graph:

Theorem 2.(a)The degree of RS(φ) is 2n−m(3m −2m)−1.

(b)|C1| = 1.

Proof.(a) Let

A =

{

X1,X2, ...,Xm

}

B =

{

x1,x2, ...,xm

}

and C =

{

Xm+1,Xm+2, ...,Xn

}

Note that |P(B)| = 2m and 2m − 2 elements in P(B) are
connected to RS(φ). Also |P(C)| = 2n−m, hence
(2m − 2)2n−m elements will be connected to RS(φ). As

B =

{

x1,x2, ...,xm

}

, by a similar argument (2m − 2)2n−m

elements will be connected to RS(φ). As

C =

{

Xm+1,Xm+2, ...,Xn

}

, |P(C)| = 2n−m, 2n−m − 1
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(excluding RS(φ)) will be connected to RS(φ). Now
considering the elements of P(A) and P(B) with P(C), we

have

[

∑m−2
i=1 mCi

(

2m−i − 2
)

]

2n−m elements connected to

RS(φ). Hence,
Degree of RS(φ)

= 2n−m

[

(2m − 2)+ (2m − 2)+

[

m−2

∑
i=1

mCi

(

2m−i − 2
)

]

]

− 1

= 2n−m

[

2(2m − 2)+
m−2

∑
i=1

mCi

(

2m−i − 2
)

]

− 1

= 2n−m

[

3m − 2m

]

− 1.

(b) It is trivial.

Theorem 3.(a)The degree of RS({xi}) in G(T(J)) is

2 (2)n−m (3)m−1, for every xi ∈ B.

(b)|C2|= m.

Proof.(a) Let Ai = {Xi,xi,φ} , for i = 1,2, ...,m and Bi =
{Xi,φ}, for i = m+ 1,m+ 2, ...,n
An element RS(X) will be connected to RS({xi}) iff

RS(X)∇RS(Y) = RS({xi}) (1)

where RS(Y) ∈ J. The degree of RS({xi}) is obtained by
considering those vertices RS(X) which are connected to
RS({xi}) and those vertices to which RS({xi}) is
connected.
In the first case, we have to enumerate the vertex RS(X)
satisfying (1). This is possible only when X and Y contain
{xi}. Hence such X should be

{

{

xi

}

∪

(

m
⋃

i=2

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

Xi ∪

(

m
⋃

i=2

αi

)

∪

(

n
⋃

i=m+1

βi

) }

where αi ∈ Ai and βi ∈ Bi. The number of such RS(X)
will be 2 (2)n−m (3)m−1 − 1.
In the second case the vertices are obtained by
RS({xi})∇RS(Y ) where Y ∈ P(B). As we are not
considering the self loop. the only vertex to which
RS({xi}) is connected is RS(φ).
Hence the degree of RS({xi}) is
2 (2)n−m (3)m−1 − 1+ 1 = 2 (2)n−m (3)m−1.

(b)It is trivial

Theorem 4.For every Xi,where |Xi|> 1, i = 1,2, ...,m

(a) the degree of RS({Xi}∪M) is 2.

(b)|C3|= m(2n−m).

Proof.(a) Consider the vertex RS({Xi} ∪ M) where
|Xi|> 1, i = 1,2, ...,m and M is the union of none, one or
more equivalence classses whose cardinality is equal to
one in G(T (J)).
The vertex RS({Xi} ∪ M) will be connected to
RS({Xi} ∪ M)∇RS(Y ) where Y ∈ P(B).
RS({Xi}∪M)∇RS(Y ) are RS({xi}) and RS(φ). Hence the
degree of RS({Xi}∪M) is 2.

(b) Since there are m-equivalence classes with
cardinality greater than one, (i.e)|Xi| > 1 and
|P(M)|= 2n−m

|C3| = m(|P(M)|).

= m(2n−m)

Theorem 5.For every Xi,where |Xi|= 1,

(a) the dergree of RS(L),L ∈ M
′

is one.

(b)|C4|= 2n−m − 1.

Proof.(a) Let Xi be the equivalence class such that
|Xi|= 1. The vertices that are connected to RS({Xi}) will
be RS({Xi})∇RS(Y ) where RS(Y) ∈ J. But as RS(Y ) ∈ J

implies that Y doesnot contain Xi. Therefore,
RS({Xi})∇RS(Y ) = RS(φ). Hence RS({Xi}) is
connected only to RS(φ). Hence the degree of RS(L) is
one.

(b)It is trivial.

Theorem 6.(a)The degree of RS ({x1 ∪ x2 ∪ ...∪ xr})
,where xi ∈ B and 1 < r < m, is

2r (2)n−m (3)m−r + 2r − 2.

(b)|C5|= 2m −m− 2.

Proof. (a) Let Ai = {Xi,xi,φ} for i = 1,2, ...,m and
Bi = {Xi,φ} for i = m+ 1,m+ 2, ...,n
Case:1 When r = 2
An element RS(X) will be connected to
RS ({x1})∪RS

({

x2

})

if and only if

RS(X)∇RS(Y) = RS ({x1})∪RS
({

x2

})

(2)

where RS(Y ) ∈ J.
The degree of RS ({x1}) ∪ RS

({

x2

})

is obtained by
considering those vertices RS(X) are connected to
RS ({x1}) ∪ RS

({

x2

})

and those vertices to which

RS ({x1})∪RS
({

x2

})

are connected.
In the first case we have to enumerate the vertex RS(X)
satisfying (2).
This is possible only when X and Y contain {x1}∪

{

x2

}

.
Hence we have to find RS(X) in T satisfying (2). Hence
such an X should be
{

{

x1

}

∪
{

x2

}

∪

(

m
⋃

i=3

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

{

x1

}

∪ X2 ∪

(

m
⋃

i=3

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


316 B. Praba, Obilia. X.A: Application of category graph in finding...

{

X1 ∪
{

x2

}

∪

(

m
⋃

i=3

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

X1 ∪ X2 ∪

(

m
⋃

i=3

αi

)

∪

(

n
⋃

i=m+1

βi

) }

Number of such vertices will be 22(3)m−2(2)n−m − 1 as
we are avoiding the self loop at
RS(X)∇RS ({x1})∪RS

({

x2

})

.
In the second case, the vertices to which
RS ({x1}) ∪ RS

({

x2

})

is connected are RS({x1}),
RS({x2}) and RS(φ). Hence number of such vertices are
22 − 1.
Hence the degree of RS ({x1}) ∪ RS

({

x2

})

is

22(3)m−2(2)n−m − 1 + 22 − 1 =
22(3)m−2(2)n−m + 22 − 2.
Case:2 When r = 3
An element RS(X) will be connected to
RS ({x1}) ∪ RS

({

x2

})

∪ RS
({

x3

})

(

or RS

(

{

x1,x2,x3

}

))

if and only if

RS(X)∇RS(Y) = RS

(

{

x1,x2,x3

}

)

(3)

where RS(Y ) ∈ J.

The degree of RS

(

{

x1,x2,x3

}

)

is obtained by

considering those vertices RS(X) are connected to

RS

(

{

x1,x2,x3

}

)

and those vertices to which

RS

(

{

x1,x2,x3

}

)

are connected. In the first case we have

to enumerate the vertex RS(X) satisfying (3).
This is possible only when X and Y contain
{x1} ∪

{

x2

}

∪
{

x3

}

. Hence we have to find RS(X) in T

satisfying (3). Hence such an X should be

{

{

x1

}

∪
{

x2

}

∪
{

x3

}

∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

{

x1

}

∪
{

x2

}

∪ X3 ∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

{

x1

}

∪ X2 ∪
{

x3

}

∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

X1 ∪
{

x2

}

∪
{

x3

}

∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

{

x1

}

∪ X2 ∪ X3 ∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

X1 ∪
{

x2

}

∪ X3 ∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

X1 ∪ X2 ∪
{

x3

}

∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

(or)

{

X1 ∪ X2 ∪ X3 ∪

(

m
⋃

i=4

αi

)

∪

(

n
⋃

i=m+1

βi

) }

Number of such vertices will be 23(3)m−3(2)n−m − 1 as
we are avoiding the self loop at

RS(X)∇RS

(

{

x1,x2,x3

}

)

.

In the second case, the vertices to which

RS

(

{

x1,x2,x3

}

)

is connected are P(S),where

S = {{x1} ,{x2} ,{x3}}. Hence number of such vertices
are 23 − 1 (avoiding self loop).
Hence the degree of RS ({x1})∪RS

({

x2

})

∪RS
({

x3

})

is

23(3)m−3(2)n−m − 1 + 23 − 1
= 23(3)m−3(2)n−m + 23 − 2.
By continuing the similar argument, the degree of
RS ({x1 ∪ x2 ∪ ...∪ xr}) is 2r(3)m−r(2)n−m + 2r − 2.

(b) Let xi ∈ B

|C5| =
m−1

∑
r=2

mCr. (since,1 < r < m)

= 2m −mC0 −mC1 −mCm.

= 2m −m− 2.

Theorem 7.(a)The degree of RS(x1 ∪ x2 ∪ ... ∪ xr) ∪ M
′
,

where xi ∈ B and 1 < r < m is 2r.

(b)|C6|= (2m −m− 2)(2n−m− 1).

Proof.(a) Consider RS(x1 ∪ x2 ∪ ... ∪ xr) ∪ M
′

where

1 < r < m and M
′

is the union of one or more equivalence
classes whose cardinality equal to one in G(T(J)).

Note that RS(x1 ∪ x2 ∪ ...∪ xr)∪M
′

will be connected to
all elements of P(B1), where B1 = {x1,x2, ...,xr}.

Also note that (RS(x1 ∪x2 ∪ ...∪xr)∪M
′
)∇RS

({

x j

})

, for
r < j < m is RS(φ). Hence the degree of

RS(x1 ∪ x2 ∪ ...∪ xr)∪M
′

is 2r.

(b) |RS(x1 ∪ x2 ∪ ... ∪ xr)| = 2m − m − 2. and

|P(M
′
)|= 2n−m − 1

|C6| = (|RS(x1 ∪ x2 ∪ ...∪ xr)|)|P(M
′
)|

= (2m −m− 2)(2n−m− 1).

Theorem 8.(a)The degree of RS ((X1 ∪X2 ∪ ...∪Xr)∪M)
where Xi, |Xi|> 1 and 1 < r < m is 2r.

(b)|C7|= (2m −m− 2)(2n−m)

Proof.(a) Consider RS ((X1 ∪X2 ∪ ...∪Xr)∪M) where
1 < r < m ,where |Xi|> 1 and M is the union of none, one
or more equivalence classes whose cardinality equal to
one in G(T(J).
Note that RS ((X1 ∪X2 ∪ ...∪Xr)∪M) will be connected
to all elements of P(B1), where B1 = {x1,x2, ...,xr}.
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Also note that RS ((X1 ∪X2 ∪ ...∪Xr)∪M)∇RS
({

x j

})

,
for r < j < m is RS(φ).
Hence the degree of RS ((X1 ∪X2 ∪ ...∪Xr)∪M) is 2r.

(b)

|C7| = (|RS(X1 ∪X2 ∪ ...∪Xr)|) |P(M)|.

= (2m −mC0 −mC1 −mCm)(2
n−m)

= (2m −m− 2)(2n−m).

Theorem 9.(a)The degree of RS(x1 ∪ x2 ∪ ... ∪ xm), for

every xi ∈ B is 2n + 2m− 3.

(b)|C8|= 1.

Proof.(a) An element RS(X) will be connected to
RS({xi}) if and only if
RS(X)∇RS(Y) = RS(x1 ∪ x2 ∪ ...∪ xm) where RS(Y) ∈ J.
The degree of RS(x1 ∪ x2 ∪ ... ∪ xm) is obtained by
considering those vertices to which RS(X) which are
connected to RS(x1 ∪ x2 ∪ ...∪ xm) and those vertices to
which RS(x1 ∪ x2 ∪ ...∪ xm) is connected.
All those elements RS(Z ∪ M) where
Z = Z1 ∪ Z2 ∪ ... ∪ Zm such that Zi = xi and all other
Z j = x j,i 6= j (or) Zi = xi, Z j = x j and Zk = Xk ,k 6= i, j,
etc., (or) Zi = Xi,∀i will be connected to
RS(x1 ∪ x2 ∪ ...∪ xm).
This can be done in
(mC0 +mC1 +mC2 + ...+mCm)2n−m − 1
= (∑m

i=0 mCi)2n−m − 1 = (2m)(2n−m)− 1 ways as we
avoid self loop.
Those vertices to which RS(x1 ∪x2 ∪ ...∪xm) is connected
are P(B) where B = {x1,x2, ...,xm}.
RS(x1 ∪ x2 ∪ ... ∪ xm)∇RS(φ) = RS(φ) and also by
avoiding the self loop, RS(x1 ∪ x2 ∪ ...∪ xm) is connected
to 2m − 2 elements.
Hence the degree of RS(x1 ∪ x2 ∪ ... ∪ xm) is
(2m)(2n−m)− 1+ 2m− 2 = 2n + 2m− 3.

(b) Its trivial.

Theorem 10.(a)The degree of RS(x1 ∪ x2 ∪ ...∪ xm)∪M
′
,

for every xi ∈ B is 2m − 1.

(b)|C9|= 2n−m − 1.

Proof.(a) Consider RS(x1 ∪ x2 ∪ ... ∪ xm) ∪ M
′

, where

|Xi| > 1 and M
′

is the union of one or more equivalence
classes whose cardinality equal to one in G(T(J)).

Note that RS(x1 ∪ x2 ∪ ...∪ xm)∪M
′

will be connected to
all elements of P(B) where B = {x1,x2, ...,xm}.

But as (RS(x1 ∪ x2 ∪ ... ∪ xm) ∪ M
′
)∇RS(φ) = RS(φ).

Hence we are not considering the edge

RS(x1 ∪ x2 ∪ ...∪ xm)∪M
′

to RS(φ).

Hence the degree of RS(x1 ∪ x2 ∪ ...∪ xm)∪M
′

is 2m − 1.

(b) |RS(x1 ∪ x2 ∪ ...∪ xm)| = 1 and Since, |P(M
′
)| =

(2n−m − 1).

|C9| = (|RS(x1 ∪ x2 ∪ ...∪ xm)|) |P(M
′
)| = 2n−m − 1.

Theorem 11.(a)The degree of

RS ((X1 ∪X2 ∪ ...∪Xm)∪M), for every Xi, |Xi| > 1 is

2m − 1.

(b)|C10|= 2n−m.

Proof.(a) Consider RS ((X1 ∪X2 ∪ ...∪Xm)∪M) , where
|Xi| > 1 and M is the union of none, one or more
equivalence classes whose cardinality equal to one in
G(T(J)).
Note that RS ((X1 ∪X2 ∪ ...∪Xm)∪M) will be connected
to all elements of P(B) where B = {x1,x2, ...,xm}.
But as RS ((X1 ∪X2 ∪ ...∪Xm)∪M)∇RS(φ) = RS(φ).
Hence we are not considering the edge
RS ((X1 ∪X2 ∪ ...∪Xm)∪M) to RS(φ). Hence the degree
of RS ((X1 ∪X2 ∪ ...∪Xm)∪M) is 2m − 1.

(b)Since there are m-equivalence classes with
cardinality equal to one in G(T(J)),
|RS(X1 ∪X2 ∪ ...∪Xm)|= 1 and |M|= 2n−m.

|C10| = (|RS(X1 ∪X2 ∪ ...∪Xm)|) |M| = 2n−m
.

Notation: For every 1 < r < m, let

Qr =

{

{Z1 ∪Z2 ∪ ...∪Zr} | Zi = {xi} or Xi

,i = 1,2, ...,r

}

. In the following theorem we discuss the

degree and cardinality of RS(Qr ∪ M) but when all Zi’s
are xi or when all Zi’s are Xi , the degree and cardinality
of such elements will fall under C5,C6 and C7. Hence for
the following discussion we assume that ∃ j,k ∋
1 ≤ j,k ≤ r,Z j =

{

x j

}

and Zk = Xk.

Theorem 12.(a)The degree of RS(Qr ∪M) is 2r.

(b)|C11|= 3(2n−m)(3m−1 − 2m + 1).

Proof.(a) Consider the element RS(Qr ∪ M). Note that
RS(Qr ∪M) will be connected to all elements of P(B1),
where B1 = {x1,x2, ...,xr}.
Also note that RS(Qr ∪M)∇RS

({

x j

})

, for r < j < m is
RS(φ). Hence the degree of RS(Qr ∪M) is 2r.

(b) Consider A1 = Z1,Z2, ...,Zm where Zi = {xi} or Xi.

Case:1 When r = 2
Two elements can be chosen from m elements in mC2

ways and to satisfy the condition that atleast one should
be {xi} and atleast on should be Xi, it can be done in 2C1

ways.
Hence when r = 2, the total number of ways is mC2 (2C1).

Case:2 When r = 3
We have mC3 ways of choosing 3 elements from A1 and
to satisfy the condition that it can be done in 3C1 + 3C2

ways.
Hence when r = 3,the toatal number of ways is
mC3 (3C1 + 3C2) ways.
Continuing this argument when r = m − 1, we have
mCm− 1 waysof chosing m− 1 elements from A1 and to
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satisfy the condition it can be done in
(m− 1)C1 +(m− 1)C2+ ...+(m− 1)Cm−2 ways.
Hence when r = m − 1 the total number of ways is

mCm− 1

[

(m− 1)C1 +(m− 1)C2+ ...+(m− 1)Cm−2

]

.

|C11| = 2n−m

(

mC2(2C1)+mC3(3C1 + 3C2)+ ...+mCm−1

[(m− 1)C1 +(m− 1)C2+ ...+(m− 1)C(m−2)]

)

.

= 2n−m

[

m−1

∑
r=2

mCr

(

r−1

∑
i=1

rCi

)]

.

= 3(2n−m)
[

3m−1 − 2m + 1
]

.

Theorem 13.(a)The degree of RS(Qm ∪M) is 2m − 1.

(b)|C12|= 2n−m(2m − 2).

Proof.(a) Consider the element RS(Qm ∪ M) where
Qm = {{Z1 ∪Z2 ∪ ...∪Zm} | Zi = {xi} or Xi}. Note that
RS(Qm ∪ M) will be connected to all elements of P(B)
where B = {x1,x2, ...,xm}. But as
(RS(Qm ∪ M))∇RS(φ) = RS(φ). Hence we are not
considering the edge RS(Qm ∪ M) to RS(φ). Hence the
degree of RS(Qm ∪M) is 2m − 1.

(b) Consider A1 = Z1,Z2, ...,Zm where Zi = {xi} or Xi.
The number of ways one element can be chosen from m

elements is mC1. The number of ways 2 elements can be
chosen from m elements is mC2. Continuing the process,
m− 1 elements can be chosen in mCm−1 ways.

|C12| = [mC1 +mC2 + ...+mCm−1] (|M|) .

=

[

m−1

∑
r=1

mCr

]

2n−m = 2n−m(2m − 2).

Theorem 14.(a)The degree of RS({xi}) ∪ M
′
, for every

xi ∈ B is 2.

(b)|C13|= m(2n−m − 1).

Proof.(a) Consider the vertex RS({xi}) ∪ M
′
) where

xi ∈ Xi, |Xi| > 1. The vertex RS({xi}) ∪ M
′

will be

connected to RS({xi}) ∪ M
′
)∇RS(Y ) where Y ∈ P(B).

RS({Xi}) ∪ M
′
)∇RS(Y ) are RS({xi}) and RS(φ). Hence

the degree of RS({xi})∪M
′

is 2.

(b) |RS({xi})|= m. and Since |M
′
|= 2n−m − 1

|C13| = (|RS({xi)}|) |M
′
| = m(2n−m − 1).

4 Application of Category Graph in finding

the Wiener Index

We have assumed that there are n-equivalence classes
with m classes whose cardinality greater than one and n-m

classes whose cardinality equal to one. Since the
cardinality of T (|T |) is 2n−m3m, it is difficult to calculate
the wiener index of a Rough Ideal based Rough Edge
Cayley graphs G(T (J)) as it deals with the distance from
each vertex to every other vertex. The categorization of
the vertices will make the complexity in finding the
weiner index simpler and hence we use the 13 categories
of vertices. Now its enough to find the distances from
each category to other. In Table:1 the vertices along with
their degrees and cardinalities in each category are given:

Table 1: Degrees and cardinalities of the different category

Category Vertices Cardinality Degree of

(Ci) each vertex

in the

Category

C1 RS(φ) 1 (2n−m)
(3m −2m)

−1

C2 RS{xi} m 2(2n−m)
(3m−1)

C3 RS(Xi ∪M) m(2n−m) 2

C4 M
′

2n−m −1 1

C5 RS({x1 x2, ...,xr}) 2m − (m+2) 2r(3m−r)
(2n−m)
+2r −2

C6 RS({x1 x2, ...,xr} [2m − (m+2)] 2r

∪M
′
) (2n−m −1)

C7 RS({X1 X2, ...,Xr} [2m − (m+2)] 2r

∪M) (2n−m)
C8 RS({x1 x2, ...,xm}) 1 2m +2n −3

C9 RS({x1 x2, ...,xm} 2n−m −1 2m −1

∪M
′
)

C10 RS({X1 X2, ...,Xm} 2n−m 2m −1

∪M)
C11 RS(Qr ∪M) 3(2n−m) 2r

(3m−1 −2m +1)
C12 RS(Qm ∪M) 2n−m(2m −2) 2m −1

C13 RS({xi}∪M
′
) m(2n−m −1) 2

4.1 Distance between the vertices of each

category to every other category:

In this section, we calculate the sum of the distances from
one category to every other category. This means that we
calculte the distance from the vertices of C1 to the vertices
of C2,C3, ...,C13. Then we calculate the distance from the
vertices of C2 to the vertices of C3,C4, ...,C13 and so on.
And we calculate the distance from the vertices of C12 to
the vertices of C13. The sum of the distances from the
vertices of one category to vertices of every other
category are shown in tables 2 to 7.
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Table 2: Sum of the distances from vertices of one category to the vertices of other categories

Categories C2 C3 C4 C5

C1 m m2n−m 2n−m −1 2m − (m+2)

C2 m(m−1)
m(2n−m) +
2m(m−1)(2n−m)

2m(2n−m)
2m(2m − (m + 2)) −
m(2m−1 −2)

C3 -

m(m − 1)2n−m +
m22n−m(2n−m −
1)

2m(2n−m)(2n−m −
1)

2m2n−m(2m − (m+2))

C4 - -
(2n−m −
1)(2n−m −2)

2(2n−m −1)(2m − (m+
2))

C5 - - -

∑m−1
r=2 mCr(mCr − 1) +

mC2

{

2∑m−1
r=2 mCr+1 −

[

(m − 2) +

(m − 2)(m − 3) + ... + (m − 2)(m −

3)...(1)
]

}

+ mC3

{

2∑
m−1
r=2 mCr+2 −

[

(m − 3) + (m − 3)(m − 4) + ... +

(m − 3)(m − 4)...(1)
]

}

+ ... +

mCm−1

{

2∑m−1
r=2 mCr+m−2 − (1)

}

Table 3: Sum of the distances from vertices of one category to the vertices of other categories

Categories C6 C7 C8 C9

C1 2m − (m+2)(2n−m −1) 2m − (m+2)(2n−m) 2 2(2n−m −1)

C2

(2n−m − 1)

[

2m(2m − (m +

2))−m(2m−1 −2)

]

(2n−m − 1)

[

2m(2m −

(m + 2)) − m(2m−1 −

2)

]

m m(2n−m −1)

C3
2m2n−m(2m − (m +
2))(2n−m −1)

2m2n−m(2m − (m +
2))(2n−m)

2m2n−m 2m2n−m(2n−m−
1)

C4
2(2n−m − 1)(2m − (m +
2))(2n−m −1)

2(2n−m −1)(2m − (m+
2))(2n−m)

3(2n−m −
1)

3(2n−m −
1)(2n−m −
1)

C5

(2m − (m + 2))(2n−m −

1)

[

2(2m − (m+2))−1

]

(2m − (m +

2))(2n−m)

[

2(2m −

(m+2))−1

]

2m−(m+
2)

(2m − (m +
2))(2n−m −1)

C6

(2m − (m + 2))(2n−m −

1)

[

(2m − (m + 2))(2n−m −

1)−1

]

2(2m − (m +
2))(2n−m − 1)(2m −
(m+2))(2n−m)

2(2m −
(m +
2))(2n−m−
1)

2(2m − (m +
2))(2n−m −
1)(2n−m −1)
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Table 4: Sum of the distances from vertices of one category to the vertices of other categories

Categories C10 C11 C12 C13

C1 2(2n−m) 3(2n−m)(3m−1 −2m +1) 2(2n−m)(2m −2) m(2n−m −1)

C2 m(2n−m)
m(2n−m)

[

5(3m−1) −

9(2m−1)+3

]

m(2n−m)(2m −2) m(2n−m)(2m−1)

C3 2m2n−m(2n−m)
2m2n−m(3)(2n−m)(3m−1 −
2m +1)

2m2n−m(2n−m)(2m −
2)

2m22n−m(2n−m −
1)

C4
3(2n−m −
1)(2n−m)

6(2n−m − 1)(2n−m)(3m−1 −
2m +1)

3(2n−m −
1)(2n−m)(2m −2)

2m(2n−m −
1)(2n−m −1)

C5
(2m − (m +
2))(2n−m)

(2m − (m+2))(2n−m)
(2m − (m +
2))2n−m(2m −2)

2m(2m − (m +
2))(2n−m −1)

C6

2(2m − (m +
2))(2n−m −
1)(2n−m)

6(2m − (m + 2))(2n−m −
1)(2n−m)(3m−1 −2m +1)

2(2m − (m +
2))(2n−m −1)(2m −2)

2(2m − (m +
2))(2n−m −
1)m(2n−m −1)

Table 5: Sum of the distances from vertices of one ctegory to the vertices of other categories

Categories C7 C8 C9 C10

C7

(2m − (m +

2))(2n−m)

[

(2m − (m +

2))(2n−m)−1

]

2(2m − (m +
2))(2n−m)

2(2m − (m +
2))(2n−m)(2n−m −
1)

2(2m − (m +
2))(2n−m)(2n−m)

C8 - - 2n−m −1 2n−m

C9 - - (2n−m −1)(2n−m −2) 2(2n−m −1)(2n−m)
C10 - - - (2n−m)(2n−m −1)

Table 6: Sum of the distances from vertices of one ctegory to the vertices of other categories

Categories C11 C12 C13

C7

2(2m − (m +

2))(2n−m)

[

(3)(2n−m)(3m−1−

2m +1)

]

2(2m − (m +
2))(2n−m)2(2m −2)

2m(2m − (m +
2))(2n−m)(2n−m −1)

C8 (6)2n−m(3m−1 −2m +1) 2n−m(2m −2) 2m(2n−m −1)

C9 6(2n−m −1)(3m−1 −2m +1) (2)2n−m(2n−m−1)(2m−2) 2m(2n−m −1)(2n−m −1)

C10 6(2n−m)2(3m−1 −2m +1) 2(2n−m)2(2m −2) 2m2n−m(2n−m −1)

Table 7: Sum of the distances from vertices of one category to the vertices of other categories

Categories C11 C12 C13

C11

(3)(2n−m)(3m−1 − 2m +

1)

[

(3)(2n−m)(3m−1 −2m +1)−1

]
6(2n−m)(2n−m)(3m−1 − 2m +
1)(2m −2)

6m(2n−m)(3m−1 − 2m +
1)(2n−m −1)

C12 - 2n−m(2m −2)

[

2n−m(2m −2)−1

]

2m2n−m(2m −2)(2n−m −1)

C13 - - m(2n−m−1)

[

m(2n−m−1)−1

]
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4.2 Wiener Index

The Weiner index W (G(T (J)))[2] of a graph G is defined
as the sum half of the distance between every pair of
vertices of G. In this section, we are going to obtain the
Wiener index of a Rough Ideal Based Rough Edge Cayley
Graph.

Wiener index of the Rough Ideal Based Rough Edge
Cayley Graph W (G(T (J)))

= Sum of the distances from vertices of one category
to the vertices of every other categories

=−3(k)3m−1 +5m(k)3m−1 −m(k)2m−1 −4m(k)−m2

+2m(k)2(3m)−m2(k)2 −2m2(k)+(k)2(2m)−2m(k)2

− (k)2 +6(k)2(3m−1)−k+1+(2m − (m+2))
[

− (2)(k)2m − (4)k− (2)2m +5+m+(6)(k)3m−1

−2m(k)2 +2m(k)+(6)3m−1(k)2 − (6)k3m−1 −m(k)

−2m(k)+2m −m(k)2 +m(k)+k−1+(6)3m−1(k)2

−2n−m −3(2m)(k)2 +m(k)2 −2m(k)+4(k)2

]

+
m−1

∑
r=2

mCr(mCr −1)+mC2

{

2
m−1

∑
r=2

mCr+1 −

[

(m−2)

+(m−2)(m−3)+ ...+(m−2)(m−3)...(1)

]}

+mC3

{

2
m−1

∑
r=2

mCr+2 −

[

(m−3)+(m−3)(m−4)

+ ...+(m−3)(m−4)...(1)

]}

+ ...+mCm−1

{

2
m−1

∑
r=2

mCr+m−2 − (1)

}

−2m−1+(6)(k)3m−1

− (5)(k)2m +(6)(k)+2m(k)+(k−1)

[

4(k)

+6(k)3m−1 +2m(k)−4(k)2m −2m+k−2

]

+(k)

[

6(k)3m−1 −4(k)2m +2(k)−2m+(k)(1)+2m(k)

]

+

[

3(k)3m−1 −3(k)2m +3(k)

][

− (k)2m −k+2m(k)

+(3)(k)3m−1 −2m−1

]

+

[

(k)2m −2(k)

][

2m(k)

−2m+(k)2m − (2)(k)−1

]

+(m(k)−m)(m(k)−m−1),

where k = 2n−m
.

= (2n−m)(3m−1)

[

9(2n−m)(3m−1)−6−m

]

+(2n−m)(2m−1)

[

2(2n−m)−4(2m)+7m+2

]

+2m

[

2m−2m +6

]

+2n−m

[

4−3m−2(m2)

]

−m2 −5m−6

+
m−1

∑
r=2

mCr(mCr −1)+mC2

{

2
m−1

∑
r=2

mCr+1 −
[

(m−2)

+(m−2)(m−3)+ ...+(m−2)(m−3)...(1)
]

}

+

mC3

{

2
m−1

∑
r=2

mCr+2 −
[

(m−3)+(m−3)(m−4)

+ ...+(m−3)(m−4)...(1)
]

}

+ ...+mCm−1

{

2
m−1

∑
r=2

mCr+m−2 − (1)

}

.

Example 1.[7] Let U = {x1,x2,x3,x4}.

Let X1 = [x1] = {x1,x3} and X2 = [x2] = {x2,x4} induced by R.

If B = {x1,x2} then

J =

{

RS(φ),RS({x1}),RS({x2}),RS({x1,x2})

}

For example,

RS(X1)∇RS({x1}) = RS({x1}) where RS(X1) ∈ T and

RS({x1}) ∈ J.

Hence there is an edge between RS(X1) and RS({x1}).
RS(X1)∇RS({x2}) = RS(φ), where RS(X1) ∈ T and

RS({x2}) ∈ J.

Hence there is an edge between RS(X1) and RS(φ).
Continuing this process we obtain the Rough Ideal based Rough

Edge Cayley Graph and is shown in Figure:1.

Consider the categories C1 and C3.

The only element in category C1 is RS(φ).
The elements of the category C3 are RS(X1) and RS(X2).
RS(X1)∇RS({x2}) = RS(φ) where RS({x2}) ∈ J.

RS(X2)∇RS({x1}) = RS(φ) where RS({x1}) ∈ J.

Hence, the elements of the category C3 are connected to C1.

Continuing this process we obtain the corresponding
category graph when n = m = 2 and is shown in figure:2 .

Wiener Index of the Rough Ideal based Rough Edge
Cayley Graph, W (G(T (J)))

=(1)(3)
[

9(1)(3) − 6 − 2
]

+ (1)(2)
[

2(1) − 4(4) +

7(2)+ 2
]

+ 4
[

2(2)− 4+ 6
]

+(1)
[

4− 3(2)− 2(4)
]

− 4−
10− 6 = 55.

Example 2.[7] Let U = {x1,x2,x3,x4,x5,x6}. Let

X1 = {x1,x3} = [x1], X2 = {x2,x4,x6} = [x2] and

X3 = {x5}= [x5] induced by R.

|X1|, |X2|> 1 and {x1,x2} be the pivot elements of these classes.
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Fig. 1: Rough Ideal Based Rough edge Cayley graph when
n=2 and m=2

Fig. 2: Category graph corresponding to the Rough Ideal
Based Rough edge Cayley graph when n=2 and m=2

|X3|= 1.

B = {x1,x2} then

J =

{

RS(φ),RS({x1}),RS({x2}),RS({x1,x2})

}

The Rough Ideal based Rough Edge Cayley Graph when n = 3

and m = 2 is shown in Figure :3 and the corresponding Category

Graph is shown in figure:4.

Wiener Index W (G(T (J)))

Fig. 3: Rough Ideal Based Rough edge Cayley graph for
n=3 and m=2

Fig. 4: Category graph corresponding to the Rough Ideal
Based Rough edge Cayley graph for n=3 and m=2

= (2)(3)
[

9(2)(3)− 6 − 2
]

+ (2)(2)
[

2(2)− 4(4) + 7(2) + 2
]

+

4
[

2(2)−4+6
]

+(1)
[

4−3(2)−2(4)
]

−4−10−6.

= 276

5 Conclusion

In this paper, degrees of all the vertices of a particular category

and cardinalities of each category are obtained. Wiener Index of

the Rough Ideal based Rough Edge Cayley Graph are obtained
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by using the categorization of vertices and cardinalities of each

category. All these concepts are illustrated through examples.

Our future work is to explore this category graph in the study of

Rough Ideal based Rough Edge Cayley Graph.
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