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Keywords: Graphs, Game chromatic number, Game chromatic index, Mycielski graph

1 Introduction

Let G be a finite graph and X be a set of colors. The
vertex coloring game on G is defined to be a game played
by two people Alice and Bob with Alice start playing the
game first. They take turns to color a vertex of G from X

so that no two adjacent vertices are colored with the same
color. Alice wins the game if it is possible to color all the
vertices of G with colors in X . Bob wins the game if at
any point of the game, there is a vertex which cannot be
colored with colors from X . The game chromatic number

of G, denoted by χg(G), is the minimum number of colors
needed in the color set X for which Alice has a strategy to
win. If χ(G) is the chromatic number of G and △(G) is
the maximum degree of G then
χ(G) ≤ χg(G) ≤ △(G) + 1. Bodlaender [1] introduced
the above game chromatic number,χg(G), of a graph G.
Later many people have tried to determine the game
chromatic number or its bounds for various classes of
graphs [2,3,5,9,10,14,15].

The game chromatic index is based on coloring the
edges of a graph instead of coloring the vertices and this
was introduced by Lam et al [4], Cai and Zhu [6]. Alice
and Bob color an uncolored edge of a graph G alternately
with a color from X with Alice start playing first. They
color the edges in such a way that adjacent edges do not
get the same color. Alice wins the game if it is possible to
color all the edges of G with colors in X . Otherwise Bob
wins. The game chromatic index of G, denoted by χg

′(G),
is the minimum number of colors needed in the color set
X for which Alice has a strategy to win. There are a few

results on game chromatic index of graphs which are
given in [6,7,8,12].

Let G be a graph with vertices v1,v2, ...,vn. The
Mycielski graph of G, denoted by µ(G), has G as an
induced subgraph together with n+ 1 additional vertices
u1,u2, ...,un,w such that each vertex ui is adjacent to w

and to the neighbors of vi (1 ≤ i ≤ n). Hence if there are n

vertices and m edges in G then µ(G) will have 2n + 1
vertices and 3m+ n edges.

In this paper, we find the game chromatic number and
game chromatic index of the Mycielski graphs of some
families of graphs. While playing the vertex coloring
game, a vertex v which is not colored is said to be color
i-critical[11] or critical, if the following conditions are
satisfied.

(i).color i is the only color available for v

(ii).v has an uncolored neighbor v′ such that color i is one
of the available colors for v′.

Observation 1: At any point of the game, if a vertex v is
color i-critical and if

(i).it is Bob’s turn to play the game then he will win.
(ii).it is Alice’s turn to play the game, then she has to save

the vertex v either by coloring it with color i or by
making color i unavailable for all the neighbors of v.

Observation 2: If at any point of the game, two vertices
are made critical and if Alice is not able to save both the
vertices in her next move, then Bob wins.

Notations:
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–If G is a graph, V (G) denotes its vertex set and E(G)
its edge set.

–Pm denotes the path of length m− 1.
–Cm denotes the cycle of length m.
–Ka,b denotes the complete bipartite graph with a

vertices in one partition and b vertices in other
partition.

–Fm denotes the friendship graph with a set of m

triangles having a common centre vertex.
–In µ(G), for 1 ≤ i, j ≤ n, let us call the edge joining vi

and u j as cross edge denoted by ci j, the edge joining w

and ui as star edge denoted by si and the edge joining
vi and v j as graph edge.

2 Game chromatic number of the Mycielski

graphs of some families of graphs

Theorem 2.1. For any integer n ≥ 5, χg(µ(Pn)) = 4.

Proof.
First we show that for n ≥ 5, χg(µ(Pn)) ≥ 4. To prove

this, we give a strategy for Bob to win using three colors.
This strategy is as given below.

The vertex in which The vertex with which

Alice colors in Bob responds

her first move

w vi, 3 ≤ i ≤ n−2, with a new

color. Now ui−1 and ui+1

become critical. Hence

Bob wins.

vi, 3 ≤ i ≤ n−2 Either vi−2 or vi+2 with

a new color. This makes

(vi−1 and ui−1) or

(vi+1 and ui+1)
critical respectively.

Hence Bob wins.

ui, 3 ≤ i ≤ n−2 Either ui−2 or ui+2 with

a new color. This makes

(vi−1 and w) or (vi+1 and w)
critical respectively.

Hence Bob wins.

v1,v2 , vn−1,vn, v3,v4, vn−3,vn−2 , u3,u4,

u1,u2, un−1 and un un−3 and un−2 respectively

with a new color and

each one of these

moves makes two

vertices critical. Hence

Bob wins.

Thus χg(µ(Pn))≥ 4. Now to show that χg(µ(Pn)) = 4, we
give a strategy for Alice to win the game using four colors.
Initial Step:

Alice colors the vertex w.

Recursive Step:

When Bob colors any of ui (vi), 1 ≤ i ≤ n, then Alice
colors the corresponding vi (ui) with the same color, if it is
available. Otherwise she uses some other color.

Observe that, using this strategy, at any stage of the
game, any vertex which is not yet colored is adjacent to at
most three distinctly colored vertices. Hence at least one
color is always available for any vertex. Thus χg(µ(Pn)) =
4, for n ≥ 5.�
Note:

It can be easily checked that for 2 ≤ n ≤ 4,
χg(µ(Pn)) = 3.

Theorem 2.2. For any integer n ≥ 5, χg(µ(Cn)) = 4.

Proof. We can see that V (µ(Pn)) = V (µ(Cn)) and µ(Cn)
contains all the edges of µ(Pn) and three more edges
namely v1vn, v1un and vnu1. It can be easily verified that
for n ≥ 5, χg(µ(Cn)) = 4 by using a similar argument as
given in the previous theorem.�

Note:

It can be easily checked that, χg(µ(C3)) = 4 and
χg(µ(C4)) = 3.

Theorem 2.3. For any integer m ≥ 2, χg(µ(Km,m)) = 3.

Proof. It can be easily checked that χg(µ(Km,m))≥ 3. Now
we show that Alice has a strategy to win the game using
three colors.

Let us partition the vertices of µ(Km,m) into five sets.
Denote them by A1,A2,A3,A4 and A5 such that
A1 = {v1,v2,v3, ...,vm}, A2 = {vm+1,vm+2, vm+3, ...,v2m},
A3 = {u1,u2,u3, ...,um}, A4 = {um+1,um+2,um+3, ...,u2m}
and A5 = {w}. Observe that each vertex in A1 is adjacent
to each vertex in A2 and each vertex in A4; each vertex in
A2 is adjacent to each vertex in A3; the vertex in A5 is
adjacent to each vertex in A4 and each vertex in A3. The
strategy for Alice to win the game with three colors is
given below.

Alice starts the game by coloring the vertex w. Bob can
color any of the remaining vertices in the second move and
the course of the game is explained as discussed below.

Case 1: When Bob colors a vertex of A1

Alice replies with a vertex of A4. In the following
moves, whenever Bob
(i) colors a vertex of A1 with the color which is already
used in A1 or colors a vertex of A4 with any color then
Alice remains playing in these two sets A1, A4 with colors
already used in A1 and A4.
This is always possible for Alice since |A1 ∪A4| is even.
(ii) colors a vertex of A1 with a color which is not already
used in A1, then Alice colors a vertex of A2.
(iii) colors a vertex of A2 or A3 then Alice colors a vertex
of A3 or A2 respectively.

Case 2: When Bob colors a vertex of A2

Alice replies with a vertex of A3. In the following
moves, whenever Bob
(i) colors a vertex of A2 with the color which is already
used in A2 or colors a vertex of A3 with any color then
Alice remains playing in these two sets A2, A3 with colors
already used in A2 and A3.
This is always possible for Alice since |A2 ∪A3| is even.
(ii) colors a vertex of A2 with a color which is not already
used in A2, then Alice colors a vertex of A1.
(iii) colors a vertex of A1 or A4 then Alice colors a vertex
of A4 or A1 respectively.

Case 3: When Bob colors a vertex of A4 or A3

Alice replies with a vertex of A1 or A2 respectively. In
the following moves, wherever Bob plays, Alice will play
in the same way as discussed above in Case 1 and Case 2.
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Observe that, using this strategy, at any stage, any
uncolored vertex is adjacent with at most two distinctly
colored vertices. As the set X has three colors, for any
uncolored vertex, at least one color is always available.�

Theorem 2.4. For any integer m ≥ 3, χg(µ(Fm)) = 4.

Proof. Fm has 2m+ 1 vertices. Let n = 2m+ 1 and v1 be
the centre vertex of Fm, where m ≥ 3. First we show that
χg(µ(Fm)) ≥ 4. To prove this, we give a strategy for Bob
to win the game using three colors. This strategy is as
given below.

The vertex in which The vertex with which
Alice colors in Bob responds
her first move

v1(u1) u1(v1) respectively.
This makes vi,
2 ≤ i ≤ n, critical.
Hence Bob wins.

w u1. Now Alice can color
any of the remaining
vertices with any available
color. But this makes
at least two vertices critical.
Hence Bob wins.

vi(ui), 2 ≤ i ≤ n v j(u j), i 6= j, 2 ≤ j ≤ n. This
makes (v1 and u1) or
(v1 and w) critical respectively.
Hence Bob wins.

Thus χg(µ(Fm))≥ 4. Now to show that χg(µ(Fm)) = 4
we give a strategy for Alice to win the game using four
colors. The strategy is as follows.

Alice starts by coloring v1. Now depending on Bob’s
move the game is decided. We have the following two
cases.

Case 1: Bob colors u1 or w

Alice replies with w or u1 respectively with the color
of v1 if it is available. If not, she will choose any of the
available colors. In the following moves, whenever Bob
colors ui(vi) then Alice replies with vi(ui), 2 ≤ i ≤ n, with
the same color.

Case 2: Bob colors ui or vi, 2 ≤ i ≤ n

Alice replies with u1 with the color of v1. Now Bob
colors any one of the remaining vertices. Now Alice
responds with w, if it is uncolored. Otherwise she colors
any uncolored vertex.

Alice wins in both the above situations. Thus
χg(µ(Fm)) = 4.�

3 Game chromatic index of the Mycielski

graphs of some families of graphs

For any simple graph G, △(G) ≤ χ
′

g(G) ≤ 2△ (G)− 1

where △(G) is the maximum degree of G. Game
chromatic index is known for paths, cycles, wheels and
some small graphs[6,7,8,12].

Definition Two edges e1 and e2 of a graph G are said to
be adjacent if they both are incident at a common vertex
v. For an edge e of a graph G, the neighbors of e are the
edges of G which are adjacent to it.

Theorem 3.1. For any integer n ≥ 7, χ
′

g(µ(Pn)) = n.

Proof. As the maximum degree of µ(Pn) is n,

χ
′

g(µ(Pn)) ≥ n. Now we show that χ
′

g(µ(Pn)) = n. Let

X = {1,2,3, ...,n} be the set of n colors. Observe that the
maximum number of neighbours of a cross edge is five
and that of graph edge is six. As we have n colors and
n ≥ 7, at least one color is always available for these
edges. Therefore, it is enough to show that Alice can
color the star edges using n colors, however Bob plays.
The strategy of Alice is as follows.

Initial Step:

Alice colors any one of the star edges s2,s3,s4, ...,sn−1.

Recursive Step:

Bob can color any edge in each of his turns that
follows. Irrespective of Bob’s moves, Alice keeps
coloring the star edges until all the star edges are colored
or Situation I or Situation II discussed below arises. Also
she prefers to use the color which Bob has used in the
previous move, if it is available. Otherwise she will use a
new color.

Each time when Alice colors a star edge, her first
preference would be a star edge which is adjacent to two
uncolored cross edges and her second preference would
be a star edge which is adjacent to one uncolored cross
edge and her last preference would be a star edge which is
adjacent to two colored cross edges.

Situation I: All but two star edges say si and s j are colored

and exactly one cross edge adjacent to each of si and s j are

colored, say cpi and cq j, 1 ≤ i, j, p,q ≤ n.

Now, Alice will wait for Bob to color among these
four edges. Till then she colors edges other than these
four edges. Note that this is always possible for Alice
because the total number of edges in the graph is odd.

In this situation, depending on Bob’s move the game
is decided. We have the following three cases. Let the two
uncolored cross edges at si and s j be cki and cl j, 1 ≤ k, l ≤
n.

If Bob colors cki or cl j with a new color then Alice colors
s j or si respectively with the same color.

If Bob colors cki or cl j with an already used color then
Alice colors cl j or cki respectively with any available color
which is already used in the game.

If Bob colors si or s j then Alice colors s j or si respectively
with any available color.

Situation II: All but two star edges say si and s j are

colored and both the cross edges adjacent to exactly one

of si and s j (say si) are uncolored (let these cross edges be

cki and cli) and exactly one cross edge adjacent to s j is

uncolored, say cp j, 1 ≤ i, j,k, l, p ≤ n.

In this situation,
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(i).if Alice has to play, then she chooses cki or cli and colors
it with an already used color. Now the situation is same
as Situation I.

(ii).if Bob has to play, then he can choose either a star edge
or a cross edge to color. If Bob colors a star edge si or
s j then Alice colors s j or si respectively. Suppose Bob
colors cki or cli then the play comes down to Situation
I. So Alice will play accordingly. If Bob colors a cross
edge cp j then Alice colors si with the same color.

Observe that using this strategy, at any stage, any
uncolored edge is adjacent to at most n − 1 distinctly
colored edges and hence at least one color is always
available.�

Theorem 3.2. For any integer n ≥ 6, χ
′

g(µ(Cn)) = n+ 1.

Proof. As the maximum degree of µ(Cn) is n,

χ
′

g(µ(Cn)) ≥ n. Now we show that Bob has a strategy to

win the game using n colors. Let X = {1,2,3, ...,n− 1,n}
be the set of n colors.

Initial Step:

In the first move, Alice colors any edge of µ(Cn).
Recursive Step:

Bob’s reply would be in coloring a star edge. Now
irrespective of Alice’s moves, Bob keeps coloring the star
edges until all but two star edges, say si and s j are
colored. While choosing the star edge, Bob’s first
preference would be a star edge which is adjacent to the
cross edge which Alice colored in the previous move if it
is uncolored. Otherwise, Bob colors some other star edge.

Now consider the stage, where only two star edges are
uncolored. As there are totally n star edges in the graph and
we have n colors in X , let the remaining two unused colors
be n− 1 and n. In this stage, Bob will color some edge
other than si,s j,ci(i−1),ci(i+1),c j( j−1) and c j( j+1) and wait
for Alice to color first among these six edges. Note that this
is always possible for Bob since the total number of edges
in the graph is even. Now depending on Alice’s move the
game is decided. We have the following two cases.

Case 1: Alice colors one of the uncolored star edges say si

In this case, n− 1 star edges are colored with n− 1
colors. Now Bob replies with a cross edge adjacent to s j

with the color n and hence no color is available for s j.

Case 2: Alice colors a cross edge adjacent to one of the
uncolored star edges, say si

Bob replies with a cross edge which is adjacent to s j

with the color n− 1. In the next move,

–if Alice colors a star edge then Bob replies with a cross
edge as in Case 1.

–if Alice colors a cross edge adjacent to si then Bob
colors a cross edge adjacent to s j with color n and
hence no color is available for s j .

–if Alice colors a cross edge adjacent to s j then Bob
colors a cross edge adjacent to si with color n− 1 and
there is no color available for one of si or s j .

Hence Bob wins in all the above situations with n

colors. Also observe that, in the stage (where only two

star edges are yet to color), if Alice uses a color n− 1 or n

for a graph edge which is adjacent to a cross edge, say cpq

such that cpq is at least one of
{ci(i−1),ci(i+1),c j( j−1),c j( j+1)} then Bob colors one of the
cross edges ci(i−1),ci(i+1),c j( j−1) and c j( j+1) which is
adjacent to cpq with the color which Alice has used in the
previous move. This makes the game to be in Bob’s hand
and hence Bob wins.

To show that, χ
′

g(µ(Cn)) = n+ 1, we give a strategy
for Alice to win the game using n+ 1 colors.

In the first move, Alice will color a star edge. In the
following moves, if Bob colors a cross edge then Alice
will reply with the star edge which is adjacent to it, if it is
uncolored. Otherwise she will color some other star edge.
Note that for every edge in the graph other than the star
edges, maximum number of neighbours is six. Hence at
least one color is always available for these edges as n+
1 ≥ 7. Thus Alice can win with n+ 1 colors.�

Theorem 3.3. For any integer n ≥ 3, χ
′

g(µ(K1,n)) = 2n.

Proof. Let m = n+ 1. Let v1 be the centre vertex of K1,n

and the remaining vertices be v2,v3,v4, ...,vm. As the

maximum degree of µ(K1,n) is 2n, χ
′

g(µ(K1,n)) ≥ 2n. To

show that χ
′

g(µ(K1,n)) = 2n, we give a strategy for Alice
to win the game using 2n colors. The strategy is as
follows.

Initial Step:

Alice colors the edge wu1.

Recursive Step:

Now depending on Bob’s move the game is decided.
We have the following two cases.

Case 1: Bob colors u1vi or wui (2 ≤ i ≤ m)

Now Alice replies with v1v j or v1u j respectively, 2 ≤
j ≤ m and i 6= j, preferably with the same color.

Case 2: Bob colors v1vi or v1ui (2 ≤ i ≤ m)

Now Alice replies with any edge incident to v1 if it is
uncolored. Otherwise she colors any other uncolored edge.

Observe that, using this strategy, Alice can win with 2n

colors. Thus χ
′

g(µ(K1,n)) = 2n.�

Conclusion

We have determined the game chromatic number of the
Mycielski graphs of paths, cycles, complete bipartite
graphs and friendship graphs and the game chromatic
index of the Mycielski graphs of paths, cycles and star
graphs.
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