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Abstract: In network theory, the problem of simulating one architecture into another architecture is converted into a graph embedding

problem. In this paper, we have extended our work in [1] and give algorithms to compute optimal edge-congestion of embedding

hypercubes, folded hypercubes, crossed cubes and circulant networks into hypertrees thereby proving that the edge-congestion bound

obtained in [1] is sharp.
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1 Introduction

A electronic network, or just a network, may be a
assortment of computers and alternative hardware parts
interconnected by communication channels that enable
sharing of resources and knowledge. The interconnection
network is a key element of a tightly coupled
multiprocessor system. In the implementation of any
algorithm, it is necessary that the code should be
compilable and executable on any machine. However, it is
far complicated in the case of parallel algorithms and
machines. This is due to the fact that the properties of
parallel machines highly depend on their interconnection
structure [2]. Small degree, small diameter, efficient
routing and embedding are desirable properties of an
interconnection network. [3].

In the study of interconnection networks, the
simulation of one architecture by another is important.
This problem is modeled as a graph embedding problem.
Graph embedding problems can be used to model parallel
processing systems. If a process can be subdivided into
subprocesses that can be executed parallely with
communications between certain subprocesses, then the
model depicting the process is a graph with vertices
represents subprocesses and edges representing
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communications between them. Graph embedding
problems find applications in optimal storage
representations for data structures, implementation of
parallel algorithms and in architecture simulation of
various interconnection networks [4]. A tasks interaction
graph whose vertices represents tasks and edges
represents direct communication between tasks is a model
for a parallel algorithm.

The quality of an embedding can be measured by
certain cost criteria. One of these criteria which is
considered very often is the edge-congestion. The
edge-congestion of an embedding is the maximum
number of edges of the guest graph that are embedded on
any single edge of the host graph. An embedding with a
large edge-congestion faces many problems, such as long
communication delay, circuit switching and the existence
of different types of uncontrolled noise. In data
networking, network congestion occurs when a link or
node is carrying so much data that its quality of service
deteriorates. Typical effects include packet loss or the
blocking of new connections. Therefore, a minimum
edge-congestion is a most desirable feature in network
embedding [5]. Edge-congestion of an embedding has
been well studied for a number of networks [6,7,8,9,10].

Hypercubes are structured interconnection networks
with a giant capacity for parallel computation and a high
degree of fault tolerance. The Cosmic Cube from Caltech,
the iPSC/2 from Intel are machines based on hyper cubes
that have been implemented commercially [12]. Mapping
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a communication graph into a hypercube multiprocessor
is known as the hypercube embedding problem.
Hypercubes are also known to simulate other
interconnection networks [13,14].

The circulant network is a derivation of the double
loop network [15]. Its optimal fault-tolerance and routing
potentials have induced the design of telecommunication
networks [16]. It is also utilized in VLSI design and
distributed computation [17,18,19]. Binary codes have
also been designed using circulant graphs [20]. Properties
of circulant graphs have been studied vastly and have
been surveyed by Bermond et al. [17]. Every circulant
graph is a vertex transitive graph and a Cayley graph [2].

An interconnection network called hypertree is
devised combining the best features of a binary tree and
the hypercube for multicomputer systems which allows a
considerable amount of memory to fit on a single VLSI
chip [21]. In this paper, we embed hypercubes, folded
hypercubes, crossed cubes and circulant networks into
hypertrees with minimum edge-congestion.

2 Basic Concepts

In this section we begin with the basic definitions and
preliminaries required for our subsequent work.

Definition 2.1. [22] Let G and H be finite graphs. An
embedding of G into H is an injective mapping f :
V (G) → V (H) which induces an injective mapping Pf :
E(G) → X where X = {Pf (u,v) : Pf (u,v) is a path in H

between f (u) and f (v) for (u,v) ∈ E(G)}.
The ratio of the number of vertices of H to the

number of vertices of G is addressed as the ”expansion”
of an embedding f . In this paper, we consider
embeddings with expansion one.

Definition 2.2. [22] Let f : G → H be an embedding. For
e ∈ E(H), let C f (e) denote the number of edges (u,v) of
G such that e is in the path Pf (u,v) between f (u) and f (v)
in H. In other words,

C f (e) =
∣
∣
{
(u,v) ∈ E(G) : e ∈ Pf (u,v)

}∣
∣ .

Then the edge-congestion of f : G → H is
C f (G,H) = maxC f (e), where the maximum is taken over
all edges e of H.

The edge-congestion of G into H is defined as
C(G,H) = minC f (G,H), where the minimum is taken
over all embeddings f : G → H. Further, if S is any subset
of E(H), then we define C f (S) = ∑

e∈S

C f (e). Illustration of

edge-congestion of an embedding from cylinder into a
path is given in Figure 1.

Definition 2.3. [2,24] For r ≥ 1, let Qr denote the
r-dimensional hypercube. The vertex set of Qr is formed
by the collection of all r-dimensional binary strings. Two
vertices x,y ∈ V (Qr) are adjacent if and only if the
corresponding binary strings differ exactly in one bit. The
vertices of Qr can also be identified with integers

1 3
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Fig. 1: Wiring diagram of a cylinder G into a path H with

C f (G,H) = 5

0,1, . . . ,2r − 1. For convenience we use the symbol x+ 1
instead of x, and therefore, the set of labels of the vertices
is 1,2, . . . ,2r.

Definition 2.4. [25] An incomplete hypercube on i

vertices of Qr is the subcube induced by
{1,2, . . . , i} and is denoted by Li, 1 ≤ i ≤ 2r.

Definition 2.5. [2] For two vertices x = x1x2 · · ·xr and
y = y1y2 · · ·yr of Qr, (x,y) is a complementary edge if and
only if the bits of x and y are complements of each other,
that is, yi = xi for each i = 1,2, . . . ,r. The r-dimensional
folded hypercube, denoted by FQr is an undirected graph
obtained from Qr by adding all complementary edges.

Definition 2.6. [26] Two 2-digit binary strings x = x1x0

and y = y1y0 are pair-related, denoted by x ∼ y, if and only
if (x,y) ∈ {(00,00),(10,10),(01,11),(11,01)}.

Definition 2.7. [26] The r-dimensional crossed cube CQr

is recursively constructed as follows: CQ1 is a complete
graph with two vertices labeled by 0 and 1. CQr consists
of two identical (r − 1)-dimension crossed cubes, CQr−1

0

and CQr−1
1 . The vertex u = 0ur−2ur−3 · · ·u0 ∈ V (CQr−1

0 )

and vertex v = 1vr−2vr−3 · · ·v0 ∈ V (CQr−1
1 ) are adjacent

in CQr if and only if

1. ur−2 = vr−2, if r is even; and
2. For 0 ≤ i < ⌊ r−1

2
⌋, u2i+1u2i ∼ v2i+1v2i

Definition 2.8. [17,24] The undirected circulant graph
G(n;±S), S ⊆ {1,2, . . . , j}, 1 ≤ j ≤ ⌊n/2⌋ is a graph with
vertex set V = {0,1, . . . ,n − 1} and the edge set
E = {(i,k) : |k− i| ≡ s(mod n), s ∈ S}.

It is clear that G(n;±{1}) is the undirected cycle Cn

and G(n;±{1,2, . . . ,⌊n/2⌋}) is the complete graph Kn.
The cycle G(n;±{1}) ≃ Cn contained in
G(n;±{1,2, . . . , j}), 1 ≤ j ≤ ⌊n/2⌋ is sometimes referred
to as the outer cycle C of G.

Definition 2.9. [21] The basic drawing of a hypertree is a
complete binary tree Tr. The nodes of the tree are
numbered as follows: The root node has label 1. The root
is said to be at level 1. Labels of left and right children are
formed by appending a 0 and 1, respectively, to the label
of the parent node. See Figure 2(a). The decimal labels of
the hypertree are depicted in Figure 2(b). Here the
children of the node x are labeled as 2x and 2x + 1.
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Fig. 2: (a) HT (4) with binary labels (b) HT (4) with decimal

labels

Additional links in a hypertree are horizontal and two
nodes in the same level i of the tree are joined if their
label difference is 2i−2. We denote an r level hypertree as
HT (r). The rooted hypertree RHT (r) is obtained from
the hypertree HT (r) by attaching to its root a pendant
edge. The new vertex is called the root of RHT (r), r ≥ 2.

Remark 2.10. HT (r) has 2r − 1 vertices and 3 (2r−1 − 1)
edges. The diameter and connectivity of HT (r) are 2r− 3
and 2 respectively and it is a planar graph [27].

3 A Lower Bound for Edge-congestion

For an embedding f of G into H, the dilation of an
embedding is outlined because the most distance between
pairs of vertices of host graph that are pictures of adjacent
vertices of the guest graph. The minimum taken all the
embeddings f is termed the dilation of embedding G into
H. Additional the add of the dilations in H of edges in G

is termed the wirelength of f . The minimum taken all the
embeddings f is termed the wirelength of embedding G

into H. In 1979, Garey et al. verified that embedding
issues are NP-complete [28].

The dilation, edge-congestion and the wirelength
parameters are completely different within the sense that
an embedding provides the minimum dilation needn’t
give the minimum edge-congestion or the minimum
wirelength and vice-versa. Even though there numerous
outputs and comparison on the edge-congestion problem,
there’s no economical methodology to work out precise
edge-congestion of graph embeddings [6,7,23]. In recent
years, Manuel and his team obtained a lower range for
dilation of an embedding exploitation minimum
wirelength associated developed the result as IPS Lemma
[29]. Further, the similar authors improved the range of
the dilation of an embedding without knowing wirelength
in the year 2014 and call it as dilation lemma [30]. Now,
we propose and prove the Edge-congestion Lemma to get
a tight range for edge-congestion of an embedding. We
also prove that the range is sharp by embedding the
hypercubes, crossed cubes, folded hypercubes and
circulant networks into hypertrees.

The following problem has been considered in the
literature [23,31], and is NP-complete [28].

Discrete Isoperimetric Problem : Let G = (V,E) be a
graph and A ⊆V. Denote

θG(A) = {(u,v) ∈ E | u ∈ A,v /∈ A}

and

θG(m) = min
A⊆V,|A|=m

|θG(A)|.

For a given m, where m = 1,2, . . . ,n, we consider the
problem of finding a subset A of vertices of G such that
|A| = m and |θG(A)| = θG(m). Such subsets are called
optimal [31,32].

Theorem 3.1. [32,33,34] Let Qr be an r-dimensional
hypercube. For 1 ≤ i ≤ 2r, Li is an optimal set on i

vertices.

Lemma 3.2. (Modified Congestion Lemma) [35] Let f be
an embedding of an arbitrary graph G into H. Let S be an
edge cut of H such that the removal of edges of S separates
H into 2 components H1 and H2 and let G1 and G2 be
subgraphs of G induced by f−1(V (H1)) and f−1(V (H2))
respectively. Also, S satisfies the following conditions:

(i). For every edge (a,b) ∈ E(Gi), i = 1,2,Pf (a,b) has no
edges in S.

(ii). For every edge (a,b) ∈ E(G) with a ∈V (G1) and b ∈
V (G2), Pf (a,b) has exactly one edge in S.

(iii). V (G1) and V (G2) are optimal sets.

Then C f (S) is minimum over all f and C f (S) =
∑

v∈V (G1)
degG(v)− 2|E(G1)|= ∑

v∈V (G2)
degG(v)− 2|E(G2)|.

Remark 3.3. When the guest graph G is regular, it is
enough to check whether V (G1) is an optimal set [13].

The following lemma is the main result of this paper
and is formulated as Edge-congestion Lemma which
gives a tight bound for the embedding parameter
’edge-congestion’.

Lemma 3.4. (Edge-congestion Lemma) Let G and H be
graphs of the same order and let f : G → H be an
embedding. Let S be an edge cut of H satisfying the
conditions of the modified congestion lemma. Then

C(G,H)≥
C f (S)

|S|
.

Proof. By the Modified Congestion Lemma, the inverse
images of the sets H1 and H2 with respect to the
embedding f are maximum subgraphs of G. Therefore
C f (S) is minimum.

There is at least one edge in S with edge-congestion at

least
C f (S)

|S| . Further, for any embedding g of G into H,

Cg(G,H) ≥
Cg(S)

|S|
≥

C f (S)

|S|
, and hence

C(G,H) ≥ min
g

Cg(G,H)≥ min
g

C f (S)

|S|
≥

C f (S)

|S|
.�
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4 Results and Discussions

Minimum edge-congestion has been obtained for
embedding hypercubes into rectangular grids [23] and
n-dimensional grids [13]. In this section, we obtain the
edge-congestion of embedding hypercubes, folded
hypercubes, crossed cubes and circulant networks into
hypertrees and show that the bound obtained from
Edge-congestion Lemma is tight.

4.1 Hypercubes into Hypertrees

For proving the main result, we need the following results.

Lemma 4.1. For i = 1,2, . . . ,r−1, NcutS2i

i = {2i+1,2i+
2, . . . ,2i+1 − 2} is an optimal set in Qr.

Proof.Let L2i denote the incomplete hypercube on 2i

vertices. Define ϕ : NcutS2i

i → L2i by ϕ(2i + k) = k. If the

binary representation of 2i + k is α1α2 · · ·αr then the
binary representation of k is 00 · · ·00

︸ ︷︷ ︸

r−i times

αr−i+1αr−i+2 · · ·αr.

Thus the binary representation of two numbers x and y

differ in exactly one bit ⇔ the binary representation of
ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x,y) is

an edge in NcutS2i

i ⇔ (ϕ(x),ϕ(y)) is an edge in L2i .

Hence NcutS2i

i and L2i are isomorphic. By Theorem 3.1,

NcutS2i

i is an optimal set in Qr.

Theorem 4.2. Let G be an r-dimensional hypercube Qr

and H be the rooted hypertree RHT (r), r ≥ 3. Then the
edge-congestion of embedding G into H satisfies

C(G,H)≥ 2r−2 + r− 3.

Proof. Let f be an embedding from G into H. Label the
vertices of Qr by lexicographic order [22] from 0 to 2r −1
and use the symbol x + 1 instead of x. Therefore the
labeling of Qr is from 1 to 2r. Removal of the horizontal
edges in a rooted hypertree RHT (r) yields a rooted
complete binary tree. Label its vertices by inorder
labeling [36] using the sequence of numbers
1,3,5, . . . ,2r − 1,2,4,6, . . . ,2r. See Figure 3. We assume
that the labels of hypertree vertices represent the
hypercube vertices that are assigned to them.

Let S be the edge cut in RHT (r) given by
S = {(2r−2 − 1,2r−1 − 1),(2r−2,2r−1)}. See Figure 3. For
r ≥ 3, E(RHT (r))\S has two components H1 and H2,
where V (H1) = {1,2, . . . ,2r−1 − 2}. Let G1 = f−1(H1)
and G2 = f−1(H2). By Theorem 3.1 and Lemma 4.1, G1

is an optimal set and S satisfies conditions (i), (ii) and (iii)
of the Modified Congestion Lemma. Therefore
C f (S) = 2r−1 + 2r − 6 is minimum. By Edge-congestion
Lemma,

C(G,H)≥
2r−1 + 2r− 6

2
= 2r−2 + r− 3.�
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Fig. 3: Labeling of Q5 and RHT (5)

Congestion Algorithm A

Input: The r-dimensional hypercube Qr and the rooted
hypertree RHT (r), r ≥ 3.

Algorithm: Label the vertices of Qr by lexicographic
order [22] from 0 to 2r − 1 and use the symbol x + 1
instead of x. Therefore the labeling of Qr is from 1 to 2r.
Removal of the horizontal edges in a rooted hypertree
RHT (r) yields a rooted complete binary tree. Label its
vertices by inorder labeling [36] using the sequence of
numbers 1,3,5, . . . ,2r − 1,2,4,6, . . . ,2r. Let f (x) = x for
all x ∈ V (Qr) and for (a,b) ∈ E(Qr), let Pf (a,b) be a
shortest path between f (a) and f (b) in RHT (r).

Output: An embedding f of Qr into RHT (r) with edge-
congestion 2r−2 + r− 3.

Proof of correctness: Label the vertices of Qr and
RHT (r) using Congestion Algorithm A. We assume that
the labels represent the vertices to which they are
assigned.

For 1 ≤ i ≤ r−2, 1 ≤ j ≤ 2r−(i+1) and j odd, let Si
j be

edge cuts in RHT (r) given by
Si

j = {( j 2i+1 − 2i − 1, j 2i+1 − 1),( j 2i+1 − 2i, j 2i+1)}.

For 1 ≤ i ≤ r− 2, 1 ≤ j ≤ 2r−(i+1) and j even, let Si
j

be edge cuts in RHT (r) given by Si
j = {( j 2i+1 − 2i −

1, j 2i+1 − 2i+1− 1),( j 2i+1 − 2i, j 2i+1 − 2i+1)}.
Let S1 and S2 be the edge cuts in RHT (r) given by S1 =

{(2r,2r −1)} and S2 = {(2r−1,2r−1),(2r −1,2r−1−1)}.
Let S3 be the set of all horizontal edges in RHT (r).

Then {Si
j : 1 ≤ i ≤ r− 2,1 ≤ j ≤ 2r−(i+1)}∪{Si : i =

1,2,3} is a partition of E(RHT (r)). See Figure 3. Note
that, for i = r− 2 and j = 1, Si

j = S = {(2r−2 − 1,2r−1 −

1),(2r−2,2r−1)}.

For each i, j, 1 ≤ i ≤ r − 2, 1 ≤ j ≤ 2r−(i+1),
E(RHT (r))\Si

j has two components H i
j1 and H i

j2, where

V (H i
j1) = {( j − 1)2i+1 + 1,( j − 1)2i+1 + 2, . . . ,

j 2i+1 − 2}. Let Gi
j1 = f−1(H i

j1) and Gi
j2 = f−1(H i

j2). By

Theorem 3.1 and Lemma 4.1, Gi
j1 is an optimal set and

each Si
j satisfies conditions (i), (ii) and (iii) of the
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Modified Congestion Lemma. Therefore
C f (S

i
j) = 2i+1(r− i− 1)− 2r+ 4i+ 2 is minimum.

Let e1 and e2 be cut edges in Si
j, 1 ≤ i ≤ r − 2,

1 ≤ j ≤ 2r−(i+1). Then by Congestion Algorithm A, there
exists a unique shortest path between any pair of vertices
f (x), f (y), where (x,y) ∈ E(Qr). By symmetry property,
the number of paths crossing the edge e1 is equal to
2i(r− i− 1)− r+ 2i+ 1= e2 ≤ 2r−2 + r− 3.

For i = 1, E(RHT (r))\Si has two components Hi1 and
Hi2, where V (Hi1) = {2r}. Let Gi1 = f−1(Hi1) and
Gi2 = f−1(Hi2). Gi1 is an optimal set and Si satisfies
conditions (i), (ii) and (iii) of the Modified Congestion
Lemma. Therefore C f (S

i) = r is minimum and is less

than 2r−2 + r− 3.

For i = 2, E(RHT (r))\Si has two components Hi1 and
Hi2, where V (Hi1) = {2r − 1,2r}. Let Gi1 = f−1(Hi1) and
Gi2 = f−1(Hi2). Gi1 is an optimal set and Si satisfies
conditions (i), (ii) and (iii) of the Modified Congestion
Lemma. Therefore C f (S

i) = 2r − 2 is minimum and is

less than 2r−2 + r − 3. It is easy to see that for e,e ∈ S3,
the edge-congestion of the edge 1. Hence the result. �

Proceeding along the same lines, we prove the
following results.

Theorem 4.3. Let G be an r-dimensional folded hypercube
FQr and H be the rooted hypertree RHT (r), r ≥ 3. Then
the edge-congestion of embedding G into H is given by

C(G,H) = 2r−1 + r− 4.

Theorem 4.4. Let G be an r-dimensional crossed cube
CQr and H be the rooted hypertree RHT (r), r ≥ 3. Then
the edge-congestion of embedding G into H is given by

C(G,H) = 2r−2 + r− 3.

4.2 Circulant Networks into Hypertrees

For proving the main result, we need the following result.

Theorem 4.5. [37] A set of k consecutive vertices of
G(n;±1), 1 ≤ k ≤ n induces a maximum subgraph of
G(n;±S), where S = {1,2, . . . , j}, 1 ≤ j ≤ ⌊n/2⌋, n ≥ 3.
�

Theorem 4.6. Let G be the circulant graph G(2r − 1;±S),
S ⊆ {1,2, . . . , j}, 1 ≤ j < ⌊n/2⌋ and H be the hypertree
HT (r), r ≥ 3. Then the edge-congestion of embedding G

into H satisfies

C(G,H)≥
j( j+ 1)

2
.

Proof. Let f be an embedding from G into H. Label the
consecutive vertices of G(2r − 1;±{1}) in G(2r − 1;±S),
S ⊆ {1,2, . . . , j}, 1 ≤ j < ⌊n/2⌋ as 1,2, . . . ,2r − 1 in the
clockwise sense. Removal of the horizontal edges in a
hypertree HT (r) yields a complete binary tree. Label its
vertices by inorder labeling [36] using the sequence of
numbers 1,3,5, . . . ,2r − 1,2,4,6, . . . ,2r − 2. We assume

that the labels of the hypertree vertices represent the
circulant graph vertices that are assigned to them.

Let S be the edge cut in HT (r) given by S = {(2r−2 −
1,2r−1−1),(2r−2,2r−1)}. For r ≥ 3, E(HT (r))\S has two
components H1 and H2, where V (H1) = {1,2, . . . ,2r−1 −
2}. Let G1 = f−1(H1) and G2 = f−1(H2). By Theorem
4.5, G1 is an optimal set and S satisfies conditions (i), (ii)
and (iii) of the Modified Congestion Lemma. Therefore
C f (S) is minimum and C f (S) ≥ j( j + 1), where 1 ≤ j <
⌊n/2⌋. Then by Edge-congestion Lemma,

C(G,H)≥
j( j+ 1)

2
.�

Congestion Algorithm B

Input: The circulant graph G(2r − 1;±S),
S ⊆ {1,2, . . . , j}, 1 ≤ j < ⌊n/2⌋ and the hypertree HT (r),
r ≥ 3.

Algorithm: Label the consecutive vertices of
G(2r − 1;±{1}) in G(2r − 1;±S), S ⊆ {1,2, . . . , j},
1 ≤ j < ⌊n/2⌋ as 0,1, . . . ,2r − 1 in the clockwise sense.
Removal of the horizontal edges in a hypertree HT (r)
yields a complete binary tree. Label its vertices by inorder
labeling [36] using the sequence of numbers
1,3,5, . . . ,2r − 1,2,4,6, . . . ,2r − 2. Let f (x) = x for all
x ∈ V (G(2r − 1;±S)) and for (a,b) ∈ E(G(2r − 1;±S)),
let Pf (a,b) be a shortest path between f (a) and f (b) in
HT (r).

Output: An embedding f of G(2r − 1;±S) into HT (r)

with edge-congestion
j( j+1)

2
. �

Proof of correctness of Congestion Algorithm B follows
the same lines as that of Congestion Algorithm A.

Theorem 4.7. Let G be the circulant graph G(2r − 1;±S),
S ⊆ {1,2, . . . , j}, 1 ≤ j < ⌊n/2⌋ and H be the hypertree
HT (r), r ≥ 3. Then the edge-congestion of embedding G

into H is given by

C(G,H) =
j( j+ 1)

2
.�

5 Concluding Remarks

In this paper, we obtain a strategy to compute
edge-congestion of an embedding. Further, we compute
the edge-congestion of embedding hypercubes, folded
hypercubes, crossed cubes and circulant networks into
hypertrees. Using the techniques of Section 3, we have
the following result.

Theorem 5.1. Let G be an r-dimensional augmented
hypercube AQr [29] and H be the rooted hypertree
RHT (r) r ≥ 3. Then the edge-congestion of embedding G

into H is minimum.
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