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Abstract: In this paper, in-depth analysis of faults in the code phase is detected through integral methods that identify the error

in software. The repositories of the data set are collected during the software product development life cycle model, which is then

integrated with a machine learning algorithm namely Bayesian decision theory to detect the error probabilities and to predict unbound

error during the prediction of the software faults. In prior, the faults are predicted in repository for a given data set using error probability

and error integral method that identify the probability of error and correction, which is then applied with Gaussian method to find the

levels of the error probability with minimum and maximum integral of acceptable faults in the repository.

Keywords: Software fault prediction, repository mining, error probability, integral method

1 Introduction

In the domain of software testing, bugs play a major role
that could be termed Software Defect. This is classified
into various aspects based on their performance viz.,
error, flaw, failure or fault. The bug occurs due to the
unexpected use of the customers. The bugs are predicted
through software testing, which in turn is referred as
Software defect prediction that predicts the defective
modules in the code developed. The majority of machine
leading programs are incapable of extracting defects from
the database. The supervised learning is used to identify
defect and predict at the logical level, where the code
sample is used in the test improving the performance of
defect prediction [1,2].

Artificial models [3,4,5,6] are used recently to solve
a wide range of computation applications hard to be
solved using analytical and numerical computations. In
this paper, we focus on the fault prediction rate in the
product life cycle model by using Bayesian decision
theory [7] as one of machine-learning models with the
help of large historical data set [9]. Bayesian decision
theory is a basic concept for statistical loom for the
problem to find the pattern matching of fault predication
with reference to the existing stored data in repository in
order to find the feasible solution of mining the data.

Classification of decision theory helps to minimize the
error probability using integral of fault prediction [10].
Px(x/W1) indicates that the density task for accidental
variable of X, given in data set, uses Bayes to find the
source of error in software coding.

In software development life cycle, testing plays a
major role in which fault identification is carried out
through the mining methods, where the results are termed
as bugs. A bug repository has stored details about the
bugs and it plays a significant role in supervising software
bugs in coding [22]. The challenges are focused on the
problem raised during the code tested. The tested results
are being stored in the repository, which help in handling
to handle the software development tasks in the future by
comparing the faults raised during the development.

A software defect and bug is a state in a software
product which does not encounter the end-user
expectations [11]. The different types of exploratory
research are used to identify the faults from the software
packages.

Ubhiand in 2017 [11] found that data mining methods
have reduced the fault-prone real-time system earlier to
the testing phase of the software development life cycle.
The software mining methods have been evolved for the
purpose of enhanced evaluation methods, fault tolerance,
to rationalize the decisions for efficient quality attributes
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and by enabling to take better implications from the
mining approaches. Naheed Azeem in 2011 [1] suggested
the unsupervised learning framework to find out the best
algorithm for defect forecasting. Furthermore by
analyzing the effect of feature selection and the cost,
responsive learning procedures can be used to develop
better defect prediction replicas. Julie in 2014 [12]
discussed the software liability and effort forecast which
is a significant task to curtail costs of a software project
and to forecast the time for completion with fault prone
model. By using various data mining techniques, the
analytical models are not only precise but also
comprehensible. By applying the mining method, the
ALPA is used to progress the rule set in terms of fidelity.
Wei Fu in 2017 [2] revisited the unsupervised model by
approaching the quality data from software schemes,
which are time-consuming and expensive due to
collection of unlabeled data. The supervised method
suggested by the author is used to identify the defective or
non-defective codes that are selected as best alternate
techniques for labelled data. The supervised forecasters
are one way method that are suitable to select the best
model for defect prediction. Kharche in 2017 [9]
allocated the correct potential developer for bug fixing,
which has been done through the machine-learning
algorithm, termed as bug Triage. The machine-learning
algorithm automates the bug triage to help the
organization to minimize the time and cost, thus
improving the quality of model by dealing with bugs. The
best tentative outcome shows that grouping of CHI and
ICF yields the best accuracy rate, which is optimal for
training set reduction. This is considered as a powerful
tool through machine learning algorithm for training set
of bug triage to improve the software quality. Viji in 2017
[10], described the software fault prediction that plays a
significant role in the software reusability which results in
software quality, this reduces the time and cost for
software testing. The software fault prediction predicts
the fault based on historical data and different machine
learning techniques form the repository. The k-mean
method is used for discretization. Earlier, Apriori
algorithm is used to generate rule in data mining for
larger data set. The combination of apriori algorithm and
K-Means method is used to minimize the faults in dataset.
There was a focus on elaborating machine learning to
improve the accuracy of predicting software defects in the
code. Periasamy in 2017 [13] uses defect prediction
model (clustering, classification and association rule) that
reduces the defects and contributes to the removal of the
bugs ends with a quality software system. The correct
prediction of bugs in the software product during the
software testing contributes to the product quality and
eases the maintenance by the clustering, classification,
and the association rule.

Harald Altinger in 2017 [14] describes the fault in
developing software that suffers from a robust imbalanced
distribution to a low bug rate in the developed model. The

turning parameters are required for predictive low
performance.

Awni Hammouri in 2018 [15] found that Software
Bug Prediction (SBP) played a key role in the fault free
detection of the software development and maintenance.
The machine learning algorithm with the supervised data
set has been used for the fault prediction. The fault
prediction can be calculated mathematically through the
Gaussian bound, Chernoff bound, and Bhattacharyya
bound by proving the error prediction rate at product life
cycle [17]. Furthermore for deeper analysis of the fault,
machine learning models and data mining techniques [8,
19,6,25,26] are used for software repositories to extract
the flaws in the software product.

Project team is not tested and handed over to
customer, the customer receives the faulty product at the
end. Error may start to creep in the system from the
phases requirements onwards, which then falls at coding
phase. Risk is a likelihood, which is a program fault and
this results to a negative impact on the business. Defects
are also called as Fault or Bug in IT industry and the
following list provides the definition of a Defect.

–A defect is the mismatch between the program and its
specification of the requirement of an error, if and only
if the specification exists and is correct to the given
requirement.

–For the lack of desire for completion or perfection of
the coding; a deficiency occurs.

–The shortcoming prevents an item from being
complete, desirable, effective, safe, or of merit, which
makes it to malfunction or fail in its purpose.

–A defect is an imperfection that causes inadequacy or
failure; a shortcoming to fail.

Debugging process can make the test cases execute
and its test execution results are assessed. Then the
differences between the actual and the expected behavior
is identified and analyzed. Once the root cause of the
problem is diagnosed, the developer corrects and removes
the errors from the system [16,18]. Care should be taken
while performing the debugging process to make sure that
the error is properly removed and it does not introduce
any new error in the system.

Basically the two outcomes of the debugging process
are

–Error is properly diagnosed and the cause will be found
for the error, which is then removed from the system

–Error is not properly diagnosed and hence the cause is
not found so the error/fault is not removed from the
system

Debugging process requires more concentration and
sound knowledge on the entire architecture of the
program which helps the debugging personnel to identify
where exactly the problem lies in the system and the
solution is provided to overcome such faults [20]. Few
developers are very good at debugging with the analytical
and logical thinking mind set and some people don’t have
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those skills for debugging.

Developers are not good in debugging start this activity
to correct the error then there exists a high chances of more
errors creeping into the system. As part of the error fixing,
the developer finds it difficult to find the cause and fix the
error to be removed from the system [21,22].

1.Error may be temporary in its nature and while
debugging, the proper root cause is not found

2.Error may be caused by human which is more difficult
to find out.

3.Error may be time consuming to be fixed and removed
from the system.

4.Error gets fixed automatically while the developer fixes
other errors in the program.

5.Error may be caused due to the logic used in the
calculation like having Round-Off for the output
number that is achieved.

The outline of the paper is presented here: Section 2
provides the proposed method. Section 3 deals with error
bounds for normal densities. Section 4 and 5 provide the
details about Chernoff and Bhattacharyya bound in the
proposed method, respectively. Section 6 presents the
algorithm for error probabilities and integrals of fault
predictions. Section 7 concludes the entire work.

2 Methodology

The mathematical model is supported to solve the
complex real-life model. The mathematical proof of the
theory concept with logical solution comes from two
problems, for large data sets have error analytics is very
difficult part to identified the attributed of occurs, even
though the number of tools available in the software
industries. The error probability and error integral are also
types of mathematical tools to find the probability of error
and probability of correction. The error probability and
error integral is deal in software data repositories in this
research to identify the fault error in the software coding
and development phases.

Bayesian decision theorem, is used to describe the
conditional probability of an event and it is based on the
prior knowledge of conditions that might be related to this
event. The conditional probability removes the unwanted
relevant event based on the conditional priority because
the Beyers rule is applicable for less errors[23].

Probability of error: it makes the context of decision
making of events, and it may be an making worm
decision and it have a different type of error of its values
[24]. The operation of a general classifier is called as
Bayer’s, or in other words it is refereed as the origin of its
error. By considering the first two criteria of the Bayers
i.e., by spitting the space into two segments, R1 and R2.

Fig. 1: Faults reducible identification region.

(with the reference of the probability of error).

Error can occur in two ways, and it occurs in the
observation as follows (i) x falls in R2, which denotes
state of nature as ω1 and (ii) x falls in R1, which denotes
true state of nature as ω2. Since the following events are
mutually coordinate and it can be exclusive and
exhaustive, and the probability of error is calculated as:

P(error) = P(xεR2,ω1)+P(xεR1,ω2)

= P(xεR2|ω1)P(ω1)+P(xεR1|ω2)P(ω2)

=

∫ .

R
2

P(x|ω1)P(ω1)dx+

∫ .

R
1

P(x|ω2)P(ω2)dx

(1)

The two integral R1 and R2 represent the area in the tails
of the function P(x|ω)P(ω) since the judgment point of
the regions R1 and R2 are chosen arbitrarily and the
likelihood of error is not as small as it may be. Figure 1
shows the triangular area which is marked as fault
reducible error, can be eliminated the decision boundary.
In general, the bayes optimal make the decision boundary
of regions which gives the lowest probability of fault
error. The P(x|ω1)P(ω1)≥ P(x|ω2)P(ω2) and it gives the
advantages to classify R1. The slighter quantity adds to
the error integral; and it is exactly following the Bayes
decision to rule achieve.
This result is described in the one-dimensional case as

shown in Figure 1. The probability is flaws for equal
priors and decision point is mentioned as non-optimal
solution of the error. The blue colored area represents the
probability of errors that decide ω1 , when the state of
nature is in fact ω2 ; the yellow color represents the
opposite, as given in the above equation 1. If the decision
boundary is instead at the point of equal posterior
probabilities, xB, then this fault reducible error is left out
and the total spotted area is the least probable. Bayes
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decision provides the error rate by calculating through the
above equation.

The other ways to be wrong than to be right, and is
simpler to work out the prospect of being precise. The
probability of the error rate can be correct by Equation
(2).

P(correct) =
c

∑
i=1

P(XεR,ω) (2)

3 Error Bounds for Normal Densities

c

∑
i=1

P(xεR,ω)P(w) (3)

c

∑
i=1

∫
R
2

P(xεR,ω)P(w)dx (4)

The general fault prediction, the result pretends neither on
how the space is segregated into decision area R1 and R2
nor the form of the distributions shown in Equation (3)
and Equation (4).
The Baye’s classifier works by making the best use of
probability to pick out the error in the region of R1 and
R2. So that the integrand of the Equation (4) is utmost for
all x; no other partition can yield a reduced possibility of
error based on Equation (4).

The Baye’s rule pledges the lowest average error rate
of the fault prediction, and the result calculation on the
limits for normal densities of the error limit. The
Gaussian results would not specify the probability of
error. The error for the Gaussian case would be fairly
challenging naturally and especially in high dimensions,
because of the irregular nature of the decision area R1 and
R2in the integral.

4 Chernoff Bound

To device a bound for the error of the fault prediction is
done by the following inequality:

min[a,b]≤ aα b1−β f or a,b ≥ and 0 ≤ β ≤ 1 (5)

By understanding Equation (5), the inequality can be
assumed as a > b in the condition as without loss of fault
prediction and it noted that b ≤ aβ b1−β = (a/b)β b and

this inequality is distinctly applicable, since (a/b)β>1. By
Equation (4) and Equation (5), and apply this inequality
to Equation (5) and the bounded region.

P(error)≤ Pβ (ω1P1−β (2)
∫

Pβ (x|ω)P1−β (x|ω)dx f or 0 ≤ β ≤ 1

(6)

The integral is over all feature space and there is no
restriction to impose combination limits corresponding to
decision areas for the fault deduction region. If the
conditional probability error is usual, the integral in
Equation (6) can be estimated analytically, by docile the
fault deduction in the region.

∫
P(x|1)P1−β (x|ω)dx = e−k(β) (7)

Where as the following equation predicts the error rate

K(β ) = β (1−β )
2

(µ2− µ1)t[β ∑1+(1−β )∑2]−1, (µ2− µ1)+ 1
2
ln

|β ∑1+(1−β ∑2|
|∑1||∑2|1− .

(8)

Equation (8) shows a classic sample of e−k(β ) the varies
with β . The Chernoff bound on P(error) is set up by
rationally or statistically deciding the value of β that

decreases e−k(β ), and substituting the results in Equation
(8). The optimization has been done based on the
Chernoff bound one-dimensional space, although the fact
that the allocation among them might be in a space of
arbitrarily high element.

5 Bhattacharyya Bound

The universal condition of Chernoff bound upon β which
is more typical of extensive range of problems occurs by
fault prediction. The bound is to loose extreme values
(β =⇒ 1 andβ =⇒ 0), and tighten the transitional ones
inside its boundary region. The optimal β value rests on
the parameters of allocations and error probability. A
computationally simpler but considerably fewer tight
bound can be imitative by simply analyzing the
consequences for β = 1

2
. Equation (9) is the called

Bhattacharyya bound on the error.

P(error)≤
√

P(ω1)P(ω2)

∫ √
P(Xω1)P(Xω2)dx

=
√

P(ω1)P(ω2)e−k(1/2) (9)

Where by Equation (9), the way to have for the Gaussian
case is:

K(1/2) = 1
8
(µ2− µ1)[∑1+∑2

2
]−1(µ2− µ1)+ 1

2
ln

∑1+∑2
2√

|∑1||∑2|
(10)

The Chernoff and Bhattacharyya limits are still adopted,
even if the original distributions are not Gaussian.
However, the distributions of fault predictions deviate
from Gaussian and the limits do not cross its boundary
limit.

6 Algorithms Error Probabilities and

Integrals of Fault Predictions

The following algorithm shows the steps of software fault
prediction using error probabilities and integral to identify
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the fault boundary region with Mathematical equation.

Algorithms for P(Error) and P(Correction) of Faults
Predictions

Step 1: Finding classification error

Condition 1: R2 ⇐ X ⇐True state of ω1(P(X ∑R2.ω1)
Condition 2: R1 ⇐ X ⇐True state of ω1(P(X ∑R1.ω2)
If, P(error) = integral of R2 + integral of R1

Step 2: Reducible error

Condition 1: XB is eliminated if decision boundary is
moved to region.
Condition 2: Least probability of error, If
P(X/ω1)P(ω1)> P(X/ω1)P(ω1)
Condition 3: If the least quantity gives to the error
integral; and it follows the Bayes decision rule.
Condition 4: Check if normal density (Step3) or outbound
(Step 4) and store in Repository.
Condition 5: None of condition 4; to exit Step 2.

Step 3: Error of normal density for fault predication

Condition 1: Region error identification of R1 andR2.
Condition 2: If region R1 is greater than region R2, then
the error intensity is high.
Condition 3: If region R1 is equal to region R2, then the
lowest error is predicted.

Step 4: Error outbound among the integral region.

Condition 1: If the inequalities in the bound region then

min [a, b] ≤ aβ b1−β , then the Fault prediction is of zero
loss.
Condition 3: If the bounce is loose for great values for
(β =⇒ 1andβ =⇒ 0), and tighter for transitional ones
in the boundary region.

The P (Error) and P (Correction), the data sets of
values are stored in the software repository to eliminate
the unwanted risk factors of fault prediction in coding
part. The Gaussian helps at the level of the P(Error) that
occurs in software development. Gaussian elimination is
the best algorithm for solving the method of linear
equations. This is used to understand the sequence of
operation to perform the matrix of coefficients. The
Gaussian helps to find the rank of matrix, to calculate the
determinant of a matrix, and to calculate the inverse of an
invertible square matrix to find the faults software
repository.

7 Perspective

This paper states that the fault prediction has been
analyzed and predicted by various algorithms and

methods. In this research, the focus is on in-depth
analysis of fault prediction by using of methodology of
errors probabilities and integral method to predict the
error occurring in the coding phases. The coding
developed by the developers cannot identify the fault. The
fault is identified through mathematical derivation
through the boundary regions. The Chernoff bound and
Bhattacharyya bound methods are supportive for the
identification of faults prediction. These faults are used
for grouping the faults and non-faults, which are saved in
the software repository for the precautionary predictions.
This is used when software developing life cycle is
utilized by the testing team.
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