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Abstract: The study of intelligent systems, being able to learn and to generalize patterns, has become an area highly explored in diverse

fields of science. In the industry area, systems are able to diagnose faults that have been widely studied. The electric motors present

fundamental role in industry, since much of the production process depends on its good working. Therefore, avoiding unscheduled

stoppage and faults is important in the production process. This paper presents supervised learning approaches to classify three-phase

induction motors faults, applying Decision Trees and Random Forest algorithms. The great advantage of using intelligent systems in

the motor faults classification is the fact that data collection can be done without interrupting the production process. The input to

the proposed classifiers is the audio generated from motor noises, which are obtained using an experimental setup with defective real

motors. From Decision Trees structure, we can generate understandable “IF-THEN” linguistic rules, which facilitate the understanding

of the results and allow the evaluation between the developed models.
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1 Introduction

The advancement of computing, along with the ease
of data acquisition and storage, requires faster and
efficient pattern recognition and classification systems.
Thus, the study of intelligent systems, which learn and
generalize patterns, has become an area highly explored
in diverse fields of science. Currently, the data storage has
become easier and cheaper, and the accessibility and
abundance of this information has made data mining and
pattern recognition be a necessity to deal with the
exponential growth of information which is not only
challenging but computationally demanding [15,17,27].

In the industrial context, pattern recognition methods
are widely applied, such as in production planning,
quality control, financial analysis and equipments
monitoring. Many industrial activities depend on the
operation of the so-called Three-phase Induction Motors
(TIMs), as compressions, power machines, elevators,
lathes, and others. For this reason, the development of
recognition and classification methods for induction
motors failures has become an important area of research

and interest in the industrial area, since the occurrence of
a fault can lead to damages for productive process, such
as: complete stop of production process, costly machinery
repair and process downtime extension [1]. Due to the
primordial role of the TIMs in industry tasks, increased
reliability and machine availability are the main reasons
for the high demand for predictive maintenance and early
identification of incipient faults, since preventing faults
can avoid secondary effects such as overheating,
vibration, current and voltage unbalance, torque losses,
reduced efficiency and large financial losses [3,4].

In addition, TIMs are broadly used in industry due to
its low acquisition and maintenance cost characteristics,
constructive simplicity, robust operation, application
diversity and reliability [28]. In general, faults affecting
TIMs result from progressive degenerations of certain
components, rather than being random or unpredictable
[3]. Therefore, it is possible to detect faults using
information such as as temperature rise and non-standard
variations in vibration and equipment noise, for example.

An induction motor can develop either internal fault
or external fault, which can be originated either from
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mechanical or electrical elements [5]. Internal faults
could have mechanic or electric origin and they are
caused by the manufacturing errors and by the
deterioration of materials, while external faults are caused
by interactions with the environment, the power supply
and the load. It is estimated that faults distribution in
electric motors originate 45% from the bearings, 35% in
the stator, 10% in the rotor and the remaining 10% in
other categories [3,5].

Electric faults are associated with problems in stator,
rotor windings, broken rotor bars and rings and their
connections. This type of faults usually promotes changes
in torque, electric field flow, stator currents and others [2,
3,4,6]. Mechanic faults are related to eccentricity,
misalignment, unbalance, asymmetries of the rotor,
internal and external rings or in the rotating elements of
the bearing. The progression of this kind of faults occur
due to vibration, wear, friction for example [3,4]. Finally,
the environment faults are related to humidity,
temperature and cleanliness [5]. The lack of cleanliness
leads to contamination from dust and particles, chemicals
products, which can clog filters, ventilation elements and
overheat the machine.

In the context of electric motors faults recognition and
classification, the state-of-the-art is very broad and
several techniques have been applied in order to deal with
this kind of problem [1,3,4,5,23]. The great advantage of
using intelligent systems in the motor faults classification
is the fact that data collection can be done without
interrupting the production process. Moreover, intelligent
systems present an easy implementation and the results
can be obtained without requiring complex mathematical
models. Thus, in this paper, we present supervised
learning approaches to classify three-phase induction
motors faults, applying Decision Trees and Random
Forest algorithms. Decision Trees can be named as
“White Box” methods, which consists of a system where
the inner components are available for inspection. In
other words, White Box algorithms reveal the structure,
allowing users to assemble algorithms from algorithm
building blocks. Random Forest is an ensemble of
Decision Trees and its algorithm integrates the decisions
obtained from each tree that composes the forest [7]. In
this paper, the input to the proposed classifiers is the
audio generated from motor noises, which are obtained
using an experimental setup with defective real motors. In
addition, from Decision Trees structure, we can generate
understandable “IF-THEN” rules. So, users can
understand each split, see the impact of that split and even
compare it to alternative splits [21].

In supervised learning, there must be a relationship
between the input attributes and the output classes, so that
the method used can map the behavior of the system and
provide a result that describes the reality [15]. For the
motor faults evaluation, for example, attributes can be
collected by using devices that extract motors
characteristics, such as microphones or sensors.

This paper is organized as follows: in Section 2 is
presented an overview of the state-of-art involving
diagnoses and classification of TIMs using Decision
Trees and Random Forest algorithm. Section 3 describes
essential properties of a Decision Tree model and the
main characteristic of each one of the algorithms used in
this paper, as well as the statistic measures used to
evaluate the model performance. The database composed
by audio signals is presented in Section 4, together with
the pre-processing data methods. The results are
presented in Section 5 and, finally, the analysis and the
conclusion are exposed in Section 6.

2 Related Works

Due to the versatility of the TIMs, systems capable of
diagnosing motor faults have been widely studied, since
eliminating unscheduled stops is a challenge of great
interest to the industry. Different methodologies can be
applied in the motor faults diagnostic, since each method
has its own characteristics and the performance varies
according to the constructive process and to the data set
used. Intelligent systems are powerful tools to improve
the efficiency of fault diagnosis in electrical machines.
The advantage of using intelligent systems, as Decision
Trees, is the fact that the data acquisition can be done
without damage to the motors and, in many cases, without
productive process interruption. Besides, some Decision
Trees algorithms provide access to the constructive
process and the tree structure can generate linguistic rules
of easy interpretation.

Sugumaran et. al (2007) used Decision Tree to
identify the best feature from a given set of roller bearing
samples. The bearing is an essential component in TIMs
and its operation influences the whole machinery.
Vibration signals were used in the model and the most
representative features of the Decision Tree are used in a
Support Vector Machine classifier for fault detection [29].

Based on a boundary analysis for feature extraction
and on a Fuzzy Decision Tree for classification, Aydin et.
al (2014), propose a system for TIMs faults diagnosis.
Authors consider data samples of healthy motors, broken
rotor bars and broken connect faults. The fault-related
features are used to construct the Decision Tree and
extract a set of linguistic rules used in the Fuzzy model.
Comparing to the other methodologies, as Gaussian
Mixture Model and Artificial Neural Networks, the
Decision Tree model presented excellent results [1].
Bazan (2016) presents an approach to diagnose stator
short-circuit faults in induction motors driven directly
from a supply line. Decision Trees and Artificial Neural
Networks methodologies are used to predict classes and
to classify patterns. Both methodologies presented
satisfactory results, however Artificial Neural Networks
showed a slightly superior performance. On the other
hand, the complexity elaboration of a Decision Tree
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model is much lower than an Artificial Neural Network
model [2].

Using Random Forest models, which can be
understood as an extension of Decision Trees, Patel and
Giri (2016) investigated the multi-class mechanical faults
diagnosis in bearing of an induction motor. Bearing
vibration records were selected and divided into four
classes (normal, inner raceway fault, bearing ball and
raceway fault). These information were processed and
used to feed the classifier. The results of Random Forest
models stand out when compared with Artificial Neural
Networks. Authors state that the conventional classifiers,
as Neural Networks, are affected when the number of
classes is bigger and the answer is slower, while these
problems do not occur in Random Forest model [23].

Another interesting approach is presented in Yang et
al. (2008), which investigated machine fault diagnosis
combining Random Forest and Genetic Algorithm. The
Genetic Algorithm is used to strengthen the Random
Forest model, evaluating the best parameters.
Three-direction vibration signals were collected; a
number of feature parameters in time and frequency
domains and regression coefficients are calculated to
extract helpful information and remove the background
noise of the data. The faults classification model is
elaborated according to these features, achieving a high
accuracy [30]. Panigrahy and Chattopadhyay (2018) also
studied and explored machine learning techniques,
including Random Forest, in the stator faults problem.
Authors concluded that, when compared to the others
techniques, the Random Forest shows extraordinary
learning ability for very less number of training samples
even in the noisy feature space because of its distributive
features model [22].

According to the literature and considering the
interest in the electric motors faults diagnostic, this paper
proposes the design and the application of a three-phase
induction motor faults classification system, with the
main contribution of predicting faults, aiming to reduce
the maintenance cost and damages to the motor and
production. The two most recent algorithms of Decision
Trees and a Random Forest algorithm are used in this
approach, since Decision Trees algorithms are “White
Box” and then they provide a graphic structure that allows
the access to the construction method and run efficiently
using big data, with no overfitting problem. Forests, in
turn, consist of an ensemble of Decision Trees [7]; the
Random Forest algorithm does not generate rules, but it
consists of a collection of trees that contains linguistic
rules. Another important contribution of this work is the
use of audio signals from motor noises as input attributes
to the classifiers, which is not frequent in the literature,
since most of the works use current, voltage and vibration
signals to classify faults [3,5].

3 Decision Trees

Decision Trees are widely used in pattern recognition
and classification, since the classification mechanism
needs to be transparent for legal reasons or the results
need to be shared in order to facilitate decision making
[20].

The mathematical model is constructed in a top-down
way, partitioning the data set in groups, starting in a
general group and refining the data set in more specific
subgroups, according to the characteristic of the attribute.
Each group is called node and it is connected by branches
(arcs). In general, a node is labeled by an attribute name,
and an arc by a valid value of the attribute associated with
the node from which the arc originates [17]. Each
decision outcome at a node is called a split, since it
corresponds to splitting a subset of the training data [16].
The most top node is called root node where is passed
through the various decisions in the tree according to the
values of its features [20]. Under the root node, we find
the internal nodes, which are originated from the data set
partition. They constitute the tree branches. At the end of
each branch are the terminal nodes of the partition
process, which are named leaf nodes and determine the
class. It is important to observe that the attributes in the
upper parts of the tree have stronger influence on the
value of the target variable than the nodes in the lower
parts of the tree, since they have a larger number of data
[17].

The greatest difficulty in developing a Decision Tree
algorithm is the construction of its topology. There are
many algorithms and constructive methods that build
distinctive Decision Trees. These algorithms normally use
a greedy strategy to build the tree structure by the most
informative attribute of each step and do not allow
regression [15,17]. The most informative attribute divided
the data set in the best way, aiming to find the most
homogeneous subsets.

The formulation of a Decision Tree model usually is
done in two stages. In the first stage, the data set is
partitioning recursively, using a divide-and-conquer
strategy [15,20]. As a result of the recursive partitioning
of the data, the number of examples that end up in each
node decreases steadily, so the reliability of the chosen
attributes decreases with increasing depths of the tree;
thereby high complexity model are generated, which
explain the training data but do not generalize well to
unseen data [17]. This fact is known as overfitting. In
order to eliminate the overfitting, the second stage, named
prune, is applied.

The pruning process consists of eliminating the
branches and nodes near the leaves, replacing some of the
internal nodes with a new leaf, thereby removing the
subtree that was rooted at this node. The leaf nodes of the
new tree are no longer pure nodes, containing only
training examples of the same class labeling the leaf,
however the leaf will bear the label of the most frequent
class at the leaf [17]. Then, the pruning process optimizes

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


850 B. Azevedo et al.: TIM faults classification...

the Decision Tree model, since it reduces the tree
complexity, the size and the number of leaves of the tree.
This process also eliminates noise and redundant
information that decrease the efficiency of the
classification.

An important characteristic of Decision Tree model is
the possibility of extracting linguistic “IF-THEN” rules,
which are closer to the way human can interpret
information, making the classification more
comprehensible by the user. One rule is composed by
each terminal node, plus the internal nodes that belongs to
one specific branch and the root node. An “IF-THEN”
rule is an expression as follows:

“IF <first condition> AND/OR <second condition>
AND/OR ... THEN <conclusion>”.

The “IF” part of the rule is known as antecedent and it
is composed by one or more input attributes of the data set,
combined using a logical connectors of the type “AND”
or “OR”. The “THEN” part is called as consequent and it
indicates the prescribed class for the rule [18].

The most current Decision Trees (CART and C4.5) and
Random Forest algorithms, used in this paper for TIMs
faults classification, are described in the next section.

3.1 CART Algorithm

The Classification and Regression Tree (CART)
algorithm was developed by Breiman [8]. An important
characteristic of CART is that it generates only binary
trees, in other words, each internal node has exactly two
branches. The Decision Tree partition splits the data set
into smaller subsets, aiming to find the a subset with
samples of the same category label. In this case, the
subset is called pure, and the correspondent class can be
determined [16,27]. However, there is a mixture of labels
in each subset, and thus for each branch we will have to
decide either to stop splitting and accept an imperfect
decision, or instead select another property and grow the
tree further, which suggests a recursive tree-growing
process [16].

The tree is created by minimizing the impurity of the
subsets. Let i(N) be the impurity of a node N. To be pure
the i(N) must be zero, which means that all patterns belong
to the same class. The most popular measure is the entropy
impurity, given by (1):

i(N) =−∑
j

P(ω j)log2P(ω j), (1)

where P(ω j) is the fraction of patterns at node N that are
in category ω j. By the properties of entropy, if all the
patterns are of the same category, the impurity is 0;
otherwise it is positive, with the greatest value occurring
when the different classes are equally likely. The log is
used to the base 2 since the information is encoded in bits.

Another definition of impurity consists of using the
variance impurity, which is related to the variance of a
distribution associated with the two categories. It is
particularly useful in the two-category case. Therefore, a
generalization of the variance impurity, applicable to two
or more categories, is written as (2), and it is called Gini

impurity:

i(N) = ∑
i6= j

P(ωi)P(ω j) = 1−∑
j

P2(ω j). (2)

Therefore, the Gini measures the divergences between
the probability distributions of the target attributes values
[27].

The Gini index may encounter problems when the
domain of the target attribute is wide. In this case, in
multiclass binary tree creation, is recommended to
employ a binary criterion called Twoing. The overall goal
is to find the split that best splits groups of the c

categories. Let the class of categories be
C = {ω1,ω2, ...,ωc}. At each node, the decision splits the
categories into C1 = {ωi1 ,ωi2 , ...,ωik} and C2 = C −C1.
For every candidate split s, the change in impurity
∆ i(s,C1) is computed as though it corresponded to a
standard two-class problem. That is, the split s∗(C1) that
maximizes the change in impurity, is found. Finally, the
supercategory C∗

1 which maximizes ∆ i(s∗(C1),C1) is
obtained.

As a consequence of computational cost, the entropy
impurity is more used, although the Gini impurity
receives significant attention as well [16]. However, due
to the mixture of labels in each subset, not always the
pure class is achieved, and it is necessary to decide if stop
splitting, and accept the imperfect decision, or instead
selected another property and further grow the tree [16].

If we continue to grow the tree fully until each leaf
node corresponds to the lowest impurity, then the data has
typically been overfitting. The principal alternative
approach to stop splitting is pruning. In pruning, a tree is
grown fully, until leaf nodes have minimum impurity.
Then, all pairs of neighboring leaf nodes are considered
for elimination. Any pair whose elimination yields a
satisfactory increase in impurity is eliminated, and the
common antecedent node declared a leaf [16].

One of the pruning processes that can be applied in the
tree generated by CART algorithm is the Cost Complexity
Pruning (CCP) method. In the first stage, a sequence of
trees T0,T1, ...,Tk is built on the training data where T0 is
the original tree before pruning and Tk is the root tree [27].

In the second stage, one of these trees is chosen as the
pruned tree, based on its generalization error estimation.
Tree Ti+1 is obtained by replacing one or more of the sub-
trees in the predecessor tree Ti with suitable leaves. The
pruned sub-trees are those that obtain the lowest increase
in apparent error rate per pruned leaf, given by (3).

ErrorRate =
ε(pruned(T, t),S)− ε(T,S)

|leaves(T )|− |leaves(pruned(T, t))|
(3)
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where:
I) ε(T,S) indicates the error rate of tree T over the

sample S;
II) |leaves(T )| indicates the number of leaves in T ;
III) pruned(T, t) indicates the tree obtained by

replacing the node t in T with a suitable leaf.
In the second stage, the generalization error of each

pruned tree is estimated and the best one is then selected
[9,27]. The Cost Complexity Pruning algorithm used in
CART is an example of the post-pruning approach. This
approach considers the cost complexity of a tree to be a
function of the number of leaves in the tree and the error
rate of the tree (where the error rate is the percentage of
tuples misclassified by the tree). It starts from the bottom
of the tree. For each internal node, N, it computes the cost
complexity of the subtree at N, and the cost complexity of
the subtree at N if it were to be pruned (i.e., replaced by a
leaf node). The two values are compared. If pruning the
subtree at node N would result in a smaller cost
complexity, then the subtree is pruned. Otherwise, it is
kept [18].

3.2 C4.5 Algorithm

The C4.5 algorithm is an evolution of the Iterative
Dichotomiser (ID3) algorithm, since C4.5 can run
categorical or numerical attributes and it can run with
unknown values. Both algorithms are developed by
Quinlan [25]. C4.5 uses the so called Gain Ratio as
splitting criteria, in which the element with highest ratio
is taken as the root node and data set is then split based on
the root element values [27]. When the number of data is
less than a threshold, the split process is stopped.

In order to define Gain Ratio, the Entropy and the
Information Gain definitions must be introduced, which
are used by ID3 algorithm as attribute-selection measures
[18]. The notation used here is as follows. Let D, the data
partition, be a training set of class-labeled tuples. Suppose
the class label attribute has m distinct values defining m
distinct classes, Ci (for i = 1, ...,m). Let Ci,D be the set of
tuples of class Ci in D. Let | D | and | Ci,D | denote the
number of tuples in D and Ci,D, respectively [18].

Let node N represent or hold the tuples of partition D.
The attribute with the highest information gain is chosen
as the splitting attribute for node N.

The expected information needed to classify a tuple in
D is also called Entropy and is given by [18]

Entropy(D) =−
m

∑
i=1

Pilog2(Pi), (4)

where Pi is the nonzero probability that a tuple in D
belongs to class Ci and is estimated by |Ci,D | / | D |.

Suppose the tuples in D are partitioned on some
attribute A having v distinct values, {a1,a2, ...,av}. If A is
discrete-valued, so these values will correspond directly
to the v outcomes of a test on A. Therefore, the attribute A

can be used to split D into v partitions or subsets,
{D1,D2, ...,Dv}, where D j contains those tuples of D,
that have outcomes a j of A. These partitions would
correspond to the branches grown from node N. The ideal
would be that each partition was pure, which means that
each partition would produce an exact classification of the
tuples. Since it is quite likely that the partitions are
impure, a greater amount of information is required. This
amount is measured by

EntropyA(D) =
v

∑
j=1

|D j|

|D|
EntropyD j, (5)

the term
|D j |

|D| acts as the weight of the jth partition and the

EntropyA(D) is the expected information required to
classify a tuple from D based on the partitioning by A.
The smaller the EntropyA(D), the greater the purity of the
partitions. Thus, the Information Gain is defined as the
difference between the original information requirement,
based on just the proportion of classes, and the new
requirement, obtained after partitioning on A. That is:

Gain(A) = Entropy(D)−EntropyA(D). (6)

The attribute A with the highest Gain(A) is chosen as
the splitting attribute at node N [18].

The Information Gain measure is biased toward tests
with many outcomes; it prioritizes the selection of
attributes having a large number of values. Then, C4.5
algorithm, as an evolution of ID3, uses an extension to
Information Gain known as Gain Ratio, which attempts to
overcome this bias. The Gain Ratio applies a kind of
normalization to Information Gain using a split
information value. This value represents the potential
information generated by splitting the training data set, D
into v partitions, corresponding to the v outcomes of a test
on attribute A. The split information (SplitInfo) is defined
as

SplitIn f oA(D) =−
v

∑
j=1

D j

D
log2

(

|D j|

|D|

)

. (7)

For each outcome, it considers the number of tuples
having that outcome with respect to the total number of
tuples in D. It differs from information gain, which
measures the information with respect to classification
that is acquired based on the same partitioning. The Gain
Ratio is defined as

GainRatio(A) =
Gain(A)

SplitIn f oA(D)
. (8)

The attribute with the maximum GainRatio(A) is
selected as the splitting attribute. Note, however, that as
the split information approaches 0, the ratio becomes
unstable. A constraint is added to avoid this, whereby the
information gain of the test selected must be large - at
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least as great as the average gain over all tests examined
[18].

About the pruning process, traditionally, C4.5 uses the
so called Error Based Pruning (EBP) method to optimize
the model generated in the growing phase. In C4.5 also is
possible to use the Reduce Error Pruning (REP) method as
an alternative pruning method, both described as follows.

In EBP, the error rate is estimated using the upper
bound of the statistical confidence interval for
proportions, as in (9):

εUB(T,S) = ε(T,S)+Z1−α

√

ε(T,S)(1− ε(T,S))

|S|
(9)

where ε(T,S) denotes the misclassification rate of the tree
T on the training set S; Z is the inverse of the standard
normal cumulative distribution; and α is the desired
significance level [9].

Let subtree(T, t) denote the subtree rooted by the node
t. Let maxchild(T, t) denote the most frequent child node
of t (namely most of the instances in S reach this particular
child) and let St denote all instances in S that reach the
node t. The procedure traverses bottom-up all nodes and
compares the following values:

I) εUB(subtree(T, t),St)
II) εUB(pruned(subtree(T, t), t),St)
III) εUB(subtree(T,maxchild(T, t)),Smaxchild(T, t))
According to the lowest value, the procedure either

leaves the tree as is; prune the node t; or replaces the node
t with the subtree rooted by maxchild(T, t), [9,27].

The REP method, proposed by [24], uses a hold out
set for error estimates. While traversing over the internal
nodes from the bottom to the top, the procedure checks
each internal node to determine whether replacing it with
the most frequent class does not reduce the trees accuracy.
So, the node is pruned if accuracy is not reduced and the
procedure continues until any further pruning would
decrease the accuracy [9,27].

3.3 Random Forest

Random Forest is an ensemble learning method for
classification, created by Breiman (2001). The Random
Forest uses CART methodology to grow trees with
maximum size and without pruning [7]. Due to their
power, versatility, and ease of use, Random Forest is
quickly becoming one of the most popular machine
learning methods [20]. A Random Forest is composed of
Decision Trees, where each Decision Tree is considered
as an element of this ensemble, denominated forest.
Random Forest algorithm integrates the decisions
obtained from each tree that composes the forest. Thus,
ensemble classification methods train several classifiers
and combine the decision of a set of classifiers by
weighted or unweighted voting process to classify
unknown examples [13,30].

For the kth tree, a random vector Θk is generated,
independent of the past random vectors Θ1, ...,Θk−1 but
with the same distribution; and a tree is grown using the
training set and Θk, resulting in a classifier h(x̄,Θk) where
x̄ is an input vector [7].

Formally, an Random Forest is defined by [7] as
follows:

Definition: A Random Forest is a classifier consisting
of a collection of tree structured classifiers
{h(x̄,Θk),k = 1, ...} where the {Θk} are independent
identically distributed random vectors and each tree casts
a unit vote for the most popular class at input x̄.

An ensemble classifier is generally found to be more
accurate than any of the individual classifiers making up
the ensemble [13]. In order to grow ensembles, often
random vectors are generated that govern the growth of
each tree in the ensemble. Bagging, Random split and
Random subspace are some examples of split selectors
[7]. In Bagging, a random selection is made from the
examples in the training set, this selection is done without
replacement. In Random split method, each node split is
selected at random from among the K best splits. Finally,
in Random Subspace does a random selection of a subset
of features to use to grow each tree.

Random Forests consider many fewer attributes for
each split, for this reason, it can efficiently handle with
extremely large datasets [18,20]. The generalization error
for a forest converges as long as the number of trees in the
forest is large. Thus, overfitting is not a problem.

The accuracy of a Random Forest depends on the
strength of the individual classifiers and a measure of the
dependence between them. The idea is to maintain the
strength of individual classifiers without increasing their
correlation. A Random Forest is insensitive to the number
of attributes selected for consideration at each split [18].
The major limitation of the Random Forest algorithm is
that a large amount of trees can become the algorithm
slow and inefficient for predictions after training.

3.4 Statistical Measures to Evaluate the

Classification

In order to evaluate the performance of the classifiers
and search for the best mathematical model to describe
the TIMs faults in different aspects, some statistical
measures are applied to analyze the efficiency of each
classification model. In this work, besides evaluating the
Decision Tree models considering the number of leaves
and branches, the following concepts are applied:
Confusion Matrix, Accuracy, Receiver Operating
Characteristic (ROC) and Kappa Index, which are
described below.

A Confusion Matrix is a square matrix, with
dimension greater than or equal to two, that categorizes
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predictions according to whether they match the actual
value in the data [20]. Four terms are necessary to
comprehend the confusion matrix, according the possible
class classification:

–True Positive (TP): Correctly classified as the class of
interest

–True Negative (TN): Correctly classified as not the
class of interest

–False Positive (FP): Incorrectly classified as the class
of interest

–False Negative (FN): Incorrectly classified as not the
class of interest.

When the predicted value is the same as the actual
value, this is a correct classification. Correct predictions
are observed in the matrix main diagonal, while the
incorrect ones are located in the off-diagonal. The
performance measures for classification models are based
on the counts of predictions falling on and off the
diagonal in the confusion matrix.

One of the measures derived from the confusion matrix
concepts is Accuracy. The Accuracy is the proportion that
represents the number of true positives and true negatives
divided by the total number of predictions, given by (10)

Accuracy =
T P+TN

T P+TN +FP+FN
. (10)

This measure indicates how well the classifier is able
to recognize elements of different classes [20].

Another important measure used in this paper is the
Receiver Operating Characteristic (ROC) or ROC curve.
This measure is used to examine the tradeoff between the
detection of true positive, while avoiding the false
positives.

A typical ROC curve diagram is illustrated in Figure
1. These curves are defined on a plot with the proportion
of true positives on the vertical axis, and the proportion of
false positives on the horizontal axis.

Fig. 1: ROC curve

To create the curves, a classifier’s predictions are
sorted by the model’s estimated probability of the positive

class, starting with the largest values. Beginning at the
origin, each prediction’s impact on the true positive rate
and false positive rate will result in a curve tracing
vertically (for a correct prediction), or horizontally (for an
incorrect prediction). The closer the curve is to the perfect
classifier, the better it is at identifying positive values.
This can be measured using a statistic known as the area
under the ROC curve, which measures the total area
under the ROC curve, with the area ranging from 0.5 (for
a classifier with no predictive value), to 1.0 (for a perfect
classifier) [20].

Finally, it is also used the Kappa Statistic Index [11].
This index adjusts accuracy by accounting for the
possibility of a correct prediction by chance alone. The
Kappa values ranges from 0 to 1, the closer to 1 the better
the rating is. The Kappa Index can be obtained by (11)

k =
Pr(a)−Pr(e)

1−Pr(e)
, (11)

where Pr refers to the proportion of actual (a) and expected
(e) agreement between the classifier and the true values.

4 Obtaining the Data Set: Audio Signals

In order to classify three-phase induction motors
faults using audio signals, an experimental setup has been
assembled at the Intelligent Systems Laboratory (ISL),
together with Signal Processing and Applications
Laboratory (LPSA), located in the Federal University of
Technology of Paraná, in Cornélio Procópio city, in the
state of Paraná, Brazil.

The data set is then composed by acoustic emission
recorded by two Behringer ECM8000 condenser type
omni-directional microphone, being the acoustic emission
sensors running to a Focusrite Scarlett 2i2 audio
interface, which is responsible for the data acquisition.
The microphones were positioned close to the electric
motor, with 9.53 cm between them, as showed in Figure
2, in order to avoid any spatial ambiguity. The best
distance has been obtained experimentally.

Since the classification models considered in this
paper, which use CART, C4.5 and Random Forest
algorithms, are supervised models, the data set is
composed by input attributes and outputs. In order to
detect faults and to classify patterns, it is necessary to
extract attributes that represent acoustic emission signals.
Time domain and some frequencies characteristic are
used in this paper. The frequency characteristics are very
reliable for fault detection, so the time signals are divided
in portions of XYZ samples, without overlaps.

The input attributes for the classification models
consist of the peak magnitudes of the signal frequency
spectrum at predetermined frequencies and the total
signal power. The frequency peaks were extract using the
Fast Fourier Transformer algorithm and Hanning
windowing, considering the frequencies of 30, 60, 120
and 2500 Hz.
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Fig. 2: Equipment used for obtaining the data set.

From the literature, electrical unbalance generates
vibration in the power supply frequency first harmonic
[10]. Broken rotor bars fault causes vibration around the
harmonics of the rotor speed, related to supply frequency
[12]. Bearing faults are commonly detected by
modulations in high frequency [26]. At last, winding
faults vibrations are related to the power supply frequency
harmonics and slip [14].

Therefore, we have 5 numerical input attributes:
frequency peak of 30 Hz, frequency peak of 60 Hz,
frequency peak of 120 Hz, frequency peak of 2500 Hz
and the signal power. In this work, we have estimated the
signal power using the autocorrelation of the signals in
point 0. This feature is obtained using the crosscorrelation
function of the signal with itself. Equation (12) describes
the crosscorrelation of two signals x1 and x2 with length
N.

R̂x1x2
(m) =

N−m−1

∑
n=0

x1(n+m)x2(n) (12)

with m = 0,1, . . . ,N − 1 and x1(n) and x2(n) are the
signals value at the sample n. The signal power features
are calculated as R̂x1x1

(m) and R̂x2x2
(m).

The output data set of the supervised classification
system is divided into three classes, called Mechanical
Conditions: healthy motor, motor with bearing outer race
fault and motor with 2 broken rotor bars. Each one of
these three Mechanical Conditions are subdivided into
five other subclasses, called Electrical Conditions, which
correspond to the unbalancing of the supply voltage
phases, as shown in Table 1. Each one of the 15 rows of
Table 1 corresponds to an output of the classification
system, as shown in the last column of the table. The
unbalance generates an excessive current flow in one or
more phases, in this way the motor suffers the voltage
unbalance, causing abnormal behavior in the rotor and
irregular vibration. The voltage difference affects the
magnetic balance in the stator, resulting in vibrations at
the first harmonic of power supply frequency. In this
work, we have tested four unbalance configuration, as
follows: (a) 2% higher voltage in phase A, (b) 2% higher

voltage in phase B and less voltage in phase C, (c) 4%
higher voltage in phase A, and (d) 4% higher voltage in
phase B and 4% less voltage in phase C.

Table 1: Output data set

Mechanical Conditions Electrical Conditions Outputs

Healthy

normal output 1

2% for (-A) output 2

2% for (+B, -C) output 3

4% for (-C) output 4

4% for (+B, -C) output 5

Bearing outer

race fault

normal output 6

2% for (-A) output 7

2% for (+B, -C) output 8

4% for (-C) output 9

4% for (+B, -C) output 10

Broken

rotor bar

normal output 11

2% for (-A) output 12

2% for (+B, -C) output 13

4% for (-C) output 14

4% for (+B, -C) output 15

The healthy motor data is obtained from a
three-phase, 1HP and 4 pole electric motor with 220/380
V - 60 Hz power supply, considering nominal speed of
approximately 1700 RPM.

In order to obtain the bearing outer race faults data, a
corrosive slurry is placed in the outer race of the bearing
and after the action of the pulp the bearing is inserted into
the motor after the action of the pulp the bearing was
cleaned and properly lubricated with greasy in order to
simulate normal operation. Finally, the last class consists
of signal samples provided by motor with 2 broken rotor
bars. The bars are damaged using a drilling machine in
two adjacent bars to emulate the fault.

5 Results

The data set described in the previous section is
divided into two other mutually exclusive sets: training
set and test set. The objective is to classify mechanical
and electrical TIMs faults and compare the performance
of supervised classification models using Decision Trees
algorithms (CART and C4.5) and the Random Forest
algorithm, also considering their pruning methods. The
algorithms are implemented using the WEKA software 1,
developed by the University of Waikato, New Zealand.
The hardware used in computational experiments is
composed by an Intel Core I7 processor, RAM memory
16GB executing operational system Microsoft Windows
10.

1 Waikato Environment of Knowledge Analysis -

http://www.cs.waikato.ac.nz
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The training set is used for the knowledge acquisition,
i.e., to “learn” the possible patterns extracted from the
data and to generate a mathematical model able to
generalize the acquired knowledge for samples of
unknown data. After that, from the classification model
generated, the samples that comprise the test set are
inserted in the model and a classification is obtained for
these data. Since the classification models are supervised,
both training and test sets are composed by the input
attributes (frequency peaks of 30, 60, 120 and 2500 Hz
and signal power) and output (one of the 15 possibilities
described in Table 1). Then, the results provided from the
test set are analyzed. If the model correctly classified the
sample of the test set (comparing it with the known
output), then one success is counted; otherwise, one error
is considered. This method is known in the literature as
holdout [19]. For that, the data set is randomly divided in
proportion 80/20, in which the training set consists of
80% of the data and the test set is composed of the
remaining 20%. Since the total data set consists of 570
rows (instances) and 6 columns (the 5 input attributes and
the output), 456 instances correspond to the training set
and 114 instances correspond to the test set.

For performance comparison reasons, as described in
Section 4, data are provided from 2 microphones, named
as Microphone 1 and Microphone 2. Therefore, the
classification methods are applied separately. For each
one of the microphones, 6 classification models are
developed: first, by using CART algorithm with unpruned
method and using the CCP method. Second, by using
C4.5 algorithm with unpruned method and using the two
pruning methods described in Section 3.2, the EBP and
REP methods. Finally, the Random Forest algorithm is
also applied to both microphones.

Tables 2 and 3 present, respectively, results obtained
from the Microphone 1 and Microphone 2.

Table 2: Results from Microphone 1

Microphone 1

Algorithms Prune Leave Size
Kappa

Index

ROC

area
Accuracy

CART CCP 47 93 0.872 0.952 88.330

CART unpruned 49 97 0.872 0.952 88.330

C4.5 EBP 46 91 0.964 0.999 96.667

C4.5 REP 34 67 0.935 0.955 85.000

C4.5 unpruned 46 91 0.964 0.999 96.667

Random

Forest
- - - 0.872 0.996 88.333

The columns of Tables 2 and 3 show the algorithms
used for the faults classification and their respective
methods of pruning. In order to evaluate the complexity
of the Decision Trees, the number of leaves and the size
of the trees generated for each classification model are
shown in columns 3 and 4. Besides, in order to evaluate

Table 3: Results from Microphone 2

Microphone 2

Algorithms Prune Leaves Size
Kappa

Index

ROC

area
Accuracy

CART CCP 41 81 0.817 0.929 83.333

CART unpruned 52 103 0.817 0.920 83.333

C4.5 EBP 48 95 0.936 0.958 94.167

C4.5 REP 37 73 0.863 0.963 87.500

C4.5 unpruned 49 97 0.936 0.986 94.167

Random

Forest
- - - 0.8812 0.997 89.167

the performance of the classification models, the
statistical measures described in Section 3.4 are
calculated and shown in Tables 2 and 3. They are: Kappa
Index, area under the ROC curve and the Accuracy.

Since the data were collected simultaneously and with
few divergences, a high correlation between the results of
the two microphones was already expected. From the
evaluation of the presented results, for Microphone 1
(Table 2), we can observe that the model generated by
using C4.5 algorithm together with EBP pruning method
and with unpruned method, providing the best
performance, since these two models present the best and
the same accuracy, area under the ROC curve and Kappa
Index. In addition, they also present the smallest size and
the smallest number of leaves, which prove that these two
models are less complex than the others.

Analyzing the Microphone 2 (Table 3), the model
generated by using C4.5 algorithm together with EBP
pruning method also provided the best performance.
Although this model has an area under the ROC curve
slightly smaller than unpruned method, it presents the
smallest size and the smallest number of leaves, which
reduce the complexity of the model. Therefore, the
classification model that presented the best performance,
for both microphones, is the model generated using C4.5
algorithm together with EBP pruning method. For this
reason, the Confusion Matrices are obtained for this
model, using the test set, for Microphone 1 and for
Microphone 2, as can be seen in Figures 3 and 4,
respectively.

Once the Decision Tree is generated using the C4.5
algorithm together with EBP method for the Microphone
1, each branch provides a classification linguistic rule. For
example, from a particular branch of the tree, the following
rule can be extracted:

“IF signal power is > 17754.01 AND ≤ 26008.19
AND frequency peak of 120Hz is ≤ 0.095915 AND ≥
0.084671 THEN output 1 (motor with healthy mechanical
condition and balanced electrical condition)”

Similarly, for the Microphone 2, from a particular
branch of the tree, the following rule can be extracted:

“IF signal power is ≤ 34750.85 AND frequency peak
of 30Hz is ≤ 0.191952 AND signal power is > 21516.17
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Fig. 3: Confusion Matrix for Microphone 1

Fig. 4: Confusion Matrix for Microphone 2

AND signal power is ≤ 24184.34 AND signal power is ≤
21616.64 THEN output 15 (motor with Broken rotor bar
mechanical condition and unbalanced electrical condition
of 4% for +B and -C)”

The diagonals of the Confusion Matrices illustrated in
Figures 3 and 4 present the highest numerical values of
the matrix. Since all correct classifications are located in
the diagonal of the Confusion Matrix (Section 3.4), the test
sets are correctly classified using C4.5 with EBP, with high
accuracy.

6 Conclusion

Due to the great use of TIMs, it is necessary to
develop efficient techniques capable of recognizing and
classifying faults in order to avoid the high maintenance
costs and the stops in the production process. In this
paper, supervised learning approaches are proposed in

order to classify three-phase induction motors faults,
applying Decision Trees and Random Forest algorithms.
These methods are applied since they are supervised
methods and the structure of Decision Trees allows access
to the parts of the classification process from algorithm
building blocks. In addition, from Decision Trees
branches, it is possible to generate understandable
“IF-THEN” linguistic rules, which facilitates the
understanding of the results by a non-expert user.
Numerical data referring to the motor audio signals are
considered as input attributes for the classifiers and it is a
great contribution to the research area.

Although the execution time of the algorithms is not a
parameter of comparison of their performances, the time
is mentioned here so that readers can have an idea of how
long these problems take to be solved. The Decision Trees
algorithms, C4.5 and CART, took about 10 seconds to read
data and generate the tree. Random Forest algorithm took
about 15 seconds.

From results presented in the previous section, we can
conclude that all the classification models yield very
satisfactory results and can be used to obtain the required
classification with high accuracy. Additionally, Tables 2
and 3 present values of statistical measures so that it is
possible to choose the model that presents the best
classification in relation to the others.

The classification models generated by the CART
algorithm, for both microphones, present the same
accuracy and Kappa Index; the areas under the ROCs
curves are also very close. However, there is a reduction
in the complexity of the models (size and number of
leaves), when a pruning method is applied, without
changing the statistical measures. This fact evidences the
robustness of pruning in Decision Tree models, since the
technique allows the optimization of the model and
avoids overfitting without affecting the performance of
the classifier.

In relation to the classification models generated by
the algorithm C4.5, analyzing Tables 2 and 3, the model
pruned by the REP method has shown a greater reduction
of the trees complexity. On the other hand, this method
significantly reduces the accuracy of the classification
compared to the others. When comparing the unpruned
with those pruned by the EBP method, there are no
changes in Microphone 1, neither in the complexity of the
trees nor in the statistical measures; while in Microphone
2, there is a reduction in the complexity of the tree pruned
by the EBP method. This occurred since the unpruned
trees are very close to the most optimized model
according to the constructive metrics of the EBP.

Analyzing the classification models generated by
Random Forest, the results are very close to the results
presented by the trees generated by the CART algorithm
for the Microphone 1, whereas for the Microphone 2,
Random Forest present better classification performance
than the CART algorithm. However, Random Forest
performance is lower than the C4.5 algorithm for both
microphones. Moreover, another difficulty found in
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Random Forest classification models is that their structure
does not provide the generation of linguistic rules, which
makes the interpretation of the results more difficult.

When the data classification performances of
microphones 1 and 2 are compared, it is possible to notice
that the results of Microphone 1 are better. This may be
justified due to the position of the microphones, since
Microphone 2 is closer to the rotor and then it captures
more noise than Microphone 1. These noises pollute the
signals audio compromise the results.

Although the statistical measures presented by all the
models are very satisfactory, Confusion Matrices shown
in Figures 3 and 4 were generated using the model that
presented the best performance (C4.5 with EBP). Some
other models presented difficulties in differentiating some
classes of data that are close, as the case of electrical faults
caused by electrical unbalance. This confusion of classes is
not desired when implementing the model in a real system
that works with a critical component, which occurs with
TIMs on a production process.

Therefore, by analyzing the statistical measures and
confusion matrices, the classification models generated
by the C4.5 algorithm together with the EBP method are
the models that best classified the data set and,
consequently, would present the best performance when
implemented in a real system. The mechanical conditions
are better classified than electrical conditions for the test
set used in this work. Classifying electrical conditions
from noise is a difficult task, but even in this case the
classifier was efficient. The confusion matrices presented
in Figures 3 and 4 show the presence of the well-defined
main diagonal, evidencing the excellent performance of
the classifiers, even for very close data classes.
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Estator de Motores de Indução Trifásicos. Master’s thesis,

M.A. thesis. Universidade Tecnológica Federal do Paraná,
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