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Abstract: We theoretically present an effective method to realize NiSWAP, N(sqrt(iSWAP)), NSWAP, N(sqrt(SWAP)) and NTQ-NOT

gates based on the qubit-qubit interaction in a circuit QED using N+1 transmon qubits driven by a strong microwave field. In this

system, the interaction between the qubits and the resonator field can be achieved by turning the gate voltage and the external flux.

The operation time is independent of the number of qubits involved in the scheme, and the gates operations are insensitive to the initial

state of the resonator. These quantum logic gates can be realized in a time (nanosecond-scale) much smaller than decoherence time

(microsecond-scale), and it is more immune to the 1/f charge noise and has longer dephasing time due to the favorable properties of

the transmon qubits in the circuit QED. Numerical simulation under the influence of the gates operations shows that the scheme can be

implemented with high fidelity. We also propose a detailed procedure and experimentally analyze its feasibility. Moreover, the scheme

might be experimentally achieved efficiently within current state-of-the-art technology.

Keywords: Transmon qubit, NiSWAP gate, NSWAP gate, NTQ-NOT gate, N
√

iSWAPgate, N
√

SWAP gate, circuit QED.

1 Introduction

Quantum computation has attracted much attention since
a quantum computer has an ability to solve hard
computational problems with high efficiency compared to
a classical computer [1,2,3]. Also, it is well known that it
is difficult to simulate the behaviour of a quantum
mechanical system with a classical computer. The
difficulty arises because quantum systems are not
confined to their eigenstates but can in general exist in
any superposition of them, thus the vector space needed
to describe the system is extremely large. Quantum logic
gates are the basic building blocks of a quantum computer
[4,5]. A universal quantum computer can be built on a
series of two-qubit logic gates [6,7]. Up to now, a large
number of theoretical proposals have been introduced to
implement various gates, such as two-qubit
Controlled-NOT (CNOT) gate [8], SWAP gate [9],

iSWAP gate [10],
√

iSWAP gate [8] and
√

SWAP gate
[11] in different systems, such as cavity QED system [13]
and circuit QED system [14]. The circuit QED is

currently the promising candidate for future quantum
computer.

Recently, Yang et al. [15] proposed a novel scheme
for implementing multi-qubit quantum controlled-phase
gate with one superconducting qubit simultaneously
controlling n qubits selected from N qubits (1 < n < N).
In ref. [16] the authors proposed a scheme to realize
NTCP gate in a circuit QED by using the system of
(N + 1) transmon qubits. The method of implementing n

qubits SWAP gates simultaneously between one
superconducting charge qubit with n qubits coupled to a
cavity was firstly proposed by Song et al. [17].

In recent works, We have proposed another type of
multiqubit controlled gate that is a NTCP gate by using
qubit-qubit interaction in a circuit QED [18]. Also, we
have presented a method for realizing NTCP-NOT and
NTQ-NOT gates with one control superconducting qubit
simultaneously controlling N target qubits in a cavity
QED [19]. In the present study, we present and
demonstrate a method for realizing N two-transmon-qubit

quantum logic gates (NiSWAP, N
√

iSWAP, NSWAP,
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N
√

SWAP, and NTQ-NOT gates) of one transmon qubit
simultaneously controlling N target transmon qubits in
circuit QED with nearest qubit–qubit interaction by
adding a strong microwave field. These type of quantum
logic gates are useful in quantum computation and
quantum information processing. On the other hand, the
qubit-qubit interaction could influence the evolution of
the system used in ref. [17]. Moreover, the presence of
both qubit-qubit interaction and Jaynes-Cummings make
our system powerful.

The paper is organized as follows: In Sec.2, we

concretely illustrate the way NiSWAP, N
√

iSWAP,

NSWAP, N
√

SWAP and NTQ-NOT gates via circuit QED
by using the system of N +1 transmon qubits coupled to a
resonator with nearest qubit–qubit interaction, we have
calculated the evolution operator a three-step, we use the
overall evolution operator for obtaining these quantum
logic gates, we also give a brief discussion about our
proposal. In Sec.3, we study the fidelity and then discuss
its feasibility based on current experiments in circuit
QED. A concluding summary is given in Sec.4.

2 Basic theory

The method presented for implementing N

two-transmon-qubit quantum logic gates (NiSWAP,

N
√

iSWAP, NSWAP, N
√

SWAP and NTQ-NOT gates)
via circuit QED is based on the qubit-qubit interaction. In
this subsection, we show how to apply the first method to
implement these quantum logic gates which the transmon
qubits are capacitively coupled to a superconducting
transmission line resonator (TLR) driven by a strong
microwave field. The physical setup considered in this
study is schematically illustrated in Fig.1. The operation
time of these gate is shorten because the coupling
constant between the transmon qubit and the quantum
date bus (QDB) is large enough in the case of TLR has
been chosen as QDB. The similar architectures have been
used in refs. [20].

Let us now consider an (N + 1) transmon qubits
which are capacitively coupled to a TLR driven by a
strong microwave field [20] as depicted in Fig.1. A
microwave field of frequency ωd is applied to the input
wire of the TLR. The (N + 1) transmon qubits each
having two-level subspaces driven by a conventional field
added, these transmon qubits are capacitively coupled to
it. Moreover, the qubit-qubit interaction should be
included in the circuit QED [21], where the direct
interaction between the qubits, in circuit QED, is virtually
realized in the dispersive regime [22]. The Hamiltonian of
the whole system (assuming h̄ = 1) given by [18]

H = ωq

N+1

∑
j=1

σz, j +ωra
+a+Ω

N+1

∑
j=1

(σ+
j e−iωdt +σ−

j eiωdt)

+
N+1

∑
j=1

g j(a
+σ−

j + aσ+
j )+

N+1

∑
j,k=1, j 6=k

Γjkσ+
j σ−

k , (1)

we get Ω = g jε/δ where δ = ωr −ωd is the detuning
between the resonance frequency of the TLR ωr and the
frequency of the external drive applied to the TLR ωd ,
Γjk = g jgk(

1
∆ j

+ 1
∆k
) [22] which describes the effective

interaction between qubits j and k, and ∆ j(∆k) is large
detuning as compared to the qubit-TLR coupling g j(gk)
[23]. σz, j, σ−

j , and σ−
j are the collective operators for the

(1,2, ...,N + 1) qubits, which are given by

σz, j = 1
2
(|0 j〉〈0 j| − |1 j〉〈1 j|), σ+

j = |1 j〉〈0 j|,
σ−

j = |0 j〉〈1 j| where |1 j〉(|0 j〉) is the excited state

(ground state) of the transmon qubit, ωr = 1/
√

LC is the
resonance frequency of the TLR where the transmission
line resonator can be modeled as a simple harmonic
oscillator composed of the parallel combination of an
inductor L and a capacitor C, ωq is the transition
frequency of the transmon qubit with
ωq1

= ωq2
= ... = ωqN+1

, a+,a are the creation and
annihilation of the resonator mode. In the high EJ/EC

limit the transition frequency between the ground state
|0 j〉 and excited state |1 j〉 is given by ωq =

√
8EJEC/h̄,

where EC = e2/2CΣ and EJ(Φ) = EJ0 |cos(πΦ/Φ0)|,
CΣ = CS + (C−1

g +C′−1
g )−1. Here, Cg, C′

g are the gate
capacitance, CS is the additional capacitor, CΣ is the
effective total capacitance, Φ is the external magnetic flux
applied to the SQUID loop, Φ0 = h/2e is the flux
quantum, EJ(Φ) is the effective Josephson coupling
energy, EC is the charging energy, and EJ0 is the
Josephson coupling energy, where the qubit work at the
regime EJ/EC ≫ 1. It is obvious that the frequency of the
transmon qubit ωq can be tuned by external magnetic flux
Φ . When we work with a large amplitude driving field,
quantum fluctuations in the drive are very small with
respect to the drive amplitude and the drive can be
considered, for all practical purposes, as a classical field.

For convince, we assume that we can tune the coupling
constant g j and the coupling strength Γjk at the same time

to have g j = gk = g and Γjk = Γ = 2g2

∆ (in the case ∆ j =
∆k =∆ ). By assuming that ωd =ωq, we have the following
Hamiltonian HI in the interaction picture [18]

HI = Ω
N+1

∑
j=1

(

σ+
j +σ−

j

)

+ g
N+1

∑
j=1

(

eiδ taσ+
j + e−iδ ta+σ−

j

)

+Γ
N+1

∑
j,k=1, j 6=k

σ+
j σ−

k , (2)

where δ = ωr −ωq is the detuning between the frequency
of the qubit ωq and the frequency of the resonator ωr.
When Ω ≫ δ ,g,Γ and δ ≫ g,Γ we can get the
Hamiltonian HI in the interaction picture [15,24,25,26]

HI = H0 +He f f , (3)
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Fig. 1: (Color online) Schematic diagram of a TLR and several

(N + 1) transmon qubits are coupled in a circuit QED (blue)

driven by a strong microwave field of frequency ωd (this field

∼ is applied to the input wire of the TLR). The TLR is connected

to the input wiring with a capacitor Cin, and output wiring with a

capacitor Cout . In addition, the coupling between qubits i and j is

via inductances coupling, where this coupling can be interpreted

as an energy coupling between qubits.

with

H0 = 2Ω
N+1

∑
j=1

σx, j (4)

He f f =
g2

δ

[

N+1

∑
j=1

(σ+
j σ−

j + a+aσz, j)+
N+1

∑
j,k=1, j 6=k

σ+
j σ−

k

]

(5)

+Γ
N+1

∑
j,k=1, j 6=k

(

σx, jσx,k +
1

4

(

σ+
j σ−

k +σ−
j σ+

k

)

)

,

where σx, j =
1
2

(

σ+
j +σ−

j

)

. From Eq.3, we can easily

obtain the corresponding evolution operator U(t) as
follows [15,25,27]

U(t) = exp

{

−i2Ω t
N+1

∑
j=1

σx, j − i
g2

δ
t

[

N+1

∑
j=1

(

σ+
j σ−

j +a+aσz, j

)

+
N+1

∑
j,k=1, j 6=k

σ+
j σ−

k

]

− iΓ t
N+1

∑
j,k=1, j 6=k

[

1

2
σx, jσx,k

+
1

4

(

σ+
j σ−

k
+σ−

j σ+
k

)

]}

.

(6)

For a charge qubit 1 coupled to the resonator, assumed
δ ≫ |g|. Then, the corresponding evolution operator can
be expressed as [17,28]

UI1(t) = exp

[

−2iΩ tσx,1 − i
g2

δ
t(σ+

1 σ−
1 + a+aσz,1)

]

.

(7)

We now show how to utilize the above model (Eq.6)

to implement an NiSWAP, N
√

iSWAP, NSWAP,

N
√

SWAP and NTQ-NOT gates. We note that: (i) for
each one of qubits 1,2, ...,N + 1 of each step of the
operations, the dc gate voltage V dc

g = e/Cg, such that
Ez = 0 for each qubit, and (ii) the resonator mode
frequency ωr is fixed during the entire operation. We now
consider two special cases: δ > 0 as well as δ < 0. The
results from the unitary evolution, obtained for these two
special cases, are employed below for the gate
implementation. The detailed procedure is given as
follows:

Step 1. Let us begin with the case δ > 0, set V ac
g =

V0 cos(ωt) for each qubit, adjust the transition frequencies
of (N + 1) qubits by external flux Φ j, then ωq = ωd is
satisfied, with the pulse Rabi frequency Ω = gε/δ of the
amplitude V0 where the detuning δ = ωr −ωq > 0. So,
after a period of evolution time τ1 = 2π/δ , the evolution
operator for the qubit system corresponding to this step
would be the UI(t) of Eq.6.

U(τ1) = exp

{

−i2Ωτ
N+1

∑
j=1

σx, j − i
g2

δ
τ

[

N+1

∑
j=1

(σ+
j σ−

j +a+aσz, j)

+
N+1

∑
j,k=1, j 6=k

σ+
j σ−

k

]

− iΓ τ
N+1

∑
j,k=1, j 6=k

[

σx, jσx,k

+
1

4

(

σ+
j σ−

k
+σ−

j σ+
k

)

]}

, (8)

Step 2. Let us now consider the case δ < 0, set V ac
g = 0

for qubit 1, adjust the level spacings of qubit 1 such that
the resonator mode is coupled to qubits (2,3, ...,N +1), so
ωq = ωd is satisfied, with the pulse Rabi frequency is Ω ′

of the amplitude V
′
0, where the detuning

δ ′ = ωr − ω ′
q = −δ > 0. Then, after a period of time

τ2 = 2π/δ ′, the evolution operator of the system
corresponding to this step can be described by

U(τ2) = exp

{

−i2Ωτ
N+1

∑
j=2

σx, j − i
g2

δ
τ

[

N+1

∑
j=2

(σ+
j σ−

j +a+aσz, j)

+
N+1

∑
j,k=2, j 6=k

σ+
j σ−

k

]

− iΓ τ
N+1

∑
j,k=2, j 6=k

[

σx, jσx,k

+
1

4

(

σ+
j σ−

k
+σ−

j σ+
k

)

]}

, (9)

The combined time evolution operator of the whole
system, after these two steps, is arrived at

U(τ1 + τ2) = exp

{

−i2Ωτσx,1 − i
g2

δ
τ(σ+

1 σ−
1 +a+aσz,1)

−i
g2

δ
τ

N+1

∑
j=2

(σ+
1 σ−

j +σ−
1 σ+

j )− iΓ τ
N+1

∑
j=2

[

σx,1σx, j

1

2

(

σ+
1 σ−

j +σ−
1 σ+

j

)

]}

. (10)

Step 3. We adjust the transition frequency of qubits
2,3, ...,N + 1 such that the resonator mode is largely
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decoupled from each qubit, but we leave the transition
frequency unchanged for qubit 1 such that g2/ |δ ′| ≪ |g|
(i.e. |δ ′| ≫ |g| where δ ′ < 0) and Ω ′ = gε/δ ′. When the
condition δ ′ = −δ is satisfied, the time evolution operato
after a period of time τ is [17,28]

UI1(τ3) = exp

[

2iΩτσx,1 + i
g2

δ
τ(σ+

1 σ−
1 + a+aσz,1)

]

.

(11)

After the three-step process, a phase flip (i.e.,
|1〉 → −|1〉) on the state |1〉 of each target transmon qubit
is achieved when the control transmon qubit 1 is initially
in the state |1〉, but nothing happens to the states |0〉 and
|1〉 of each target transmon qubit when the control
transmon qubit 1 is initially in the state |0〉. When the

conditions Γ
2
+ g2

δ = γ and Γ = 4χ , the evolution operator
of the system, after the above three steps operation, is
given by

Us(τ) =
N+1

∏
j=2

Ugate(1, j), (12)

where
Ugate(1, j) = exp[−iχτ4σx,1σx, j − iγτ(σ+

1 σ−
j + σ−

1 σ+
j )],

j = 2,3, ...,N + 1. In the next section, we will use this
evolution operator of the whole system (Eq.12) for

demonstrate how NiSWAP, N
√

iSWAP, NSWAP,
N
√

SWAP and NTQ-NOT gates can be realized.

3 Preparation of quantum logic gates and discussion

3.1 Implementation of NiSWAP and N
√

iSWAPgates

It is demonstrated that more complex quantum gates can

be created by the iSWAP and
√

iSWAPgates [29].

Furthermore, the iSWAP and
√

iSWAP gates forms a
universal gate set, a CNOT gate for example can be

obtained from two iSWAP or two
√

iSWAP gates and
single-qubit rotations [4]. Recently, it has been shown that

the iSWAP and
√

iSWAP gates can be very useful for
applications in quantum information process QIP and
quantum computing [30]. The purely quantum iSWAP
and iSWAP gates are an appropriate elementary two-qubit
gates, these quantum logic gates can be represented by
the the following input–output operators:

iSWAP ≡ |00〉〈00|+ i|01〉〈10|+ i|10〉〈01|+ |11〉〈11|.
(13)

√
iSWAP ≡









1 0 0 0

0 1√
2

i√
2

0

0 i√
2

1√
2

0

0 0 0 1









. (14)

The goal of this subsection is to demonstrate how the

NiSWAP and N
√

iSWAP gates can be realized based on

the evolution operator of the whole system (Eq.12).
According to the evolution operator Ugate(1, j) above
(from Eq.12) on the basis (|01〉, |11〉) for qubit 1, so the
basis (|0 j〉, |1 j〉) for qubit (2,3, ....N + 1), we can obtain
following evolutions

Ugate(1, j)|01〉|0 j〉 = cos χτ|01〉|0 j〉− isin χτ|11〉|1 j〉
Ugate(1, j)|01〉|1 j〉 = eiηπ [[cos(γ + χ)τ|01〉|1 j〉]

−isin(γ + χ)τ|11〉|0 j〉]
Ugate(1, j)|11〉|0 j〉 = eiηπ [[cos(γ + χ)τ|11〉|0 j〉]

−isin(γ + χ)τ|01〉|1 j〉]
Ugate(1, j)|11〉|1 j〉 = cos χτ|11〉|1 j〉− isin χτ|01〉|0 j〉,

(15)

A phase factor ηπ in the previous evolutions can be
produced by several different proposals [31]. By setting
χτ = 2kπ (with k being an integer), η = 2m (with m being
an integer) and γτ =

(

2n+ 3
2

)

π (with n being an integer),
we obtain N-two-qubit iSWAP operations as (from Eq.15)

UiSWAP(1, j)|01〉|0 j〉 = |01〉|0 j〉
UiSWAP(1, j)|01〉|1 j〉 = i|11〉|0 j〉
UiSWAP(1, j)|11〉|0 j〉 = i|01〉|1 j〉
UiSWAP(1, j)|11〉|1 j〉 = |11〉|1 j〉. (16)

By setting χτ = 2kπ (with k being an integer),

η = 2m (with m being an integer) and γτ =
(

2n+ 5
4

)

π
(with n being an integer), we obtain N-two-qubit√

iSWAP operations as

U√
iSWAP

(1, j)|01〉|0 j〉 = |01〉|0 j〉

U√
iSWAP(1, j)|01〉|1 j〉 =

1√
2
[|01〉|1 j〉+ i|11〉|0 j〉]

U√
iSWAP(1, j)|11〉|0 j〉 =

1√
2
[|11〉|0 j〉+ i|01〉|1 j〉]

U√
iSWAP(1, j)|11〉|1 j〉 = |11〉|1 j〉. (17)

Then, the N two qubit iSWAP and
√

iSWAP
operations are simultaneously performed on N qubit pairs
(1,2), (1,3), ..., (1,N + 1) . Each gate operation (iSWAP

and
√

iSWAP gate) includes the same control qubit and a

different target qubit. Thus, the NiSWAP and N
√

iSWAP
gates are implemented simultaneously between the first
qubit and the N qubits. Finally, we give a brief discussion
about our proposal. We notice that δ satisfies the equation

(g/δ1)
2 = n + 3

4
of the NiSWAP gate and the equation

(g/δ2)
2 = n + 5

8
of the

√
iSWAP gate, where n is an

integer. So, when n = 0, δ takes maximum δ1 =
2
√

3
3

g and

δ2 = 2
√

10
5

g. Then, the operation time

top1
= 3τ = 2π × 3

√
3

2g
(NiSWAP gate) and

top2 = 3τ = 2π × 3
√

10
4g

(
√

iSWAP gate) are independent

of the number of target qubits N. Then, the direct
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calculation shows that the operations times required to

implement the NiSWAP and
√

iSWAP gates with
transmon qubits are top1

= 13ns and top2
= 11.86ns. In the

next, we use the above evolutions (Eq.15) for

implementing NSWAP, NTQ-NOT and N
√

SWAP gates.

3.2 Implementation of NSWAP and N
√

SWAP gates

The SWAP and
√

SWAP gates are an appropriate
elementary two-qubit gates, where they are useful in
quantum computation and quantum information
processing [4], such as establishing the universality of
two-qubit gates [32], programmable gate arrays [33], and
constructing quantum circuits [34]. On the other hand, the
SWAP gate is equivalent to three CNOT gates and the√

SWAP gate constitutes a universal set of quantum gates
together with single qubit rotations around an arbitrary
axis [11]. these type of quantum logic gates can be
represented by the operators:

SWAP ≡ |00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11| (18)

√
SWAP ≡









1 0 0 0

0 1+i
2

1−i
2

0

0 1−i
2

1+i
2

0
0 0 0 1









. (19)

The main objective of this subsection is to realize

NSWAP and
√

SWAP gates using the evolutions (Eq.15).
By selecting χτ = 2kπ (with k being an integer),
η = 2m + 1

2
(with m being an integer) and

γτ =
(

2n+ 1
2

)

π (with n being an integer), an N two qubit
SWAP operations are simultaneously performed on N

qubit pairs (1,2), (1,3), ..., (1,N + 1) as (from Eq.15)

USWAP(1, j)|01〉|0 j〉 = |01〉|0 j〉
USWAP(1, j)|01〉|1 j〉 = |11〉|0 j〉
USWAP(1, j)|11〉|0 j〉 = |01〉|1 j〉
USWAP(1, j)|11〉|1 j〉 = |11〉|1 j〉. (20)

By setting χτ = 2kπ (with k being an integer), η =
2m+ 1

4
(with m being an integer) and γτ =

(

2n+ 1
4

)

π (see

Eq.15), we obtain N-two-qubit
√

SWAP operations as

U√
SWAP(1, j)|01〉|0 j〉 = |01〉|0 j〉

U√
SWAP(1, j)|01〉|1 j〉 =

1+ i

2
|01〉|1 j〉+

1− i

2
|11〉|0 j〉

U√
SWAP(1, j)|11〉|0 j〉 =

1+ i

2
|11〉|0 j〉+

1− i

2
|01〉|1 j〉

U√
SWAP

(1, j)|11〉|1 j〉 = |11〉|1 j〉. (21)

By this way, one can see that NSWAP and N
√

SWAP
gates are simultaneously performed on the qubit pairs
(1,2), (1,3), ..., (1,N + 1), respectively. So, the NSWAP

and N
√

SWAP gates are implemented simultaneously
between one transmon qubit and N transmon qubits.

Hence, it is clear that the NSWAP and N
√

SWAP gates
can be realized after the three-step process. Now, we give

a brief discussion about quantum NSWAP and N
√

SWAP
gates, we notice that δ satisfies the equation

(g/δ3)
2 = n + 1

4
of the NSWAP gate and the equation

(g/δ )2 = n+ 1
8

of the N
√

SWAP, where n is an integer,

when n = 0, δ takes maximum δ3 = 2g and δ4 = 2
√

2g.
Then, the operations times required to implement the

NSWAP and N
√

SWAP gates are top3
= 2π × 3

2g
and

top4
= 2π × 3

2g
respectively. So, the direct calculation

shows that the operations times are top3 = 7.5ns and
top4

= 15ns.

3.3 Implementation of NTQ-NOT gate

In this subsection, we focus on how to realize NTQ-NOT
gate (N two-transman qubit-NOT gate) with one
transmon qubit simultaneously controlling N target qubits
by introducting the qubit-qubit interaction. The quantum
NTQ-NOT operation on two-qubit computational basis is
defined through the following input–output relations:

UNOT |0i〉|0 j〉 = |1i〉|1 j〉; UNOT |0i〉|1 j〉= |1i〉|0 j〉,
UNOT |1i〉|0 j〉 = |0i〉|1 j〉; UNOT |1i〉|1 j〉= |0i〉|0 j〉. (22)

The method presented so far for implementing the
NTQ-NOT gate is based on the evolutions of the
subsubsection 1 (see Eq.15) where an overall phase factor
e−iηπ is omitted. By setting χτ = (2k+ 1

2
)π (with k being

an integer), η = 2m + 3
2

(with m being an integer) and
γτ = (2n+ 1)π (with n being an integer), we can easily
verify that

UNOT (1, j)|01〉|0 j〉 = |11〉|1 j〉
UNOT (1, j)|01〉|1 j〉 = |11〉|0 j〉
UNOT (1, j)|11〉|0 j〉 = |01〉|1 j〉
UNOT (1, j)|11〉|1 j〉 = |01〉|0 j〉. (23)

It’s worth to point out that N two-transmon
qubit-NOT operations are simultaneously performed on N

qubit pairs (1,2),(1,3), . . . ,(1,N + 1), Each SWAP
operation includes the same control qubit and a different
target qubit. Then, the N two-transmon qubit-NOT gates
are implemented simultaneously between one transmon
qubit and N qubits. Hence, it is clear that the NTQ-NOT
gate can be realised in circuit QED. Now, we give a brief
discussion about quantum NTQ-NOT gate. We notice that

δ satisfies the equation (g/δ5)
2 = n + 1

2
, where n is an

integer, when n = 0, δ takes maximum δ5 =
√

2g. Then,

the operation time is top5
= 2π × 3

√
2

2g
. So, the direct

calculation shows that the operation time required to
implement the NTQ-NOT gate will be top5

= 10.61ns.
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Fig. 2: Numerical results for fidelity of the gates operations

versus the force qubit-qubit coupling Γ .

4 Possible experimental implementation

Let us now study the fidelity of the gate operation. In
order to check the validity of our proposal, we define the
following fidelity to characterize the deviation of how
much the output states |Ψ (t)〉 deviate in amplitude and
phase from the ideal logical gate transformation for the
different input states [35]

F = |〈Ψ(t)|U(t)|Ψ(0)〉|2 , (24)

where |Ψ(t)〉 is the final state of the whole system after
the gate operations, |Ψ(0)〉 is the initial state followed by
an ideal phase operation and U(t) is the overall evolution
operator of the system are performed in a real situation.
We numerically simulate the relationship between the
fidelity of the system and the force qubit-qubit coupling
Γ . Our numerical calculation shows that a high fidelity
can be achieved when Γ = 100 Hz (see Fig. 2).

For this method to work, we discuss some issues
which are relevant for future experimental
implementation of our proposal. Compared with the usual
charge qubit, the transmon qubit is immune to the 1/ f

charge noise and it has much longer dephasing time as a
result of the transmon qubits chosen in the system. For
the sake of definiteness, let us consider the experimental
parameters of the transmon qubits as Cg = 1aF ,
CJ0 = 300aF, Ec = 2π × 2GHz and EJ ≃ 2π × 100GHz

[15]. The transmon qubits with these parameters are
available at present. Thus, the coupling three qubits with a
transmission line resonator has been experimentally
demonstrated [36]. Our scheme may have potential
applications in multipartite entanglement. The charge
fluctuations are principal only in low-frequency region
and can be reduced by the echo technique [37] and by
controlling the gate voltage to the degeneracy point, but
an effective technique for suppressing charge fluctuations
and keep the state coherent for a longer time is highly
desired. So our proposal is realizable with presently
available circuit QED techniques.

In a recent experiments, it was showen that the
decoherence times T1 and dephasing time T2 can be made

to be on the order of 20 − 100 µs for transmon qubits
(when EJ/EC = 50) [38,39]. In addition, the coupling
strength is g = 2π × 200MHz [22,16], which is
experimentally available. Furthermore, the operation time

required to implement the NiSWAP, N
√

iSWAP, NSWAP,

N
√

SWAP and NTQ-NOT gates with transmon qubits is
independent of the number of target qubits N. It is clear
from the above calculation that the total operation time
(top1

, top2
, top3

, top4
and top5

) of the quantum logic gates

(NiSWAP, N
√

iSWAP, NSWAP, N
√

SWAP and
NTQ-NOT gates) which is much shorter than the
decoherence times T1 and dephasing time T2, which
satisfies our experimental requirement. Also, we note that
the decoherence time of field state inside a resonator
depends on the initial field state. However, the gate
operation is independent of the initial state of the
resonator because of the operator Ugate does not incluse
the photon operator a and a+ of the circuit QED.

5 Conclusion

In Summary, We have used the system in which the
transmon qubits are capacitively coupled to a TLR driven
by a strong microwave field. As shown above, we have
presented and demonstrated a method for realizing an

NiSWAP, N
√

iSWAP, NSWAP, N
√

SWAP and
NTQ-NOT gates in circuit QED by introducing the
qubit-qubit interaction. The operation time is independent
of the number of qubits involved in the scheme, and the
gates operations are insensitive to the initial state of the
resonator. The system requires no disagreement between
the qubits and the resonator. In addition, the operation
time is only dependent of the detuning and the time can
be controlled by adjusting the frequency between the |0 j〉
and |1 j〉. However, we have calculated an evolution
operator in the case of the qubit-qubit interaction. Finally,
we have applied the overall evolution operator to working
basis of the qubit 1 and the qubits j ( j = 2, ...,N + 1) for

find the NiSWAP, N
√

iSWAP, NSWAP, N
√

SWAP and
NTQ-NOT gates. In the our system, when we choose
suitable detuning, the quantum logic gates can be realized
in a time much shorter than decoherence time, and it is
more immune to the 1/ f charge noise and have longer
dephasing time as a result of the transmon qubits chosen
in the system. In addition, numerical simulation of the
gate operations shows that the scheme could be achieved
with high fidelity under current state-of-the-art
technology. Therefore, the present scheme might be
realizable using the presently available techniques, and
the experimental implementation of the present scheme
would be a important step toward more complex quantum
logic gates, serving to show the power of the
transmon-qubit system for quantum information
processing.
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