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Abstract: Computational techniques based on ranks of Hankel matrices (H-ranks) is used to study the convergence to Arnold tongues

in the circle map. It appears that the process of convergence to the phase-locked mode of the discrete stationary attractor is far from

being trivial. Figures of pseudoranks of Hankel matrices constructed from transient solutions of the circle map carry important physical

information about complex nonlinear processes and are also beautiful from the aesthetical point of view.
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1 Introduction

Clocking convergence is an important tool for
investigating various aspects of iterative nonlinear maps.
The rate of convergence to the critical attractor when an
ensemble of initial conditions is uniformly spread over
the entire phase space providing the insight into the
fractal nature and the scale invariance of the dynamical
attractor [1,2]. Numerical convergence of the discrete
logistic map gauged with a finite computational accuracy
is investigated in [3] where forward iterations are used to
identify self-similar patterns in the region before the onset
to chaos. An alternative technique based on the concept of
the H-rank is proposed in [4] for clocking the
convergence of iterative chaotic maps.

The main objective of this paper is to show that the
concept of the H-rank can be effectively used for the
investigation of convergence properties of the circle map.
The insight into the embedded algebraic complexity of
the nonlinear system is revealed by computing and
visualizing of Hankel ranks in the space of system’s
parameters and initial conditions. It is shown in [4] that
the computation of Hankel ranks can be effectively used
to identify and assess the sensitivity of nonlinear systems
to initial conditions and can be used as a simple and
effective numerical tool for qualitative investigation of the
onset of chaos for discrete nonlinear iterative maps.

We use the discrete iterative circle map to illustrate
the process of convergence to stationary states. The circle

map is a paradigmatic model of a nonlinear iterative
dynamical system used to study the dynamical behavior
of a beating heart [5]. We show that the study of the
convergence rate to a periodic orbit of the circle map can
produce beautiful and appealing patterns. Moreover, these
graphical pictures contain important information on the
stability of periodic orbits of the circle map. This
information could be useful whenever the manipulation or
control of quasiperiodic nonlinear systems would be
considered [6,7].

We also discuss the peculiarities of computer
arithmetic in computations we perform. Floating point
standard was explored in order to explain the fact of
successful calculations down below the limit of machine
epsilon.

2 The algorithm for the computation of the

H-rank

The concept of the H-rank of a sequence
(p j; j = 0,1, . . .); p j ∈ R; has been introduced in [4]. The
purpose of this section is to recall the concept of the
H-rank of a solution of a discrete iterative map.
Corresponding sequence of Hankel matrices reads:

Hn :=
(

pi+ j−2

)

1≤i, j≤n
=
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=







p0 p1 · · · pn−1

p1 p2 · · · pn

· · · · · · · · · · · ·
pn−1 pn · · · p2n−2






;n = 1,2, . . . .

The Hankel transform (the sequence of determinants
of Hankel matrices) (dn;n = 0,1, . . .) reads:

dn := detHn;n = 1,2, . . . .

Definition The sequence (p j; j = 0,1, . . .) has an H-
rank m ∈ Z0; m <+∞;

Hr (p j; j = 0,1, . . .) = m;

if the sequence of determinants of Hankel matrices has the
following structure:

(d1,d2, . . . ,dm,0,0, . . .)

where dm 6= 0 and dm+1 = dm+2 = . . .= 0.

It is admitted that Hr (0,0,0, . . .) = 0. Note that
Hr (p0, . . . , pm,0,0,0, . . .) = m + 1, if only pm 6= 0 for
m = 0,1,2, . . ..

3 Floating point number arithmetic

All real numbers are stored as a closest binary number [8]:

x = (−1)s · (1+Fraction)·2Exp−Bias.

A floating point number of a double word length has
the sign bit, 11 bits for Exp part and 52 bit for the fraction
(or the mantissa) in 32bit system. The bias is set to 1023
thus largest power of 2 is

∑
10
i=0 2i − 1023 = 211 − 1− 1023 = 1024 and the smallest

power of 2 is 0− 1023 = −1023. The least significant bit
is equal to 2−52 ≈ 2.22 · 10−16 (the machine epsilon). In
this case the 16-th digit of the mantissa of a real number
is approximate.

Consider the number x = 3.5. Mantissa must start
with 1 so x

21 = 1.75 gives Exp − Bias = 1 and 0.75 as

fraction. 0.75 = 1
2
+ 1

22 +
0
23 + . . .. The number is positive,

so s = 0 and we have these bits in computer memory
(double format in a 32bit system): 01000...011000...0.

An important fact must be mentioned here. Consider
two floating point numbers which differ less than machine
epsilon (for example 2−21 and 2−20). The arithmetic
operations of course can be performed. Despite this one
must be careful while working with detection of
convergence or similar problems. The number might
converge and become constant (if we fix the machine
epsilon as being equivalent to zero) in computer memory
but the difference between two adjacent numbers might
still exist and might be less than machine epsilon. Thus
there are problems where certain properties of computer
arithmetic are important.

4 Notes on finding H-rank using floating

point arithmetic

Suppose we have a sequence of numbers: 2.5; -1; 0.25; -
0.06; -0.25; 0.1; 0.25; 0.1. Let these numbers be the orbit
of a particular map of interest. Corresponding sequence of
Hankel matrices is:

H(1) =
[

2.5
]

;H(2) =

[

2.5 −1
−1 0.25

]

;

H(3) =





2.5 −1 0.25
−1 0.25 −0.06
0.25 −0.06 −0.25



 ;

H(4) =







2.5 −1 0.25 −0.06
−1 0.25 −0.06 −0.25

0.25 −0.06 −0.25 0.1
−0.06 −0.25 0.1 0.25






.

Firstly we have used MATLAB to find the
determinants for each of the matrices above. Calculations
resulted in: d(1) = 2.5; d(2) = −0.375; d(3) = 0.099125;
d(4) = 0.07683046. Usually the results can be considered
of acceptable accuracy because the number represented
by the least significant bit in double format
(2−52 ≈ 2.22 · 10−16) is much less than the last digits of
the results obtained.

The floating point arithmetic is simulated by writing a
C++ code for performing “+”; “-”; “*” operations and
calculating the determinant of a matrix by performing the
product of first row elements and corresponding lower
order determinants. The purpose of this is to see where
accuracy is lost and, more importantly, to find out
whether that correlates to the properties of the map.

Completely for the illustrative purposes custom
floating point type is chosen here. 1 bit is dedicated to the
sign of a number, 5 bits for the exponent and 6 bits for the
mantissa. Setting 5 bits for the exponent enables one to

use 2±(31−1)/2 = 2±15 = ±32768 as a maximal factor
(because 20 + 21 ++24 = 31). Analogously one can find
the limits for a mantissa.

In this example d(3) is calculated as follows:

2.5 · (0.25 · (−0.25)− 0.06 ·0.06)−

−(−1) · (−1 · (−0.25)− (−0.06) ·0.25)+

+0.25 · (−1 · (−0.06)− 0.25 ·0.25).

Some operations do not affect the accuracy of the result
such as:

0.2510 × 1. 0 0 0 0 0 0 ·2−2

0.2510 1. 0 0 0 0 0 0 ·2−2

0.062510 1. 0 0 0 0 0 0 ·2−4

But some operations results in:

0.0610 × 1. 1 1 1 0 0 0 ·2−5

0.0610 1. 1 1 1 0 0 0 ·2−5

0.003509510 1. 1 1 0 0 1 0 1 ·2−9
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In this case the resulting number has a longer mantissa
than 6 positions. The remaining bit 2−7 ·2−9 = 2−16 is not
stored in the resulting number. Depending on the hardware
used for the calculations, this remaining bit most probably
will be lost. Such accuracy loss is a price for length of the
mantissa being too short.

It is not difficult to notice that in a certain case the two
added numbers can differ more than the length of a
mantissa. By performing addition and normalizing the
mantissas in the first place one of the operands becomes
zero in the mantissa. Thus it is not acting in the operation
and the result will be the greater number of the two. To
sum up, the operation in fact lies beyond the machine
epsilon and is successfully performed. In other words,
operations are performed in the exponent. However the
accuracy of the result is then lost.

A number of acceptable accuracy losses is fixed while
performing calculation of H-ranks. k = n!

2
showes to be

the most informative and universal value obtained
experimentally (here n is the order of the determinant
being calculated). Nevertheless, this number is
approximately equal to half of arithmetic operations in
calculating determinant by expanding it to the sum of the
product of one row elements and consecutive lower order
determinants.

Suppose one needs to calculate the determinant by
performing actions mentioned above. If determinant of
order 2 is calculated as the difference of the products of
the diagonal elements then 1 subtraction operation must
be executed. The order 3 determinant requires 2 sums of
cofactors and 3 · 1 subtractions inside each of them. The
order 4 determinant requires 3 + 4 · 2 sums and 4 · 3 · 1
subtractions and so on. In this respect the order n

determinant requires (n−1)+n · ((n−2)+(n−1) · ((n−
3)+ (n− 2) · · · · ·3 ·1)) sums and n!

2
subtractions.

Order Total Total Total

sums of subtractions Total number n!
2

cofactors of products of +-

2 0 1 1 1

3 3 ·0+2 = 2 3 5 3.5

4 4 ·2+3 = 11 4 ·3 = 12 23 12

5 5 ·11+4 = 59 5 ·4 ·3 = 60 119 60

As seen from the table n!
2

is approximately half of the
sum and subtraction operations present in finding the
cofactor expansion for a particular determinant. The total
number of these operations is n!− 1.

5 Visualization of the process of convergence

to Arnold tongues

The circle map is represented by the one-dimensional
iterative map:

θn+1 = f (θn) = θn +Ω −
K

2π
· sin(2πθn) ; (1)

where θn value lies between 0 and 1 (2πθn is a polar
angle); K is the coupling strength; Ω is the driving phase

and n = 0,1, . . .. Figure 1 shows the bifurcation diagram
for the circle map. The symmetry of the bifurcation
diagram can suggest to perform a research in a subset of
the domain of Ω . However this may not apply to the
transients and it is important in clocking convergence.

The circle map exhibits a phenomenon called phase
locking if small to intermediate values of K (0 < K < 1)
and certain values of Ω are considered. In a phase-locked
region, the values θn advance as a rational multiple of n.
The phase-locked regions in Ω −K parameter plane are
called Arnold tongues [9].

The H-rank is used as the computational tool for the
reconstruction of Arnold tongues. At first H-ranks are
computed in the region 0 ≤ Ω ≤ 1 and 0 ≤ K ≤ π . For
every pair of Ω and K the iterative process is started and
the sequence

{

θ j

}

; j = 0,1, . . .; is constructed; the initial
condition θ0 is set to 0.5; and calculate the H-rank of that
sequence. As shown in [4], the H-rank of a chaotic
sequence does not exist (the H-rank tends to infinity
then). Therefore the upper limit for the H-rank m = 30 is
fixed. If the sequence of determinants does not vanish
until m = 30 the process is terminated assuming that
Hr

{

p j

}

= m; j = 0,1, . . .. The results are shown in
Figure 2(f). The more elements of the sequence
(θ j; j = 0,1, . . .); are considered (leading to possible
higher H-ranks of the sequence) the more resulting
picture is alike to the well-known shape of Arnold
tongues in the circle map [10].

6 The computation of pseudoranks

In order to determine the rank of the sequence one needs
to find such matrix dimension (m + 1) that the
determinant of the Hankel matrix is equal to zero. In
practice it is sufficient to compute determinants up to a
certain precision ε , like the machine epsilon. Calculating
a determinant of a square real matrix requires a fair
amount of computer resources if the dimension of a
matrix is large. Moreover, the determinant, though being
a conventional notion theoretically, rarely finds a useful
role in numerical algorithms [11].

Plotting phase diagrams of H-ranks requires massive
computations of determinants of Hankel matrices. Thus,
instead of using a standard straightforward function det in
MATLAB here C++ and the LAPACK package are
employed to perform the computation of determinants of
Hankel matrices. And though LAPACK can be
considered as the state-of-the-art in linear algebra, it does
not have a standard subroutine for the computation of the
determinant. Instead, the standard PLU decomposition of
a matrix into the lower triangular matrix L (having ones
on the main diagonal), the upper triangular matrix U and
the permutation matrix P is performed. The absolute
value of the determinant of the original matrix is equal to
the product of elements on the main diagonal of U. The
number of permutations determines the sign of the
determinant of the original matrix. But since the absolute
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Fig. 1: The bifurcation diagram for the circle map at K = π
2 . The first 10000 orbit points are omitted.
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Fig. 2: Maps of pseudoranks for different initial conditions (0 ≤ Ω ≤ 1, 0 ≤ K ≤ π and θ0 = 0.5) at (a): ε = 10−1; (b): ε = 10−2; (c):

ε = 10−4; (d): ε = 10−8; (e): ε = 10−12; (f): ε = 10−20.

value of the determinant is of interest only, it suffices to
compute the product of diagonal elements of U. An
alternative approach could be counting the number of
non-zero diagonal elements. The computation of
determinants is continued as the product of diagonal
elements of the matrix U until |detHm+1| < ε . In this
respect our computations reveal not the rank, but the
pseudorank of a sequence.

The combination of the speed of C++ in performing
loops (opposite to MATLAB) and the mathematical
precision of LAPACK resulted in significantly faster
formation of images of H-ranks in various phase planes.
It can be noted that final visualization is performed using
the functionality of MATLAB graphical functions.

The selection of a particular value of ε requires
additional attention. As mentioned previously, the
structure of Arnold tongues in the circle map is
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Fig. 3: Maps of pseudoranks for different initial conditions (0 ≤ Ω ≤ 0.4, 0 ≤ θ0 ≤ 0.4 and K = π
2 ) at (a): ε = 10−2; (b): ε = 10−5;

(c): ε = 10−10; (d): ε = 10−16; (e): ε = 10−25; (f): ε = 10−50.

well-known. The computation of pseudoranks for
different initial conditions (0 ≤ Ω ≤ 1, 0 ≤ K ≤ π and
θ0 = 0.5) for different ε is performed. Results are
illustrated in Figure 2. The evolution of interesting
patterns of pseudoranks can be observed as the value of ε

is decreased (note that the maximum rank in colorbars is
detected automatically and depends on ε).

A naked eye cannot see principal differences between
Figure 2(e) and Figure 2(f). At this point one can fix the
value of ε and use it for the construction of maps of
pseudoranks. But the particular selection must be valid. In
order to achieve this the graph representing the absolute
root mean square difference E between consecutive maps
of pseudoranks in Figure 2 is constructed. Let us denote
Hr1 (i, j) the value of the pseudorank at the i-th row and
the j-th column of the map of pseudoranks computed at
ε1 (analogously Hr2 (i, j) is the pseudorank at ε2). Then,
the difference E is defined as:

E (ε2) =

√

1

mn

n

∑
i=1

m

∑
j=1

(Hr1 (i, j)−Hr2 (i, j))2

where m is the number of rows and n is the number of
columns in maps of pseudoranks. The relationship E (ε)
is shown in Figure 4. It can be clearly seen that maps of
pseudoranks do not change considerably beyond
ε = 10−25 and the limit of accuracy of double floating
point arithmetic is reached.

The graph representing E between consecutive maps of
pseudoranks on the subset of the parameter plane Ω −K

at [0;0.4]× [0;0.5π ] (Figure 2) is also constructed. In this
case the detail of parameter plane improves more after the
limit of accuracy of double floating point arithmetic.

7 The quality of the parameter planes near

the manifolds of convergence

A comparison between Figure 4 and Figure 5 shows that
distribution of accuracy of computations may not be
uniform over the parameter plane. One of the essential
elements of particular parameter plane are stable and
unstable manifolds. Vicinities of these manifolds contain
orbits of different dynamical qualities. These differences
can also be explained as being different in complexity
which in turn has effect on the accuracy of the
computations.

Such heuristic argument is explored further by
constructing the manifolds of convergence for the circle
map and comparing them to the plots of accuracy loss
detection of pseudorank calculations. The plot of
accuracy loss detection in Figure 7(b) shows the minimal
order of the determinant calculated with at least n!

2
accuracy losses in arithmetical operations.

To construct stable and unstable manifolds one needs
to find fixed points of the map. By solving f (θ ) = θ the
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Fig. 4: The relationship between the absolute root mean square difference E and the ε at m = 30. Calculations are performed using

parameter plane Ω −K of dimensions [0;1]× [0;π] (a) (the solid line represents the variation of E at θ0 = 0.25; the dashed line - at

θ0 = 0.5; the dotted and dashed line - at θ0 = 0.75) and Ω −θ0 of dimensions [0;1]× [0;1] (b) (the solid line represents the variation

of E at K = 0.25π; the dashed line - at K = 0.5π; the dotted and dashed line - at K = 0.75π).
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Fig. 5: The relationship between the absolute root mean square difference E and the ε at m = 30. Calculations are performed using

parameter plane Ω −K of dimensions [0;0.4]× [0;0.5π] (a) (the solid line represents the variation of E at θ0 = 0.25; the dashed line

- at θ0 = 0.5; the dotted and dashed line - at θ0 = 0.75) and Ω − θ0 of dimensions [0;0.4]× [0;0.4] (b) (the solid line represents the

variation of E at K = 0.25π; the dashed line - at K = 0.5π; the dotted and dashed line - at K = 0.75π).

fixed points θ =
(−1)karcsin 2πΩ

K +πk

2π
, k ∈ Z, are obtained.

Previous computations were performed on the domain
[0;1]× [0;1] (or a subset of it) in the plane Ω −K. Thus
k = 0 is fixed and the following equations for stable and
unstable manifolds are obtained.

θ =

{

arcsin 2πΩ
K

2π
,

π−arcsin 2πΩ
K

2π
.

Figure 6 shows the comparison of constructed
manifolds to the manifold of non-asymptotic
convergence.

If the manifold of non-asymptotic convergence is
compared to the plot of accuracy losses (Figure 7(b))
some interesting similarities are seen. A part of the
manifold corresponds to the initial conditions leading to
fewer accuracy losses were mentioned before. This fact
suggests that one must pay more attention to the various
manifolds whenever the quality and detail of parameter
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Fig. 7: The comparison of the manifold of non-asymptotic convergence (to period-1 regime) to the plot of accuracy loss detection

(ε = 10−16, K = π
2 , k = n!

2 ).

planes is considered. The other areas of the parameter
plane corresponds to the most accuracy losses. A logical
explanation for this result might be the heuristic argument
mentioned before. An orbit which is relatively far from
the manifold of convergence tend to act more chaotic.
This in turn leads to higher order determinants being
considered.

8 Concluding remarks

The existence of Arnold tongues in the circle map is
known for already more than five decades ago [12]. There
exist different computational techniques for the
visualization of Arnold tongues. The universal algorithm

for the identification of Arnold tongues is based on two
simple steps. At first, the system must be iterated far away
from initial conditions until all transient processes cease
down. Secondly, one must identify the effect of the phase
locking in the discrete stationary attractor. Different
modes of the phase locking are then visualized by
different colors.

The method discussed also consists of two steps and
can be used for visualizing Arnold tongues themselves.
Firstly the system is iterated for a predetermined number
of steps from initial conditions. Then one does not need to
search for the effect of the phase locking. Then simple
computation of the H-rank of the stationary signal is
performed and Arnold tongues occur in the phase plot of
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pseudoranks. Thus the quality of phase diagrams is
crucial whenever the manipulation or control of
quasiperiodic nonlinear systems would be considered.

A much more interesting question is about the
convergence properties of the circle map to Arnold
tongues. It has been shown previously that pseudoranks
of transient processes may reveal important physical
information about the properties of a discrete system. For
example, it has been shown in [9] that one can observe the
stable, the unstable manifold and the manifold of
nonasymptotic convergence in the plotted phase diagrams
of the logistic map. In this paper the H-rank of the
transient processes of the circle map has been used for the
visualization of the rate of convergence to the Arnold
tongues. Optimal selection of the value for ε has been
considered.
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