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Abstract: In this paper, an approximate asymptotic confidence interval for the population standard deviation (σ ) is constructed based

on the sample Gini’s Mean Difference (GMD). The estimated Coverage Probability (CP) and the Average Width (AW) of the proposed

approximate asymptotic confidence interval were studied by means of a Monte-Carlo simulation under different settings and compared

with two-widely used methods, namely the exact method and the Bonnet (2006) method. It appears that the proposed approximate

asymptotic confidence interval method based on GMD performing well comparing to the exact method for some selected distributions.

Two real-life data examples are analyzed to illustrate the implementation of the several methods which also supported the results of the

simulation study to some extent.
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1 Introduction

The confidence intervals for variances are known to be
hypersensitive to minor violations of the normality
assumption and are sensitive to amounts of kurtosis that
may pass unnoticed in the handling of the data [1]. The
classical estimation of the confidence intervals for the
population standard deviation (σ ), which is considered
very important in many statistical applications, is based
on the sample standard deviation (S), which is the most
common scale estimator that provides a logical point
estimate of the population standard deviation (σ ).
Unfortunately, S is very sensitive to the deviations from
the assumed distribution. It is also not robust in the sense
that changing even one value can dramatically change the
computed value of it. Furthermore, S is not necessarily
the most efficient or meaningful estimator of σ in skewed
distributions and it is notable that it is not robust to slight
deviations from normality [2]. Even that S has a good
efficiency in platykurtic and moderately leptokurtic
distributions but the classic inferential methods for it may
perform poorly in realistically non-normal distributions

[3]. Nevertheless, S is known as the most efficient scale
estimator for the normal distribution often used to
construct the (1−α)100% confidence interval (CI) for σ .

The exact (1−α)100% confidence interval (CI) for σ
is generally based on the assumption that the underlying
distribution of the data is normal. However this
assumption is seldom fulfilled in applications as
discussed by many authors including [4,5]. So, one main
reason for considering alternatives to S for estimating σ ,
is its low efficiency at the non-normal distributions. The
statistical literature shows that robust methods might give
more meaningful measures of σ and are indeed more
resistant to departures from normality than S, see for
example [6] - [11].

Therefore, we are looking for an estimator, as an
alternative to S, which is robust, has a closed form, and is
easy to compute. The sample Gini’s Mean Difference
(GMD) might be a more meaningful measure of variation
and may be preferred to the sample standard deviation
(S). We think that the reconstruction of the utility of
Gini’s mean difference as a variability measure out of the
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normal framework is good. Moreover, we think that the
idea of using the sample mean difference to build
confidence intervals for variability is worth to be
investigated. Many authors studied the performance of the
Gini’s mean difference to estimate variability in normal as
well as in non-normal samples. They concluded that the
GMD performed better for non-normal scenario, possibly
for heavy-tailed distributions and it is also a very close
competitor to S, while other estimators are not close
competitor to S when samples are drawn from
non-normal distributions, see for example [4,12,13,14,
15].

In this paper, an approximate asymptotic confidence
interval for the population standard deviation (σ ) for one
sample problem is proposed when samples are drawn
from non-normal distributions. The proposed confidence
interval is based on GMD. Also, the normal distribution
of our pivotal quantity used to construct this confidence
interval holds only asymptotically. Therefore, the
proposed method provides an approximate asymptotic
alternative confidence interval to the exact (1−α)100%
confidence interval for σ . The performance of the
proposed approximate asymptotic method is investigated
through a Monte-Carlo simulation study based on various
evaluation criteria such as Coverage Probability (CP) and
Average Width (AW). Furthermore among other methods
developed to construct a confidence interval for σ , as
Bonnet method [3] is best, so we have considered it and
the exact methods in our simulation study comparison.

The rest of the paper is organized as follows: In
Section 2, we present the definition of the sample Gini’s
mean difference and also state clearly its main properties.
The pivotal quantity is derived in Section 3. In Section 4,
the exact, the Bonett method [3] and the proposed
approximate asymptotic confidence interval method for σ
are introduced. A Monte-Carlo simulation study is
conducted in Section 5. Two real-life data are analyzed in
Section 6. Finally, some concluding remarks based on the
simulation study and the real-life examples results are
given in Section 7.

2 The Sample Gini’s Mean Difference

The sample Gini’s Mean Difference (GMD) was
proposed as a measure of income inequality by the Italian
mathematician Corrado Gini [16]. Gini (1912) introduced
his statistic as he did not agree with the variance as a
measure of variation. He thought that variability should
not depend on location and variance, so he suggested
using the mean difference which defined as the average of
the absolute differences of all pairs of values in a
population, even that, the Gini’s mean difference, is not as
widely employed as σ is. Let X1,X2, . . . ,Xn be a random

sample of size n, then GMD is defined as follows:

GMD =

∑n
i=1 ∑n

j=1 | Xi −X j |
i < j
(

n

2

)

=
2

n(n− 1)

[

∑n
i=1 ∑n

j=1 | Xi −X j |
i < j

]

(1)

The Gini’s mean difference combines the advantages
of standard deviation and mean deviation. The GMD may
be more appropriate in case of small departure from
normality. It is known that the GMD has asymptotic
relative efficiency of 98% at normal distribution and more
efficient than S if the normal distribution is contaminated
by a small fraction [17] - [19]. For a random sample
X1,X2, . . . ,Xn from N(µ ,σ2) we have
E((

√
π/2)GMD) = σ [18], that is, it is an unbiased

estimator of σ . The statistic (
√

π/2)GMD is also known
as the Downton’s estimator [20]. In fact, David in [18]
had shown that the GMD is highly efficient as compared
to S. Unlike other estimators designed for measuring the
variability of a random variable, the GMD is independent
of any central measure of localization. Gini in [16]
concludes that Gini’s mean difference places less weight
on the extremes and provides some modest protection
against outliers with little loss in efficiency. It performs
well over a wide range of distributions, including much
heavier than normal distribution tails. However, the main
advantage of Gini’s mean difference is its finite-sample
performance. First of all, it is unbiased at all distributions
with finite first moments. Second, its finite-sample
variance is known, which allows for instance better
approximate confidence intervals. Neither of that is true
for the standard deviation [21].

3 The Pivotal Quantity Derivation

In this section, we derive, based on [22], the pivotal
quantity that will be used in this paper to construct the
proposed approximate asymptotic confidence interval for
σ . For the case of the normal distribution, N(µ ,σ2), the
following relation between the population standard
deviation (σ ) and the Gini’s mean difference (∆ ) is given
in [22]:

∆ =
2σ√

π

and

Var(∆) =
4σ2

n(n− 1)

[

n+ 1

3
+

2
√

3(n− 2)− 2(2n− 3)

π

]

(2)
A first conclusion from [22] is about the estimator ∆̂

of ∆ which is based on the following two relations:

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 5, 699-706 (2019) / www.naturalspublishing.com/Journals.asp 701

(i) E(∆̂ ) = ∆

(ii) Var(∆̂)→ 0, as n → ∞

Hence ∆̂ is a mean-squared-error consistent estimator
of ∆ , and we have to notice that for the existence of
Var(∆̂), it is sufficient that σ2 < ∞. Now, we consider the
standardized sample statistic (Z) given in [23,24] which

according to them as ∆̂ is asymptotically normally
distributed, then the asymptotic distribution of Z is a
standard normal, that is:

Z =
∆̂ −∆

√

Var(∆̂ )
∼ N(0,1) (3)

The standardized sample statistic (Z) is used as our
pivotal quantity to construct the proposed approximate
asymptotic confidence interval for σ using the estimates

∆̂ and Var(∆̂):

(i) ∆ = 2σ√
π

⇒ ∆̂ = 2σ̂√
π

(ii) σ̂ = GMD ⇒ ∆̂ = 2σ̂√
π
= 2GMD√

π

Var(∆̂ )=
4σ̂2

n(n− 1)

[

n+ 1

3
+

2
√

3(n− 2)− 2(2n− 3)

π

]

⇒Var(∆̂) =

4GMD2

n(n− 1)

[

n+ 1

3
+

2
√

3(n− 2)− 2(2n− 3)

π

]

(iii)
√

Var(∆̂) =
√

√

√

√

4GMD2

n(n− 1)

[

n+ 1

3
+

2
√

3(n− 2)− 2(2n− 3)

π

]

= 2GMD

√

√

√

√

1

n(n−1)

[

n+1

3
+

2
√

3(n−2)−2(2n−3)

π

]

= 2GMD∗B

where B =

√

1
n(n−1)

[

n+1
3

+ 2
√

3(n−2)−2(2n−3)
π

]

The values of the factor B are calculated for sample
sizes 2,3,4, . . . ,49 and given in Table 1 below.

(iv) The pivotal quantity (Z) is defined after
simplifications as follows:

Z =
∆̂ −∆

√

Var(∆̂)
=

2GMD√
π

− 2σ√
π

2GMD∗B

=
GMD−σ√
π ∗GMD∗B

∼ N(0,1) (4)

Table 1: The values of factor B

Sample size (n) B Sample size (n) B

2 0.426062 26 0.081022

3 0.296007 27 0.079436

4 0.239511 28 0.077939

5 0.206283 29 0.076524

6 0.183822 30 0.075183

7 0.167359 31 0.073910

8 0.154634 32 0.072700

9 0.144420 33 0.071547

10 0.135989 34 0.070448

11 0.128878 35 0.069397

12 0.122774 36 0.068392

13 0.117462 37 0.067430

14 0.112783 38 0.066507

15 0.108621 39 0.065621

16 0.104888 40 0.064769

17 0.101515 41 0.063950

18 0.098447 42 0.063161

19 0.095641 43 0.062401

20 0.093062 44 0.061667

21 0.090681 45 0.060959

22 0.088474 46 0.060274

23 0.086420 47 0.059612

24 0.084503 48 0.058972

25 0.082708 49 0.058351

4 The Confidence Interval for the Population

Standard Deviation

In this section, we introduce the two widely-used
confidence interval methods for the population standard
deviation (σ ), namely the exact method and the Bonett
method [3], with the proposed approximate asymptotic
confidence interval method.

4.1 The Exact Confidence Interval for the

Population Standard Deviation

Let X1,X2, . . . ,Xn ∼ N(µ ,σ2), then
(n−1)S2

σ 2 ∼ χ2
(n−1)

where S2 is the sample variance, then the exact
(1 − α)100% confidence interval for σ is given as
follows:

CI =





√

√

√

√

(n−1)S2

χ2
( α

2
,n−1)

,

√

√

√

√

(n−1)S2

χ2
(1− α

2
,n−1)



 (5)

where χ2
( α

2 ,n−1)
and χ2

(1− α
2 ,n−1)

be the (α
2
) ∗ 100− th

and (1− α
2
)∗ 100− th percentiles points of the chi-square

(χ2) distribution with (n− 1) degrees of freedom.
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4.2 The Bonett Confidence Interval for the

Population Standard Deviation

Let X1,X2, . . . ,Xn ∼ N(µ ,σ2), then Bonett in [3] proposed
the following (1−α)100% confidence interval for σ :

CI =

(
√

exp
{

ln(cS2)−Z α
2

Se
}

,

√

exp
{

ln(cS2)+Z α
2

Se
}

)

(6)

where Z α
2

is the two-sided critical Z-value, Se is a small

sample adjustment given as

Se = c

√

{

γ̂∗4 − (n− 3)/n
}

/(n− 1), c = n
(

n−Z α
2

) ,

γ̂∗4 = (n0 γ̃4+nγ̃4)
(n0+n) where γ̃4 is a prior estimate of γ4 with

trim-proportion equal to 1

{2(n−4)1/2} and

γ̃4 =
n∑n

i=1(Yi−µ̂)4

(∑n
i=1(Yi−µ̂)2)

2 where µ̂ is the trimmed mean of the

data.

4.3 The Approximate Asymptotic Confidence

Interval for the Population Standard Deviation

In this section, the proposed approximate asymptotic
confidence interval for σ based on the pivotal quantity (Z)
given in equation (4) is constructed. Let X1,X2, . . . ,Xn be
an independently and identically distributed (iid) random
sample of size n from a population with finite mean µ and
finite variance σ2. Let Z α

2
and Z1− α

2
be the (α

2
)∗ 100− th

and (1 − α
2
) ∗ 100 − th percentiles, then the proposed

(1−α)100% approximate asymptotic confidence interval
for σ will be derived and constructed as follows:

P
(

Z α
2
< Z < Z1− α

2

)

= 1−α

⇒ P(Z α
2
<

GMD−σ√
π ∗GMD∗B

< Z1− α
2
) = 1−α

⇒ P(
√

π ∗GMD∗B∗Z α
2
−GMD <−σ <

√
π ∗GMD∗B∗Z1− α

2
−GMD) = 1−α

P(−
√

π ∗GMD∗B∗Z α
2
+GMD > σ >

−
√

π ∗GMD∗B∗Z1− α
2
+GMD) = 1−α

P(−
√

π ∗GMD∗B∗Z1− α
2
+GMD < σ <

−
√

π ∗GMD∗B∗Z α
2
+GMD) = 1−α

P(GMD(1−
√

π ∗B∗Z1− α
2
)< σ <

GMD(1−
√

π ∗B∗Z α
2
) = 1−α

Thence, the proposed (1 − α)100% approximate
asymptotic confidence interval for σ is obtained, which
is:

CI =
(

GMD(1−
√

π ∗B∗Z1− α
2
),GMD(1−

√
π ∗B∗Z α

2

)

(7)

5 The Simulation Study and Results

In this section, the performance of the three confidence
intervals is illustrated and compared by a Monte-Carlo
simulation study. All simulations are performed using
programs written in the R statistical software for
windows. The aim of this simulation is to study the effect
of non-normality on the three confidence intervals based
on several non-normal distributions. In order to make the
comparisons among various confidence intervals, the
following criteria are considered: CP and AW of the
resulting confidence intervals. It is acknowledged that the
CP and AW are useful criterion for evaluating the
confidence intervals. A shorter length width gives a better
confidence interval and it is obvious that when coverage
probability for all method is same, then a smaller width
indicates that the method is appropriate for the specific
sample.

The most common 95% confidence interval
(α = 0.05) for the confidence coefficient is used. It is well
known that if the data are from a symmetric distribution
(or n is large), then CP will be exact or close to (1−α).
Another criterion is the width of the confidence interval.
A shorter length width gives a better confidence interval.
We have used 50,000 simulation replications for each one
of the following sample sizes: 10, 25, 50, 75 and 100. We
obtain the (1−α)100% confidence interval CI = (L,U)
and then estimate CP and AW, respectively, by using the
following two formulas:

CP =
#(L ≤ σ ≤U)

50000

and

AW =
Σ50000

i=1 (Ui −Li)

50000

The simulated data are generated from: Standard
Normal distribution, t(5) distribution, Exponential
distribution, Gamma and Beta distributions respectively.
The simulation results are shown in Table 2 to Table 6.

The performance of the three confidence intervals for
the normal distribution is examined first. The results in
Table 2 suggested that when sampling from a normal
distribution, the performance of the estimators for the
three methods do not differ greatly. The CP is 95%, the
same as the nominal value. The AW for the exact and the
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Table 2: CP and AW for N(0, 1)

CP AW CP AW CP AW

10 0.9486 2.39 0.9495 1.57 0.9482 2.42

25 0.9497 2.20 0.9513 0.97 0.9483 2.23

50 0.9449 2.17 0.9511 0.78 0.9510 2.21

75 0.9497 2.09 0.9500 0.56 0.9500 2.19

100 0.9485 1.98 0.9512 0.05 0.9510 2.01

Table 3: CP and AW for t(5)

Exact CI Bonett CI Proposed GMD CI

CP AW CP AW CP AW

10 0.8207 1.24 0.9380 1.18 0.8726 1.22

25 0.7367 1.08 0.9213 1.05 0.8563 1.07

50 0.8070 0.97 0.9155 0.93 0.8345 0.94

75 0.7886 0.85 0.8990 0.79 0.8085 0.80

100 0.7895 0.78 0.8523 0.73 0.7980 0.76

Table 4: CP and AW for Exponential (2)

CP AW CP AW CP AW

10 0.7045 2.10 0.8780 2.89 0.7298 1.85

25 0.6858 2.00 0.8834 2.84 0.7144 1.78

50 0.6870 1.93 0.8935 1.98 0.7234 1.75

75 0.6545 1.89 0.8996 1.95 0.6978 1.71

100 0.6450 1.77 0.9179 1.87 0.6920 1.64

Table 5: CP and AW for Gamma (1, 6)

Exact CI Bonett CI Proposed GMD CI

CP AW CP AW CP AW

10 0.7022 0.17 0.8779 0.22 0.7666 0.12

25 0.6893 0.27 0.8872 0.29 0.7402 0.24

50 0.6545 0.56 0.8434 0.59 0.7234 0.45

75 0.5890 0.62 0.7456 0.67 0.6765 0.54

100 0.5042 0.71 0.6987 0.72 0.6246 0.60

Table 6: CP and AW for Beta (3, 3)

Exact CI Bonett CI Proposed GMD CI

CP AW CP AW CP AW

10 0.9750 1.14 0.9554 0.94 0.9598 0.91

25 0.9801 1.07 0.9530 0.85 0.9579 0.81

50 0.9790 0.98 0.9519 0.82 0.9560 0.79

75 0.9813 0.93 0.9511 0.79 0.9520 0.74

100 0.9820 0.79 0.9504 0.71 0.9502 0.68

Table 7: The 95% confidence intervals for butterfat data

Confidence Interval Method 95% CI for σ Width

Exact CI (68.257 , 131.088) 62.831

Bonett CI (63.910 , 114.789) 50.879

Proposed GMD CI (62.449 , 122.144) 59.695
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Table 8: The 95% confidence intervals for chicken consumption data

Confidence Interval Method 95% CI for σ Width

Exact CI (11.980 , 24.492) 12.512

Bonett CI (08.798 , 26.362) 17.564

Proposed GMD CI (09.145 , 19.113) 9.968

proposed approximate asymptotic method based on GMD
are about equal whereas it is shorter for the Bonett
method.

The next simulation compares the performance of the
three confidence intervals for a variety of non-normal
distributions.

The results of Table 3 show that the Bonett method is
more robust than both the exact and the proposed
approximate asymptotic method. The CP ranges from
85% to 93%. The proposed approximate asymptotic
method shows that the CP for it is better than that for the
exact method especially for small samples. The CP in all
methods decreases with increasing sample sizes.
Concerning AW, the exact and the proposed approximate
asymptotic method have approximately the same AW
whereas the Bonett method AW is slightly shorter.

The results of Table 4 shows obviously that the CP for
the three methods diverts away from the nominal value.
The best CP is for the Bonett method and the shortest AW
is for the proposed approximate asymptotic method. The
CP ranges from 64% to 70% in exact method, from 87%
to 91% in Bonett method and from 69% to 72% in the
proposed approximate asymptotic method. Its shows that
the CP for the proposed approximate asymptotic method
is better than that for the exact method especially for
small samples. The CP in all methods decreases with
increasing sample sizes. The results of Table 5 shows
obviously that the CP for the three methods diverts away
from the nominal value. The best CP is for the Bonett
method and the shortest AW is for the proposed
approximate asymptotic method. The CP ranges from
50% to 70% in exact method, from 69% to 87% in Bonett
method and from 62% to 76% in the proposed
approximate asymptotic method. Its shows that the CP for
the proposed approximate asymptotic method is better
than that for the exact method especially for small
samples. The CP in all methods decreases with increasing
sample sizes.

As it can be seen from the results of Table 6 the CP
ranges from 97% to 98% for the exact method. It is 95%
in Bonett and proposed approximate asymptotic methods.
The CP in Bonett and proposed approximate asymptotic
methods decreases with increasing sample sizes, but for
the exact method it is fluctuates with sample size changes.
We note that the CP for the exact method is larger than
the nominal value and then than that for the Bonett and
proposed approximate asymptotic methods. It shows
obviously that the CP for the Bonett and proposed
approximate asymptotic methods is very good and

approximately the same and it is better than that for the
exact method.

In conclusion, all confidence interval methods
considered in this paper are sensitive to moderate
deviations from the normality. Their CP is going close to
each other’s when the sample size n is sufficiently large.
The Bonett method proves the best coverage among the
three estimation methods for sampled distributions, but
the proposed approximate asymptotic method proves
better CP than the exact methods in all sampled
distributions.

6 Applications to Real Data

In this section, we present two real-life examples to
illustrate the implementation and performances of the
three confidence intervals given in the present paper.

6.1 Example I

This example is taken from [25]. The data set represents
the amount of butterfat in pounds produced by a typical
cow during a 305-day milk production period between her
first and second calves. The butterfat production for a
random sample of size n = 20 cows measured by a farmer
yielding the following data: 481, 537, 513, 583, 453, 510,
570, 500, 457, 555, 618, 327, 350, 643, 499, 421, 505,
637, 599, 392. The sample mean, the sample standard
deviation and the skewness for the data are 507.5, 89.75
and -0.3804 respectively. The value of the Shapiro-Wilk
Normality test (W= 0.9667, p-value = 0.6834) suggested
that the data follows a normal distribution. The resulting
95% confidence intervals for the three methods and the
corresponding confidence widths are given below in Table
7. From the results in Table 7, we have observed that
when the data has a normal distribution, the confidence
intervals widths for the exact and proposed approximate
asymptotic methods are closed to each other and about
equal whereas it is shorter for the Bonett method. These
results support the results of the Monte-Carlo simulation
study to some extent.

6.2 Example II

This example is taken from [26]. The data set represents
the last year’s chicken consumption in pounds for people
on USA published by the USA Department of Agriculture

c© 2019 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 13, No. 5, 699-706 (2019) / www.naturalspublishing.com/Journals.asp 705

in Food Consumption, Prices, and Expenditures. The last
year’s chicken consumption, in pounds, for a random
sample of size n = 17 people yielded the following data:
47, 39, 62, 49, 50, 70, 59, 53, 55, 0, 65, 63, 53, 51, 50, 72,
45.

The sample mean, the sample standard deviation and
the skewness for these data are 51.94, 16.08 and -2.11
respectively. The Shapiro-Wilk Normality test value (W =
0.8013, p-value = 0.0021) suggested that the data does not
follow a normal distribution. The resulting 95%
confidence intervals for the three different methods are
given below in Table 8.

From the results in Table 8, we have observed that the
proposed approximate asymptotic method has the
narrowest width followed by the exact method. It is also
noted that the Bonett method has the widest width than
the other two methods. This results supported the results
of the Monte-Carlo simulation study to some extent.

7 Perspective

The paper proposes an asymptotic confidence interval for
estimating the population standard deviation (α) based on
the sample Gini’s Mean Difference (GMD). A
Monte-Carlo simulation study has been conducted to
compare the performance of the proposed method with
the exact method and the Bonett method in [3]. It appears
that the sample size n has significant effect on the
proposed approximate asymptotic method. Also, all
confidence interval methods considered in this paper are
sensitive to moderate deviations from the normality. Their
CP goes close to each other’s when the sample size n is
sufficiently large. To illustrate the findings of the paper
we considered two real-life examples which also
supported the simulation study results to some extent. As
a result, when the population is non-normal and for small
to moderate sample sizes, the proposed approximate
asymptotic confidence interval method is recommended
to be used. For the further research, we can derive an
Asymptotically Distribution Free (ADF) standard error of
the Gini mean difference, and we then compare the
Coverage Probability (CP) of the Gini CI using the ADF
standard error with the coverage probability (CP) of the
ADF, MAD, CI as proposed by [27]. We believe that an
ADF Gini CI might have narrower relative width than the
ADF MAD CI.

Acknowledgement

We thank the anonymous referees for thorough review
and highly appreciate the helpful comments and useful
suggestions, which significantly contributed to improving
the quality of the manuscript.

References

[1] G. W. Snedecor, and W. G. Cochran, Statistical Methods, 7th

Edition, Iowa State University Press Iowa USA, (1980).

[2] J. W. Tukey, A survey of sampling from contaminated

distributions, in contributions to probability and statistics,

essays in honor of Harold Hotelling, Olkin, I., et al. Ed.

Stanford University Press, Stanford USA, 448-485, (1960).

[3] D. G. Bonett, Approximate confidence interval for standard

deviation of nonnormal distributions, Computational

Statistics and Data Analysis, 50, 775-782 (2006).

[4] A. Saghir, and Z. Lin, Designing of Gini-chart

for exponential, t, logistic and laplace distributions,

Communications in Statistics-Simulation and Computation,

44, 2387-2409 (2015).

[5] S. Banik, A. N. Albatineh, M. O. Abu-Shawiesh, and B. M.

G. Kibria, Estimating the population standard deviation with

confidence interval: a simulation study under skewed and

symmetric conditions, International Journal of Statistics in

Medical Research, 3, 356-367 (2014).

[6] H. A. David, Early sample measures of variability, Statistical

Science, 13, 368-377 (1998).

[7] A. M. Barham, and S. Jeyaratnam, Robust confidence interval

for the variance, Journal of Statistical Computation and

Simulation, 62, 189-205 (1999).

[8] S. Niwitpong, and P. Kirdwichai, Adjusted Bonett confidence

interval for standard deviation of non-normal distributions,

Thailand Statistician, 6, 1-6 (2008).

[9] B. D. Burch, Estimating kurtosis and confidence intervals

for the variance under nonnormality, Journal of Statistical

Computation and Simulation, 84, 2710-2720 (2014).
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