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Abstract: In this paper, we propose the truncated power Lomax distribution. Fundamental properties of the new distribution, such

as moments, moment generating and characteristic functions, quantile function, incomplete moments, Lorenz and Bonferroni curves,

order statistics and Rényi entropy, are investigated. Maximum likelihood estimators are derived in case of complete sample, Type I and

Type II censored samples. An approximate confidence interval of the parameters is obtained for large sample sizes. Simulation issue

is executed to investigate the performance of estimates. The potential utility of the truncated power Lomax model is exhibited through

flood data. The application indicates that the truncated power Lomax distribution can give better fits than some other corresponding

distributions.
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1 Introduction

A truncated distribution is defined as a conditional distribution that results from restricting the f (t | a ≤ T < b) domain
of the statistical distribution. Hence, truncated distributions are used in cases where occurrences are limited to values,
which lie above or below a given threshold or within a specified range.

Let T be a random variable from a distribution with a probability density function (pdf), say f (t), cumulative distribution
function (cdf), say F(t), and the range of the support(−∞,∞). The density function of T defined in a < T < b is given by

f (t|a ≤ T < b) =

{
g(t)

G(b)−G(a) a ≤ t < b

0 otherwise,
(1)

(see [1]). Because it is scaled up to account for the probability of being in the restricted support, this function is a density
one. The restriction can occur, either on a single side of the range which is called singly truncated or on both sides of the
range which is called doubly truncated. If occurrences are limited to values which lie below a given threshold, the lower
(left) truncated distribution is obtained. Similarly, if occurrences are limited to values which lie above a given threshold,
the upper (right) truncated distribution arises.

Several truncated distributions have been provided by many authors. Some of the recent truncated distributions are:
truncated Weibull distribution [2], doubly truncated Fréchet distribution [3], generalized exponential truncated negative
binomial distribution [4], truncated inverted generalized exponential distribution [5], right truncated normal distribution
[6], and truncated Weibull Frèchet distribution [7].

[8] provided a heavy-tail probability distribution. The so-called Lomax (L) distribution is often used in business,
economics, and actuarial modeling. It is widely applied in many areas, for instance, analysis of income and wealth data,
modeling business failure data, biological sciences, model firm size and queuing problems (see [9], [10], [11] and [12]).

Truncated power Lomax (PL) distribution which is one of extended forms of L distribution. PL distribution was
provided by [13] through employing power transformation to L distribution. The PL distribution accommodates both
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inverted bathtub and decreasing hazard rate. The cdf and pdf of the PL distribution are defined respectively, by

G(t;α,β ,λ ) = 1−λ α
(

λ + tβ
)−α

t > 0, (2)

and

g(t;α,β ,λ ) = αβ λ α tβ−1
(

λ + tβ
)−(α+1)

, (3)

where, α,β > 0 are two shape parameters (Ps) and λ > 0 is a scale parameter. Extended forms of PL distribution have
been provided by several authors(see for example [14] and [15]).

In this article, we are motivated to define a new truncated distribution referred to right truncated PL (RTPL)
distribution. We obtain some main properties of the new distribution and discuss maximum likelihood estimation of its
Ps based on complete and censored samples. This paper is organized, as follows: The pdf, cdf, and hazard rate function
(hrf) of the RTPL model are defined in Section 2. Section 3 provides some statistical properties of RTPL distribution.
The maximum likelihood estimators and simulation study are presented in Section 4. The application of RTPL
distribution to a real data set is presented in Section 5. Conclusion is presented in Section 6.

2 Right Truncated Power Lomax Distribution

In this section, we introduce the information of the RTPL distribution.
Definition: A random variable X is said to have the RTPL distribution (or [0,1] RTPL distribution) with shape Ps α, β
and scale parameter λ = 1, if its pdf is constructed by employing (1) for a = 0, b = 1 with cdf (2) and pdf (3) as follows:

fRT PL (x;α, β ) =
g(x;α, β ,1)

G(1;α, β ,1)−G(0;α, β ,1)
=

αβ xβ−1
(
1+ xβ

)−(α+1)

1− 2−α
, 0 < x < 1. (4)

A random variable X with density (4) is denoted by X∼ RTPL(α,β ) . The cdf related to (4) is given by

FRTPL (x;α, β ) =
G(x;α, β ,1)−G(0;α, β ,1)

G(1;α, β ,1)−G(0;α, β ,1)
=

1− (1+ xβ)
−α

1− 2−α
. (5)

An important new model is obtained for β = 1, which is called the right truncated Lomax (TL) distribution or we call it
[0,1] TL distribution.

Depending on pdf (4) and cdf (5), the survival function and hazard rate function (hrf) are given by

FRT PL (x;α, β ) =

(
1+ xβ

)−α
− 2−α

1− 2−α
,

and,

hRTPL (x;α, β ) =
αβ xβ−1

(
1+ xβ

)−(α+1)

(
1+ xβ

)−α
− 2−α

.

Fig. 1 displays a variety of possible shapes of pdf and hrf of RTPL distribution for some selected values of Ps. It can be
detected a right skewed, unimodal and reversed J shaped. Also, the shape of the hrf of the RTPL distribution could be
increasing, J shaped and U-shaped.
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Fig. 1: The pdf and hrf of RTPL distribution for different values of parameters

In addition, the reversed hrf and cumulative hrf are obtained respectively, as follows:

τRT PL (x;α, β ) =
αβ xβ−1

(
1+ xβ

)−(α+1)

1− (1+ xβ)
−α ,

and,

HRT PL (x;α,β ) =−ln

((
1+ xβ

)−α
− 2−α

1− 2−α

)
.

The quantile function denoted by Q(u) of random variable X which has a cdf (5) is obtained, as follows:

Q(u) =

[[
1− u(1− 2−α)

]− 1
α − 1

] 1
β

, (6)

where, the random variable u belongs to the uniform distribution on [0, 1]. The 1st , 2nd , and 3rd quartiles are obtained
from (6) by taking u = 0.25, 0.5 and 0.75 respectively.

3 Basic Properties

In this section, we present some statistical properties of RTPL distribution.

3.1 Moments

Since the moments are substantial in any statistical analysis, we derive the rth moment of the RTPL distribution. If X has
the pdf (4), µ̀r is obtained, as follows:

µ̀r =

∫ 1

0
xr fRT PL (x;α, β )dx =

αβ

1− 2−α

∫ 1

0
xr+β−1

(
1+ xβ

)−(α+1)
dx. (7)

We employ the following binomial expansion

(1+Z)−θ=
∞

∑
j=0

(−1)j

(
θ + j−1

j

)
Z j , (8)

for
(
1+xβ

)−(α+1)
as follows:

(
1+ xβ

)−(α+1)
=

∞

∑
j=0

(−1) j

(
α + j

j

)
xβ j. (9)
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Substituting (9) in (7), then

µ̀r = A∗
∫ 1

0
xr+β ( j+1)−1dx =

A∗

r+β ( j+ 1)
, (10)

where, A∗ = αβ
1−2−α ∑∞

j=0 (−1) j
(α+ j

j

)
.

Furthermore, the moment generating function (mgf) and characteristic function (chf) of the RTPL distribution,
respectively, are derived, as follows:

MX (t) = E
(
etX
)
=

∞

∑
r=0

tr

r!
µ̀r =

∞

∑
r=0

tr

r!

A∗

[r+β ( j+ 1)]
,

and,

φx (t)=E
(
eitX
)
=

∞

∑
r=0

(it)r

r!

A∗

[r+β ( j+ 1)]
.

3.2 Incomplete moments and Inequality measures

The incomplete moments are used in several statistical areas especially in the income distribution, for measuring
inequality, such as income quintiles, the Lorenz curve, Pietra and Gini measures of inequality. The sth incomplete
moment of the RTPL distribution is obtained, as follows:

Φs (t) =

∫ t

0
xs fRT PL (x;α,β )dx = A∗

∫ t

0
xs+β ( j+1)−1dx,

then,

Φs (t) = A∗ ts+β ( j+1)

s+β ( j+ 1)
.

Therefore, inequality measures are often calculated for distributions other than expenditure. The Lorenz [LF (z)] and
Bonferroni [BF (z)] curves are calculated as below:

LF (z) =

∫ z
0 x fRT PL (x;α,β ) dx

E (Z)
= z1+β ( j+1),

and

BF (z) =
LF (z)

FRTPL (z;α,β )
=

z1+β ( j+1) (1− 2−α)

1− (1+ zβ)
−α .

3.3 Rényi entropy

Entropy is a measure of the variation of the uncertainty associated with a distribution of a random variable X. The entropy
of a random variable X is defined by

Iδ (x) =
1

1− δ
log

[∫

R
f (x)δ

dx

]
, (11)

where,δ> 0, δ 6=1. Based on pdf (4), fRT PL (x;α,β )δ
can be formed, as follows:

fRT PL(x;α,β )δ =

(
αβ

1− 2−α

)δ

(x)δ (β−1)(1+ xβ)−δ (α+1). (12)

Thus, the Rényi entropy of RTPL distribution is obtained by substituting (12) in (11), as follows:

Iδ (x) =
1

1− δ
log

[
(αβ )δ

(1− δ )(1− 2−α)δ

]∫ 1

0
(x)δ (β−1)(1+ xβ)−δ (α+1)dx. (13)

Then, employing binomial expansion (8) in (13), we get

Iδ (x) =
1

1− δ
log

[
∞

∑
i=0

(−1)i

(
δ (α + 1)+ i− 1

i

)
(αβ )δ

(1− 2−α)δ

∫ 1

0

(x)β (i+δ )−δ
dx

]
.
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Hence, the Rényi entropy of RTPL distribution is given by:

Iδ (x) =
1

1− δ
log

[
∞

∑
i=0

wi

β (i+ δ )− δ + 1

]
,

where, wi = (−1)i
(

δ (α+1)+i−1
i

)
(αβ )δ

(1−2−α )δ .

3.4 Order statistics

Let X(1) < X(2) < · · · < X(n) be the order statistics of a random sample of size n, then the pdf of the kth order statistic is
given by:

fx(k)
(x) =

f (x)

B(k,n− k+ 1)

n−k

∑
ν=0

(−1)ν

(
n− k

ν

)
F(x)ν+k−1, (14)

where, B(., .) is the beta function.
The pdf of the kth order statistic of RTPL distribution is obtained by substituting (4) and (5) in (14), as follows:

fRT PLx(k)
(x;α,β ) =

n−k

∑
ν=0

(−1)ν αβ
(

n−k
ν

)
x(β−1)

(1− 2−α)ν+k
B(k,n− k+ 1)

(1+ xβ )
−α−1

(
1−
(

1+ xβ
)−α

)ν+k−1

.

Employing the following binomial expansion

(1−Z)θ =
θ

∑
u=0

(−1)u

(
θ

u

)
Zu,

for
(

1−
(
1+ xβ

)−α
)ν+k−1

as follows:

(
1−
(

1+ xβ
)−α

)ν+k−1

=
ν+k−1

∑
u=0

(−1)u

(
ν + k− 1

u

)(
1+ xβ

)−αu

.

fRT PLx(k)
(x;α,β ) =

n−k

∑
ν=0

ν+k−1

∑
u=0

(−1)ν+u αβ
(

n−k
ν

) (
ν+k−1

u

)

(1− 2−α)ν+k
B(k,n− k+ 1)

x(β−1)
(

1+ xβ
)−α(u+1)−1

.

Using binomial expansion in (8), the pdf fRT PLx(k)
can be written as

fRT PLx(k)
(x;α,β ) =

n−k

∑
ν=0

ν+k−1

∑
u=0

∞

∑
m=0

(−1)ν+u+m αβ
(

n−k
ν

) (
ν+k−1

u

) (
α(u+1)+m

m

)

(1− 2−α)ν+k
B(k,n− k+ 1)

(x)β (m+1)−1.

Consequently, the pdf of the kth order statistic of RTPL distribution is, as follows:

fRT PLx(k)
(x;α,β ) =

∞

∑
m=0

wmxβ (m+1)−1,

where,

wm =
n−k

∑
ν=0

ν+k−1

∑
u=0

(−1)ν+u+m αβ
(

n−k
ν

) (
ν+k−1

u

) (
α(u+1)+m

m

)

(1− 2−α)ν+k
B(k,n− k+ 1)

.

Furthermore, the rth moment of kth order statistics for RTPL distribution is given by

E
(
X r

(k)

)
=

∞

∑
m=0

wm

∫ 1

0
xr+β (m+1)−1 dx

=
∞

∑
m=0

wm

r+β (m+ 1)
.
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4 Estimation and Simulation Study

In this section, maximum likelihood (ML) estimators of the model parameters are derived in case of complete, Type I and
Type II censored samples. Approximate confidence intervals are also obtained. Moreover, numerical study is provided.

4.1 Parameter Estimation Based on Censoring Samples

In reliability or lifetime testing experiments, most of the encountered data are censored due to various reasons, such as time
limitation, cost, or other resources. Here, we discuss estimation of population Ps of the RTPL distribution based on two
censoring schemes; namely, Type I and Type II. In Type-I censoring (TIC), we have a fixed time say; ω , but the number
of items which fails during the experiment is random. Whereas, in Type-II censoring (TIIC) scheme, the experiment is
continued (i.e. time varies) until the specified number of failures c occurs.

4.1.1 ML estimators in case of TIC

Suppose that X(1) < X(2) < .. . < X(n) is a TIC sample of size c whose life time’s follow RTPL distribution (4) is placed
on a life test and the test is terminated at determined time ω before all n items have failed. The number of failures c and
all failure times are random variables. The likelihood function, based on TIC for RTPL model, is given by

L1 =
n!

(n− c)!

[
1−

1− Sω
−α

1− 2−α

]n−c
{

c

∏
i=1

[
αβ x

β−1
i Si

−(α+1)

1− 2−α

]}
,

where, Si =
(

1+ x
β
i

)
, and Sω =

(
1+ωβ

)
. For simplicity, we write Si instead of S(i). Then, the log-likelihood function

is obtained, as follows:

LnL1 = ln

[
n!

(n− c)!

]
+(n− c) ln

[
1−

1− Sω
−α

1− 2−α

]

−cln
(
1− 2−α

)
+ clnα + clnβ +(β − 1)

c

∑
i=1

lnxi − (α + 1)
c

∑
i=1

lnSi .

Then, the first partial derivatives of the log-likelihood with respect to the unknown Ps are given by

∂ lnL1

∂α
=

c

α
−

2−αc ln 2

1− 2−α
+

(n− c)

(
− Sω

−α ln Sω
1−2−α +

2−α ln2 (1−Sω
−α)

(1−2−α )2

)

1− 1−Sω
−α

1−2−α

−
c

∑
i=1

lnSi ,

and,

∂ lnL1

∂β
=

c

β
−

(n− c)αωβ lnω (Sω )
−1−α

(1− 2−α)
(

1−
1−(Sω )−α

1−2−α

) +
c

∑
i=1

lnxi − (1+α)
c

∑
i=1

x
β
i lnxi

Si

.

Equating these partial derivatives with zeros and solving simultaneously yield the ML estimators of α and β based on
TIC samples.

4.1.2 ML estimators in case of TIIC

If we want to ensure that the resulting data set contains a fixed number c of observed lifetimes and terminate the test as
fast as possible, the design must allow for the test to terminate at the cth failure such that
X(1) < X(2)<. . .<X(c) is a TIIC sample of size n observed from lifetime testing experiment. The likelihood function of
RTPL model, based on TIIC, is given by

L2 =
n!

(n− c)!

[
1−

1− Sc
−α

1− 2−α

]n−c
{

c

∏
i=1

[
αβ x

β−1
i Si

−(α+1)

1− 2−α

]}
.
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where, Si =
(

1+ x
β
i

)
, and Sc =

(
1+ cβ

)
. Also, for simplicity, we write Si instead of S(i). Then, the log-likelihood

function, based on TIIC, is given by

LnL2 = ln

[
n!

(n− c)!

]
+(n− c)ln

[
1−

1− (Sc )
−α

1− 2−α

]
− cln

(
1− 2−α

)
+ clnα

+clnβ +(β−1)
c

∑
i=1

lnxi −(α+1)
c

∑
i=1

lnSi .

Then, the first partial derivatives of the log-likelihood are given by

∂ lnL2

∂α
=

c

α
−

2−α c ln 2

1− 2−α
+

(n− c)

(
− Sc

−α ln Sc

1−2−α +
2−α ln2 (1−Sc

−α)
(1−2−α )2

)

1− 1−Sc
−α

1−2−α

−
c

∑
i=1

lnSi,

and ,

∂ lnL2

∂β
=

c

β
−

(n− c)α xc
β lnxc (Sc)

−1−α

(1− 2−α)
(

1−
1−(Sc)

−α

1−2−α

) +
c

∑
i=1

lnxi − (1+α)
c

∑
i=1

x
β
i lnxi

Si

.

Solving ∂ lnL2/∂α = 0 and ∂ lnL2/∂β = 0 numerically using iteration technique, the ML estimators of α and β are
obtained via Mathematica 7.
In addition, for c = n, we obtain the ML estimator under complete samples as seen in Tables 3 and 4.

For interval estimation of the Ps, it is known that under regularity condition, the asymptotic distribution of ML
estimators of elements of unknown Ps for α and β is given by

(α̂ −α) ,
(

β̂ −β
)
→ N

(
0, I−1 (α,β )

)
,

where, I−1 (α,β ) is the variance covariance matrix of unknown Ps α and β . The elements of Fisher information matrix
are obtained for both censoring schemes. Therefore, the two-sided approximate γ100 percent limits for the ML estimates
of a population Ps for α and β can be obtained, respectively, as follows:

Lα = α̂ − z γ
2

√
var (α̂), Uα = α̂ + z γ

2

√
var (α̂),

and,

Lβ = β̂ − z γ
2

√
var
(

β̂
)
, Uβ = β̂ + z γ

2

√
var
(

β̂
)
,

where z γ
2

is the 100(1− γ/2)%, the standard normal percentile and var(.)’s denote the diagonal elements of variance

covariance matrix corresponding to the model Ps.

4.2 Simulation Studies

Here, we provide a numerical study to evaluate the behavior of the ML estimates of the RTPL based on complete sample,
TIC and TIIC schemes. The algorithm used here is outlined, as follows:

–1000 random sample of sizes n=30, 50, 100 and 150 are generated from the RTPL distribution under TIC and TIIC.
–Exact values of Ps, such as (α = 0.7 , β = 1.2) and (α = 1.5 , β = 0.5), are chosen.
–Three termination times, as ω = 0.7 , ω = 0.9 and ω = 1, are selected based on TIC and the number of failure items;
c, based on TIIC, are selected as 70%, 90% and 100% (complete sample).

–The following measures are calculated

1.Average ML of the simulated estimates α̂i and β̂i, i = 1,2, . . . ,N, where N=1000

1

N

N

∑
i=1

α̂i and
1

N

N

∑
i=1

β̂i.

2.Average bias of the simulated estimates α̂i and β̂i, i = 1,2, . . . ,N :

1

N

N

∑
i=1

(α̂i −α) and
1

N

N

∑
i=1

(β̂i −β ).
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3.Average mean square error (MSE) of the simulated estimates α̂i and β̂i, i = 1,2, . . . ,N :

1

N

N

∑
i=1

(α̂i −α)
2

and
1

N

N

∑
i=1

(β̂i −β )
2
.

4.Average length of the N simulated confidence intervals and coverage probability with confidence level γ = 90%

and 95% for α̂i and β̂i, i = 1,2, . . . ,N are calculated.
–Numerical results are listed in Tables 1, 2, 3 and 4.

From Tables 1- 4 we conclude that

–As the sample size n increases, the MSE of ML estimates decrease.

–As the termination time ω increases, the MSE of estimates decreases.

–Tables 1 and 2, indicate that as the sample size n increases, the MSE of estimates decreases.

–Tables 3 and 4, show that as the censoring level time ω increases, the MSE of estimates decreases

–Tables 1 to 4 reveal that the coverage probability is very close to the intended significance level for all values of n, α
and β .

–The average length of confidence intervals for the unknown Ps decreases as n increases.

Table 1: ML estimates, Biases, MSE, Average length and Coverage probability of RTPL distribution under TIC for α = 0.7 , β = 1.2

n ω Ps ML Bias MSE
Average length Coverage probability

90% 95% 90% 95%

30

0.7
α 1.3049 0.60495 2.16129 5.39397 6.42686 92.70 95.70

β 1.3294 0.12942 0.11408 1.0995 1.31004 91.40 94.40

0.9
α 1.2314 0.53147 1.90102 5.25564 6.26204 92.80 96.20

β 1.3243 0.12431 0.11259 1.08861 1.29707 91.70 95.30

1
α 1.25711 0.55710 1.89013 5.27123 6.28061 92.90 96.90

β 1.32262 0.12262 0.10315 1.0896 1.29824 92.90 95.50

50

0.7
α 1.06158 0.36158 1.17697 4.20371 5.00868 93.20 96.50

β 1.27598 0.07598 0.06403 0.85460 1.01825 90.30 94.90

0.9
α 1.06092 0.36091 1.0861 4.09334 4.87717 93.40 96.60

β 1.27423 0.07422 0.06189 0.84044 1.00138 90.40 95.30

1 α 1.08181 0.38180 1.06115 4.10358 4.88937 93.50 96.80

β 1.27635 0.07635 0.06006 0.84154 1.00269 90.60 95.60

100

0.7
α 0.88408 0.18408 0.65140 2.99325 3.56643 92.40 96.60

β 1.22983 0.02983 0.03175 0.60378 0.71940 90.50 95.00

0.9
α 0.88735 0.18735 0.60037 2.92634 3.4867 92.50 96.80

β 1.24234 0.04234 0.03144 0.60156 0.71675 90.90 95.40

1 α 0.84577 0.14577 0.57376 2.93274 3.49433 92.70 96.80

β 1.23644 0.03644 0.03127 0.60320 0.71870 91.00 95.60

150

0.7
α 0.80720 0.10720 0.39591 2.46112 2.93239 93.40 96.30

β 1.2221 0.02210 0.02158 0.49953 0.59519 90.70 95.40

0.9
α 0.80339 0.10339 0.37256 2.40556 2.8662 93.90 96.50

β 1.22491 0.02491 0.02047 0.49399 0.58858 91.20 95.80

1 α 0.79901 0.09900 0.35543 2.40165 2.86154 94.10 96.70

β 1.21756 0.01755 0.02000 0.49069 0.58466 91.40 95.80
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Table 2: ML estimates, Biases, MSE, Average length and Coverage probability of RTPL distribution under TIC for α = 1.5, β = 0.5

n ω Ps ML Bias MSE
Average length Coverage probability

90% 95% 90% 95%

30

0.7
α 1.81484 0.31484 2.27123 5.27208 6.28162 92.20 95.60

β 0.52370 0.02370 0.02095 0.39627 0.47215 81.20 87.10

0.9
α 1.86368 0.36368 2.25639 5.27193 6.28144 92.60 95.70

β 0.51691 0.01691 0.01975 0.38833 0.46269 82.10 87.20

1
α 1.86767 0.36767 2.24422 5.27073 6.28002 92.80 96.20

β 0.52159 0.02159 0.01926 0.39237 0.46750 82.70 87.80

50

0.7
α 1.63747 0.13747 1.43995 4.05412 4.83044 93.10 95.90

β 0.49882 0.0011 0.01441 0.29895 0.35619 82.10 87.00

0.9
α 1.61128 0.1112 1.41068 4.07381 4.8539 93.70 96.20

β 0.49470 0.0052 0.01434 0.29840 0.35554 84.90 87.30

1 α 1.59185 0.09184 1.4237 4.05908 4.83635 93.90 96.30

β 0.49646 0.00353 0.01367 0.30035 0.35787 84.90 87.60

100

0.7
α 1.52734 0.02733 0.84295 2.8694 3.41886 93.70 96.00

β 0.48805 0.01194 0.00984 0.21179 0.25234 84.30 87.50

0.9
α 1.52061 0.02060 0.80220 2.85937 3.40691 93.70 97.60

β 0.49002 0.00997 0.00954 0.21263 0.25335 84.70 87.70

1
α 1.49764 0.00236 0.79306 2.86683 3.4158 94.00 97.60

β 0.48529 0.01470 0.00937 0.21103 0.25145 85.30 87.70

150

0.7
α 1.53258 0.03258 0.59020 2.33714 2.78468 94.10 96.90

β 0.49430 0.00569 0.00705 0.17565 0.20928 84.70 87.90

0.9
α 1.50101 0.00101 0.58668 2.33487 2.78197 94.10 97.30

β 0.48838 0.01161 0.00703 0.17413 0.20748 84.70 88.20

1
α 1.46205 0.03795 0.56074 2.34002 2.78811 94.90 97.70

β 0.48836 0.01163 0.00691 0.17497 0.20847 85.30 88.40

Table 3: ML estimates, Biases, MSE, Average length and Coverage probability of RTPL distribution under TIIC for α = 0.7 , β = 1.2

n Xc Ps ML Bias MSE
Average length Coverage probability

90% 95% 90% 95%

30

70%
α 1.4762 0.7762 3.1093 5.83458 6.95184 90.10 96.70

β 1.3688 0.1688 0.1450 1.15777 1.37948 90.30 94.50

90%
α 1.2831 0.5831 2.1701 5.32507 6.34477 90.80 97.40

β 1.3317 0.1317 0.1173 1.09728 1.30739 90.40 94.70

100%
α 1.2144 0.5144 1.7473 5.27486 6.28494 91.10 97.60

β 1.3143 0.1143 0.1014 1.08933 1.29792 91.10 95.30

50

70%
α 1.1429 0.4429 1.4844 4.43176 5.2804 90.50 96.60

β 1.2737 0.0737 0.0629 0.87420 1.04161 91.20 95.10

90%
α 1.0432 0.3432 1.1968 4.11599 4.90416 90.70 96.90

β 1.2785 0.0785 0.0617 0.84754 1.00985 92.00 95.70

100%
α 1.0817 0.3817 1.1821 4.107 4.89345 91.20 96.90

β 1.2819 0.0819 0.0615 0.84471 1.00647 92.50 95.70

100

70%
α 0.9270 0.2270 0.7363 3.11156 3.7074 91.10 97.20

β 1.2469 0.0469 0.0389 0.62349 0.74288 92.00 95.20

90%
α 0.8650 0.1650 0.5758 2.94135 3.50458 92.10 97.20

β 1.2306 0.0306 0.0307 0.60008 0.71499 92.10 95.70

100%
α 0.8824 0.1824 0.5666 2.92473 3.48478 92.80 97.30

β 1.2401 0.0401 0.0304 0.60101 0.71610 92.50 96.10

150

70%
α 0.8412 0.1412 0.4779 2.53743 3.02332 92.10 97.30

β 1.2260 0.0260 0.0228 0.50817 0.60548 92.10 96.10

90%
α 0.7969 0.0969 0.4086 2.41101 2.8727 92.20 97.80

β 1.2208 0.0208 0.0209 0.49322 0.58767 93.20 96.10

100%
α 0.8320 0.1320 0.4023 2.39282 2.85102 93.80 98.10

β 1.2240 0.0240 0.0203 0.48953 0.58327 93.30 97.30
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Table 4: ML estimates, Biases, MSE, Average length and Coverage probability of RTPL distribution under TIIC for α = 1.5 ,β = 0.5

n Xc Ps ML Bias MSE
Average length Coverage probability

90% 95% 90% 95%

30

70%
α 2.0398 0.5398 4.0066 6.11824 7.28982 90.70 93.60

β 0.5286 0.0286 0.0252 0.42254 0.50345 80.60 85.60

90%
α 1.9408 0.4408 2.7767 5.37209 6.40079 90.90 93.80

β 0.5324 0.0324 0.0241 0.40034 0.47700 82.20 86.60

100%
α 1.8474 0.3474 2.2934 5.24565 6.25014 92.70 94.80

β 0.5276 0.0276 0.0209 0.39632 0.47221 82.30 86.90

50

70%
α 1.8428 0.3428 2.5558 4.58398 5.46177 93.30 93.80

β 0.5100 0.0100 0.0173 0.32036 0.38171 85.90 86.60

90%
α 1.6053 0.1053 1.5871 4.11046 4.89757 94.00 94.50

β 0.4958 0.0041 0.0148 0.30164 0.35940 86.00 87.10

100%
α 1.6965 0.1965 1.5282 4.06285 4.84084 94.70 95.60

β 0.5035 0.0035 0.0148 0.30026 0.35776 88.00 88.40

100

70%
α 1.6164 0.1164 0.9687 3.11268 3.70873 93.30 93.80

β 0.4997 0.0003 0.0089 0.22580 0.26904 87.30 91.10

90%
α 1.5581 0.0581 0.8532 2.88297 3.43502 94.00 95.10

β 0.4937 0.0062 0.0085 0.21418 0.25520 88.60 91.40

100%
α 1.5085 0.0085 0.8379 2.86279 3.41098 95.20 97.00

β 0.4900 0.0099 0.0081 0.21304 0.25384 90.60 92.80

150

70%
α 1.5862 0.0862 0.6713 2.52782 3.01187 93.50 95.40

β 0.5000 .00007 0.0064 0.18555 0.22109 87.40 92.70

90%
α 1.5176 0.0175 0.5925 2.33973 2.78777 93.60 95.40

β 0.4916 0.0083 0.0062 0.17521 0.20876 90.10 93.40

100%
α 1.4846 0.0153 0.5766 2.33212 2.7787 94.10 97.60

β 0.4884 0.0115 0.0061 0.17432 0.20771 91.70 94.60

5 Application

In this section, data analysis is utilized to assess the goodness-of-fit of the RTPL distribution. The data set is
obtained from [16] with respect to the flood data for 20 observations “0.265, 0.392, 0.297, 0.3235, 0.402, 0.269, 0.315,
0.654, 0.338, 0.379, 0.418, 0.423, 0.379, 0.412, 0.416, 0.449, 0.484, 0.494, 0.613, 0.74”. We compare the proposed
model with some existing well-known models, i.e. Kumaraswamy (Kw) distribution (see [17]) , size-biased
Kumaraswamy (SBKw) distribution (see [18]), and TL distribution as a sub-model from RTPL distributions. We
consider the Kolmogorov-Smirnov (K-S) test, P-value, Cramér-von Mises (CVM) and Anderson-Darling (AD)
goodness-of-fit statistics. The density functions (for 0 <x< 1) of Kw, SB-Kw and TL are presented in Table 5. Ps of

Table 5: The pdfs for some lifetime distributions

Model The probability density function

Kumaraswamy fKW (x;α, β ) = αβxα−1(1−xα )β−1 ;α,β > 0.

Size-biased Kumaraswamy fSBKW (x;α, β ) = αxα (1−xα )β−1

B(1+ 1
α ,β )

;α,β > 0.

Truncated Lomax fT L (x;α) = α(1+x)−(α+1)

1−2−α ; α > 0.

each models are estimated by ML method using Mathematica7. The goodness-of fit measures; KS, AD, CVM and,
P-value are calculated in Table 6.
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Table 6: MLEs and goodness-of fit measures of flood data

Model
Parameters estimate

K-S AD CVM P-value
α̂ β̂

RTPL(α,β ) 16.8230 3.6560 0.1921 0.8249 0.1289 0.4515

KW(α,β ) 1.5659 1.9631 0.2109 0.9723 0.1676 0.3358

SBKw(α,β ) 2.7787 10.5688 0.2053 0.8972 0.1526 0.3682

TL(α) 0.00000 ———— 0.3391 13.6495 0.4429 0.0200

Table 6 exhibits that the RTPL distribution provides a better fit than the competitive models. It has the smallest values
of K-S, AD, CVM and the largest P-value. Finally, the plots of empirical cdf of the data set and PP plots of RTPL, KW,
SBKW and TL models are displayed in Figure 2, Moreover, we illustrate the usefulness of proposed model by fitted
density functions over histograms of the data set in Figure 3.

Fig. 2: PP plots of the fitted models for flood data
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Fig. 3: Estimated pdf and cdf for the data set of models for flood data

From Fig. 2 and 3 we can see the RTPL distribution provides a better fit than the competitive models.

6 Conclusion

In this paper, we introduce a new model called the truncated power Lomax. We investigate several structural properties of
the new distribution, expressions for the ordinary moments, generating function and order statistics. The model parameters
are estimated by the maximum likelihood method in case of complete and censored samples. A simulation study reveals
that the estimates of the model have desirable properties, for example, (i) the maximum likelihood estimates are not too far
from the true parameter values; (ii) the biases and mean square errors of estimates in case of complete sample are smaller
than the corresponding in censored samples; and (iii) the biases and the mean square error values decrease as the sample
size increases. Application to real data empirically proves the importance and potentiality of the suggested distribution.
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