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Abstract: This paper presents estimates of the parameters involved in a competing risks model in the presence of progressive type-

I censored data. We consider the case when the competing risks have generalized inverted exponential distributions. The maximum

likelihood method is used to derive point and asymptotic confidence intervals for the unknown parameters. The relative risks due to

each cause of failure are investigated. A real data set is used to illustrate the theoretical results and to assess the performance of relative

risk and MLE estimates at different schemes of progressively type-I censored samples under causes of failure that follow the generalized

inverted exponential distributions.

Keywords: Competing Risks, progressive type-I censoring scheme, generalized Inverted Exponential Distribution, maximum

Likelihood Estimation.

1 Introduction

Inverted distributions have been introduced to overcome some disadvantages of the most widely used distributions in
reliability and survival analysis. These disadvantages involve constant hazard (failure) rates of an exponential distribution
and non-closed form of some distribution functions, such as gamma distribution. The inverted exponential distribution
(IED) has been explored and used to overcome the restriction of the constant hazard rate. Lin et al. [1] addressed the
properties of the IED, such as: reliability function, hazard rate, and estimation of the parameters using maximum likelihood
method. Dey [2] explored the IED from the Bayesian viewpoint based on squared error and LINEX loss functions. The
generalized inverted exponential distribution (GIED) was proposed as another useful two-parameter generalization of the
inverted exponential distribution (see [3]). This lifetime distribution is capable of modeling diverse shapes of failure rates
as well as aging criteria.

The cumulative distribution function (cdf) and the probability density function (pdf) of the GIED are respectively
given by

F(x) = 1−

[

1− exp

(

−λ

x

)]α

,x > 0,λ ,α > 0 (1)

and

f (x) =
αλ

x2
exp

(

−λ

x

)[

1− exp

(

−λ

x

)]α−1

(2)

where α is the shape parameter and λ is the scale parameter. If α = 1, GIED reduces to IED. Figure (1) illustrates the
behavior of the GIED at λ = 1 and for some various values of α .

The survival function is given by

F̄(x) =

[

1− exp

(

−λ

x

)]α

. (3)
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Fig. 1: Density function of GIED for some values of α

The hazard rate function of GIED can be obtained as

h(x) =
αλ

x2

(

exp(λ
x
)− 1

) (4)

and its shape is illustrated in Figure (2) at λ = 1 and for some various values of α .
Several interesting characteristics and properties of GIED have been investigated by Abouammoh and Alshingiti [3].

The hazard rate function of GIED increases at the beginning of the aging and reduces at the end. It is inconstant based on
the shape parameter. The GIED has a unimodal and right skewed density function. Furthermore, GIED provides a better
fit than gamma, Weibull, generalized exponential and IED (see [3]). According to recent contributions to this distribution,
e.g. [4,5,6,7,8,9,10,11,12] should be reported.
Some applications of GIED in reliability analysis are, as follows:

–Test on the endurance of deep groove ball bearings [3].
–Polished window strength for a glass airplane window [3].
–After surgery, where the hazard rate is very high.

However, models have been recently developed to assess the lifetimes of a specific risk in the presence of other
competing risk factors. The data for these competing risk models consists of the failure time and an indicator variable
denoting the specific cause of failure of the individual or item. The causes of failure may be assumed to be independent
or dependent. In most situations, the analysis of competing risk data assumes independent causes of failure. See Crowder
[13] and the monograph by David and Moeschberger [14] for an exhaustive treatment of different competing risks models.

In practical life testing experiments, censored data arise when the experiment has to be terminated before collecting
complete observation. The censoring technique is common and unavoidable in practice, especially in reliability
engineering, for many reasons, such as time constraint and cost reduction. Various types of censoring have been
discussed in the literature, with the most common censoring schemes, i.e. type-I censoring and type-II censoring. More
recently, progressive censoring scheme has gained significant attention in the literature because of its effective utilization
of the available resources in comparison with traditional censoring designs. One of progressive censoring schemes is
progressive type-I which is observed when a pre-fixed number of life test units are continuously removed through the
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Fig. 2: Hazard rate function of GIED for some values of α

experiment at the end of each of pre-specified time intervals. It provides both the practical feature of identifying the
termination time and the larger flexibility to the experimenter in the phase of design through eliminating the test units at
non-terminal time points [15].

A common way of formulating a model of competing risks is to define Y1,Y2, . . . ,Yh respectively as the latent lifetimes
of the unit when it is exposed to the 1st ,2nd , . . . ,hth risk alone. In the simultaneous presence of all h causes, only the
smallest of the yi, min

j
y j, is in fact observable, together with the actual cause of failure, say j. Correspondingly, we write

the observed lifetime as x j. Namely,

xi = yi|yi = min
j

y j,

i = 1,2, . . . ,n, j = 1,2, . . . ,h

the cumulative distribution function of the individual Xi is given by:

Fj(x) = P(X j ≤ x) = 1−P(X j > x) = 1−P(X1 > x,X2 > x, . . . ,X j > x)

where P(X1 > x,X2 > x, . . . ,X j > x) is computed with respect to the joint distribution of X1,X2, . . . ,X j. When the risks are
independent, the cdf can be rewritten as follows:

Fj(x) = 1−P(X1 > x)P(X2 > x) . . .P(X j > x)

= 1− F̄1(x)F̄2(x) . . . F̄j(x)

= 1−
h

∏
j=1

F̄j(x)

where Fj(x) is the cdf for the j risk. Taking the derivative of Fj(x) with respect to time x, the pdf of individual can be
obtained as:

f j(x) =
h

∑
j=1

(

f j(x)
h

∏
l 6= j

F̄l(x)

)

=
h

∑
j=1

(

f j(x)

F̄j(x)

h

∏
j=1

F̄j(x)

)
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Let the probability density function and the survivor function of Xi j be denoted by f j(x) and F̄j(x), respectively. Thus,
the pdf of Xi is given by

u j(xi) =
f j(xi)

π jF̄j(xi)

h

∏
l=1

F̄j(xl) (5)

where π j = P(X j = min
l

Xl) is the probability of failure due to cause j and it is assumed to be non-zero with ∑π j = 1
(see[16] and [17]).

Consider a life test experiment with h independent competing causes of failure where a random sample of n

specimens is tested simultaneously, and where each failure is due to a single cause. Suppose that the test is conducted
under progressive type-I censoring, where Rs items are removed from the survived items at predetermined time points Ts,
s = 1,2, . . . ,m where m is the number of stages in the test, Ts > Ts−1 and n = r +∑m

s=1 Rs . The values Ts are to be
predetermined by the experimenter, the choice of which depends on the prior knowledge and experience of the
experimenter about the items on test. Suppose r j specimens fail due to the jth cause and we observe

x j,i, j = 1,2, . . . ,h; i = 1,2, . . . ,r j

where x j,i denotes the jth failure time due to the ith cause. In these situations, Rs,Ts and n are fixed and predetermined,
while li is the number of the survivor items at time Ts and r j = ∑m

i=1 li are random variables. Figure (3) describe this
scheme of censoring [18].

Fig. 3: Progressive Type-I Censoring Scheme

The likelihood function under progressive type-I censoring with multiple modes of failure is (see [16,17,14])

ℓ ∝

[

h

∏
j=1

r j

∏
i=1

{

u j(x ji)
h

∏
l( 6= j)=1

F̄l(x ji)

}]

·

[

h

∏
j=1

s

∏
i
′
=1

(

F̄j(Ti
′ )
)R

i
′

]

(6)

where i
′

is the stages of progressive type-I censoring scheme and i
′
= 1,2, . . . ,s.

The present study aims to analyze progressive type-I censoring scheme under the competing risks model when
lifetimes have independent GIED. We drive the maximum likelihood estimates (MLE) and we obtain the approximate
two sided confidence intervals of these different parameters. We consider a real data set and see how the different models
work in the practical situation.

The other sections are organized as follows: Section Two involves the model and the notation used throughout this
paper. Section Three handles the maximum likelihood estimation, confidence intervals, and relative risks. A real data set
is used to illustrate the theoretical results in section Four.

2 Model Description and Notation

Without loss of generality, we assume that there are two causes of failures. We assume the following notation:

–Xi: lifetime of system i

–X ji: lifetime of the ith individual under causes j, j = 1,2
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–r j: number of failure due to causes j, j = 1,2
–Fj(.): cumulative distribution function of X ji

–F̄j(.): survival function of X ji.

Also, we need the following assumptions throughout this paper.

1.The random vectors (X1i,X2i), i = 1,2, . . . ,n, are n i.i.d. random vectors
2.The random variablesX1i and X2i are independent for all i = 1,2, . . . ,n, and Xi = min(X1i,X2i)
3.The random variable X ji has GIED(α j,λ j), j = 1,2, and i = 1,2, . . . ,n.
4.The life test is conducted under progressive type-I censoring which is discussed in the previous section.

3 Estimation Process

3.1 Maximum Likelihood Estimation

For a progressive type-I censored sample obtained from a life test experiment with two independent GIED(α1,λ1) and
GIED(α2,λ2), or equivalently, from (2) with parameters α1,λ1 and α2,λ2, it follows from (5) and (6) that

ℓ

[

h

∏
j=1

r j

∏
i=1

{

α jλ j

x2
ji

}

[

1− exp

(

−λ j

x ji

)]α j−2 h

∏
l( 6= j)=1

[

1− exp

(

−λl

x ji

)]αl

}]

[

h

∏
j=1

s

∏
i
′
=1

([

1− exp

(

−λ j

T
i
′

)]α j
)R

i
′
]

(7)

where j = 1,2. The log-likelihood function is

lnℓ
h

∑
j=1

r j

∑
i=1

r j ln(α jλ j)− 2ln(x ji)−
λ j

x ji

+(α j − 2) ln(

[

1− exp

(

−λ j

x ji

)]

)+
h

∑
l=1

αl ln(

[

1− exp

(

−λl

x ji

)]

)

+
h

∑
j=1

s

∑
i
′
=1

R
i
′ α j ln(

[

1− exp

(

−λ j

T
i
′

)]

) (8)

The first order derivations of (8) with respect to α j and λ j, are given, respectively, by j = 1,2

∂ lnℓ

∂α j

=
h

∑
j=1

r j

∑
i=1

r j

α j

+ ln

[

1− exp

(

−λ j

x ji

)]

+
h

∑
l=1

ln

[

1− exp

(

−λl

x ji

)]

+
h

∑
j=1

s

∑
i
′
=1

R
i
′ ln

[

1− exp

(

−λ j

T
i
′

)]

and
∂ lnℓ

∂λ j

=
h

∑
j=1

r j

∑
i=1

r j

λ j

−
1

x ji

+
α j − 2

exp

(

λ j

x ji

)

− 1

+
h

∑
l=1

αl

exp

(

λl

x ji

)

− 1

+
h

∑
j=1

s

∑
i
′
=1

R
i
′ α j

exp

(

λ j

T
i
′

)

− 1

Equating the first derivations in the previous two equations to zero, one can obtain the MLE of the unknown parameters
α1,α2,λ1 and λ2. The system of non-linear equations has no closed form solution in α1,α2,λ1 and λ2. Thus, a numerical
method technique is required for computing the MLE of the parameters α1,α2,λ1 and λ2. Now, the asymptotic variance-
covariance matrix of the MLEs of α1,α2,λ1 and λ2 can be obtained by inverting the observed information matrix with the
negative elements of the expected values of the second order derivatives of logarithms of the likelihood functions. Cohen
[19] concluded that the approximate variance covariance matrix may be obtained by replacing expected values with their
MLEs. Now, the approximate sample information matrix will be

I(θ̂ ) =−























∂ 2 ln(ℓ)

∂α2
1

∂ 2 ln(ℓ)
∂α2∂α1

∂ 2 ln(ℓ)

∂α2
2

∂ 2 ln(ℓ)
∂λ1∂α1

∂ 2 ln(ℓ)
∂λ1∂α2

∂ 2 ln(ℓ)

∂λ 2
1

∂ 2 ln(ℓ)
∂λ2∂α1

∂ 2 ln(ℓ)
∂λ2∂α2

∂ 2 ln(ℓ)
∂λ2∂λ1

∂ 2 ln(ℓ)

∂λ 2
2























(α̂1,α̂2,λ̂1,
ˆλ2)
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where the elements of the 4× 4 matrix Ii j(θ ), i, j = 1,2,3,4 can be obtained as follows:

∂ 2 lnℓ

∂α2
j

=−
h

∑
j=1

r j

∑
i=1

r j

α2
j

∂ 2 lnℓ

∂λ 2
j

=
h

∑
j=1

r j

∑
i=1

−r j

λ 2
j

−

(α j − 2)exp

(

λ j

x ji

)

x ji

(

exp

(

λ j

x ji

)

− 1

)2
−

h

∑
l=1

αl exp

(

λl
x ji

)

x ji

(

exp

(

λl
x ji

)

− 1

)2
−

h

∑
j=1

s

∑
i
′
=1

R
i
′ α j exp

(

λ j

T
i
′

)

T
i
′

(

exp

(

λ j

T
i
′

)

− 1

)2

and

∂ 2 lnℓ

∂α j∂λ j

=
h

∑
j=1

r j

∑
i=1

1

exp

(

λ j

x ji

)

− 1

+
h

∑
l=1

1

exp

(

λl
x ji

)

− 1

+
h

∑
j=1

s

∑
i
′
=1

1

exp

(

λ j

T
i
′

)

− 1

3.2 Asymptotic Confidence Intervals

In this subsection, we derive the confidence intervals of the vector of the unknown parameters θ = (α1,α2,λ1,λ2). Based
on the asymptotic distribution of the MLE of the parameters, it is known that

(θ̂ −θ )→ N4(0, I
−1(θ̂ j))

where I(θ ) is the Fisher information matrix. Under particular regularity conditions, the two-sided 100(1−γ)%,0< γ < 1,
asymptotic confidence intervals for the vector of unknown parameters θ = (α1,α2,λ1,λ2) can be obtained as follows:

θ̂ j ±Z γ
2

√

Var(θ̂ j)

where Var(θ̂ j) is the element of the main diagonal of I−1(θ̂ j) and Z γ
2

is the upper
γ
2
th percentile of the standard normal

distribution.

3.3 Relative Risk

Using the independence of the latent failure times X1i,X2i, i = 1,2, . . . ,n, we can obtain the relative risk rate due to a
particular cause (say, cause 1) as follows:

π1 = P(X1i ≤ X2i) =

∫ ∞

0
f1(x) · F̄2(x)dx

= α1λ1

∫ ∞

0
exp

(

−λ1

x

)[

1− exp

(

−λ1

x

)]α1−1

·

[

1− exp

(

−λ2

x

)]α2

dx (9)

and

π2 = P(X2i ≤ X1i) =

∫ ∞

0
f2(x) · F̄1(x)dx

= α2λ2

∫ ∞

0
exp

(

−λ2

x

)[

1− exp

(

−λ2

x

)]α2−1

·

[

1− exp

(

−λ1

x

)]α1

dx (10)

Once π1 is computed, we define π2 using the relation π2 = 1−π1. The relative risk rates of π1 and π2 can be obtained
by replacing the MLE of α1, α2, λ1 and λ2 in (9) and (10). As the integral in the right side of (9) and (10) have no
analytical solution, we have to use a numerical technique to solve these integrals.
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4 Real Data Application

We analyze a real data set for an illustrative purpose as well as to assess the statistical performances of the MLE estimators
under different progressive type-I censoring scheme. We used R-statistical programming language for calculation utilizing
bbmle package to compute MLEs and relative risks.

The following original data set was first analyzed by Hoel [20] and later by Ashour and Nassar [21]. The data was
obtained from a laboratory experiment in which male mice received a radiation dose of 300 roentgens at 35 days to 42
days (5-6 weeks) of age. The cause of death for each mouse was defined by reticulum cell sarcoma as cause 1 and other
causes of death as cause 2.The analysis listed below exhibits n = 77 observations
Time of failure due to cause 1: 317, 318, 399, 495, 525, 536, 549, 552, 554, 557, 558, 571, 586, 594, 596, 605, 612, 621,
628, 631, 636, 643, 647, 648, 649, 661, 663, 666, 670, 695, 697, 700, 705, 712, 713, 738, 748, 753.
Time of failure due to cause 2: 40, 42, 51, 62, 163, 179, 206, 222, 228, 252, 249, 282, 324, 333, 341, 366, 385, 407, 420,
431, 441, 461, 462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621, 622, 647, 651, 686, 761, 763

From the original data, we generate three progressively type-I censored samples with different m stages and removed
items Ri at the time censoring Ti, where i = 1,2, . . . ,m. These different schemes are presented in Table (1).

Table 1: Different schemes for progressively type-I censored samples

Scheme m Censoring time Ti Removed items Ri

I 3 (225, 440, 610) (5, 5, Rm)

II 4 (225, 335, 525, 610) (5, 5, 5, Rm)

II 5 (225, 335, 440, 525, 610) (5, 5, 5, 5, Rm)

In Table (2), we calculate the MLEs of the parameters α1,α2,λ1, and λ2 and their associated 95 % asymptotic
confidence interval estimates at different schemes for progressively type-I censored samples.

Table 2: Maximum likelihood and associated interval estimates for real data set

Scheme Estimate Parameters

λ1 α1 λ2 α2

I MLE 0.112 2.330 0.109 2.278

Asy CI (0.021,0.179) (1.124,3.347) (0.062,0.205) (1.231,4.033)

II MLE 0.134 2.330 0.109 1.961

Asy CI (0.069,0.212) (1.284,4.044) (0.051,0.181) (1.081,3.383)

III MLE 0.104 1.785 0.113 2.412

Asy CI (0.049, 0.173) (1.020, 2.986) (0.047, 0.194) (1.212, 4.518)

Note: Asy CI-asymptotic confidence interval.

In Table (2) all the estimated values of maximum likelihood and associated interval estimates for the real data sets
are presented under three different progressively type-I censored samples. In Table (3), we compute the values of the
negative log-likelihood criterion (NLC), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC)
at different censoring schemes. The lower the values of these criteria, the better the fit. The relative risk at each censoring
scheme will be computed.

Table (3) shows goodness of fit test for different three progressively type-I censored samples schemes. We indicate
that the more number of stages for progressive type-I censoring schemes, the better fit under the assumption of the data
that follows GIED in presences of competing risks.

Example: we apply a progressive type-I censoring in scheme II as follows:

n = 77,m = 4,R1 = 5,R2 = 5,R3 = 5 and T1 = 225,T2 = 335,T3 = 525,T4 = 610

Thus, the progressively type-I censored sample from the original data by applying the above-mentioned scheme is given
by:
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Table 3: A goodness of fit test for different progressively type-I censoring schemes

Scheme Removed items Failure items Goodness of fit Relative risk

AIC BIC NLC π1 π2

I (5, 5,22) r = 45 296.902 300.885 144.45 0.6236 0.3764

II (5, 5, 5,24) r = 38 296.532 300.514 144.27 0.6220 0.3780

III (5, 5, 5, 5, 16) r = 41 286.002 289.985 139.001 0.5454 0.4546

(2,40), (2,42), (2,51), (2,62), (2,163), (2,179), (2,206), (2,222), (1,317), (1,318), (2,228), (2,252), (2,249), (2,282),
(2,324), (2,333), (1,495), (2,341), (2,366), (2,385), (2,407), (2,420), (2,431), (2,462), (2,482), (2,517), (2,524),
(1,525), (1,536), (1.549), (1,552), (1,554), (1,557), (1,571), (2,586), (1,594), (1,596), (2,567)

The first component denotes the life time and the second component indicates the cause of failure. There were R1 =
5,R2 = 5,R3 = 5,R4 = 24 and r = 38. From the above-mentioned data, we obtain the following: where the asymptotic

Estimate Parameters

λ1 α1 λ2 α2

MLE 0.134 2.330 0.109 1.961

Asy CI (0.069,0.212) (1.284,4.044) (0.051,0.181) (1.081,3.383)

confidence interval is reported within brackets. Also, the relative risk due to cause 1 is 0.622, and due to cause 2 is 0.378.
Finally, the value of AIC, BIC, and NLC is given by 296.532, 300.514, and 144.27, respectively.

5 Perspective

The present paper explored the problem of competing risks model for generalized inverted exponential distribution under
progressive type-I censoring. We derived maximum likelihood estimates and associated asymptotic confidence interval
estimates for the unknown parameters of a GIED under the assumption of two causes of failure and different progressive
type-I censoring schemes. Furthermore, we calculated AIC, BIC, NLC, and relative risk for each assumed censoring
scheme. We conclude that: the more number of stages for progressive type-I censoring schemes, the better fit. The
present work can be extended to investigate Bayesian estimation and optimal progressive censoring sampling plan under
competing risks model.

Acknowledgment

The authors are grateful to the anonymous referee for the beneficial comments that improved this paper.

References

[1] C.T. Lin, B.S. Duran, T.O. Lewis, Inverted gamma as life distribution, Microelectron. Reliab., 29, 619-626 (1989).

[2] S. Dey, Inverted exponential distribution as a life distribution model from a Bayesian viewpoint, Data Science Journal, 6, 107-113

(2007).

[3] A.M. Abouammoh, A.M. Alshingiti, Reliability estimation of generalized inverted exponential distribution, Journal of Statistical

Computation and Simulation, 79, 1301-1315 (2009).

[4] H. Krishna, K. Kumar, Reliability estimation in generalized inverted exponential distribution with progressively type II censored

sample, Journal of Statistical Computation and Simulation, 83, 1007-1019 (2013).

[5] S. Dey, T. Dey, Generalized inverted exponential distribution: Different methods of estimation, American Journal of Mathematical

and Management Sciences, 33, 194-215 (2013).

[6] S. Dey, T. Dey, On progressively censored generalized inverted exponential distribution, Journal of Applied Statistics, 41, 2557-2576

(2014).

c© 2020 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 9, No. 1, 109-117 (2020) / www.naturalspublishing.com/Journals.asp 117

[7] S. Dey, B. Pradhan, Generalized inverted exponential distribution under hybrid censoring, Statistical Methodology, 18,101-114

(2014).

[8] S. Dey, T. Dey, D.J. Luckett, Statistical inference for the generalized inverted exponential distribution based on upper record values,

Mathematics and Computers in Simulation, 120, 64-78 (2016).

[9] S. Dey, S. Singh, Y.M. Tripathi, A. Asgharzadeh, Estimation and prediction for a progressively censored generalized inverted

exponential distribution, Statistical Methodology, 132, 185-202 (2016).

[10] S.K. Singh, U. Singh, A.S. Yadav, P.K. Vishwkarmaand, On the estimation of stress strength reliability parameter of inverted

exponential distribution, International Journal of Scientific World, 3, 98-112 (2013).

[11] S. Singh, Y.M. Tripathi, C.H. Jun, Sampling plans based on truncated life test for a generalized inverted exponential distribution,

Industrial Engineering & Management Systems, 14, 183-195 (2015).

[12] M. Dube, H. Krishna, R. Garg, Generalized inverted exponential distribution under progressive first-failure censoring, Journal of

Statistical Computation and Simulation, 86, 1095-1114 (2016).

[13] M. J. Crowder, Classical Competing Risks, Chapman & Hall/CRC, Boca Raton, 2001.

[14] M.L. Moeschberger, H.A. David, Life tests under competing causes of failure and the theory of competing risks, Biometrics, 27,

909-933 (1971).

[15] N. Balakrishnan, D. Han, G. Iliopoulos, Exact inference for progressively type-I censored exponential failure data, Metrika, 73,

335-358 (2011).

[16] U. Balasooriya, C.K. Low, Competing causes of failure and reliability tests for Weibull lifetimes under type I progressive censoring,

IEEE Transactions on Reliability, 53, 29-36 (2004).

[17] R. J. Herman, K.N.R. Patell, Maximum likelihood estimation for multi-risk model, Technometrics, 13, 385-396 (1971).

[18] N. Balakrishnan, E. Cramer, The Art of Progressive Censoring: Applications to Reliability and Quality, Springer, Berlin, 2010.

[19] A.C. Cohen, Progressively censored samples in life testing, Technometrics, 5, 327-329 (1963).

[20] D.G. Hoel, A representation of mortality data by competing risks, Biometrics, 28, 475-488 (1972).

[21] S.K. Ashour, M.M.A. Nassar, Analysis of exponential distribution under adaptive type-I progressive hybrid censored competing

risks data, Pakistan Journal of Statistics and Operation Research, 10, 229-245 (2014).

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Model Description and Notation
	Estimation Process
	Real Data Application
	Perspective

