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1 Introduction

Let G be a finite and simple connected graph whose
vertex and edge sets are respectively denoted by V (G),
E(G) and |V (G)|= p, |E(G)|= q called as order and size
of the graph G. The number of edges incident with a
vertex x is called as degree of G which is denoted as
degG(x). If G is connected and x,y ∈ V (G) and the
distance dG(x,y) is the shortest path between x and y.
For a connected graph G, The Wiener index [11] W (G) of
the graph G is defined as

W (G) = ∑
{x,y}⊆V (G)

dG(x,y) (1)

and the Reciprocal Degree Distance index RDD(G) of a
simple connected graph G is defined as

RDD(G) = ∑
{x,y}⊆V (G)

(

degG(x)+ degG(y)

dG(x,y)

)

(2)

where degG(x) is the degree of x, dG(x,y) is the distance
between x and y. Wiener index and Reciprocal Degree
Distance index RDD(G) are extensively studied for many
types of chemical graphs [7]. The Steiner distance in a
graph, introduced by Chartrand et al.[2] in 1989 is a
generalization of the concept of graph distance. For a
connected graph G of order at least 2 and S ⊆ V (G), the
Steiner distance d(S) of the vertices of S is the minimum
size of a connected subgraph whose vertex set is S. In
view of equation (1) Li, Mao, and Gutman generalized
the notion of wiener index of a graph G as the Steiner
wiener index [12] is defined as

SWt(G) = ∑
S⊆V (G), |S|=t

dG(S) (3)

When S = {u,v}, |S| = 2 then the Stiener distance
diminishes to the distance between a pair of vertices
which is ordinary wiener index [11] that is

W (G) = SWt(G) = ∑
S⊆V (G), |S|=2

dG(S) (4)

Moreover when t = 0, SWt(G) = 0, and t = p − 1,
SWt(G) = p− 1.
Furtula, Gutman and Katanic introduced the concept of
Steiner Harary index [4]. Later Mao studied the properties
of the Steiner harary index[16] or t-center Steiner harary
index SHt(G) is defined as

∑
S⊆G, |S|=t

(

1

dG(S)

)

(5)

Gutman and B. Furtula stated an application of Steiner
distance indices in [4] In this paper, we introduce Steiner
reciprocal degree distance index and study some
interesting properties and bounds.

2 Steiner reciprocal degree distance index of

standard graph structures

The reciprocal degree distance index deals with vertex
degree-weighted sum of the reciprocal distance, in
analogues manner, one can generalize the notion of
reciprocal degree distance with t vertices. In view of
equation (2) and (3), we introduce the following definition
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Definition 1.For a connected graph G the SRDDt(G) is

defined as

SRDDt(G)) = ∑
S⊆V (G)
|S|=t

∑u∈S degG(u)

dG(S)
(6)

Where 1 ≤ t ≤ p−1 and when t = 1 then SRDDt(G) = 0.
One can observe that in the special case t = 2 of equation
(6), this implies reciprocal degree distance index.

Definition 2.For a connected graph G the Steiner

reciprocal degree distance polynomial SRDDt(G,z) is

defined as

SRDDt(G,z) = ∑
S⊆V (G)
|S|=t

∑u∈S degG(u)

dG(S)2
zdG(S) (7)

the first derivative of the Steiner reciprocal degree distance
polynomial with z = 1 gives the SRDDt(G).

Theorem 1.The Steiner reciprocal degree distance index

of the Star graph is

SRDDt(Sp) =
p(2t − 1)− t

(p− t)(t − 1)

(

p− 1

t

)

(8)

where 2 ≤ t ≤ p− 2.

Proof.Let v1 be the center vertex of the star graph Sp.
Divide the vertex set in to two partitions as follows. Let
S ⊆ V (Sp) and |S| = t, if v1 /∈ S, then dSp(S) = t and

∑v∈S degSp(v) = t. If v1 ∈ S, then dSp(S) = t − 1 and

∑u∈S degSp(v) = p− 1. Therefore

SRDDt(Sp)

= ∑
S⊆V (Sp)

v1 /∈S, |S|=t

∑v∈S degSp(v)

dSp(S)
+ ∑

S⊆V (Sp)
v1∈S, |S|=t

∑v∈S degSp(v)

dSp(S)

=

(

p− 1

t

)

+
p+ t− 2

t − 1

(

p− 1

t − 1

)

=

(

p− 1

t

)

+

(

p− 1

t

)

t

p− t

p+ t− 2

t − 1

=
p(2t − 1)− t

(p− t)(t − 1)

(

p− 1

t

)

Proposition 1.Let Kp be the complete graph of order p and

t be an integer 2 ≤ t ≤ p then SRDDt(Kp) =
(

p
t

) t(p−1)
t−1

For r regular graph of order p

SRDDt(G)) = ∑
S⊆V (G)
|S|=t

∑s∈V (G) degG(s)

dG(S)

= ∑
S⊆V (G)
|S|=t

rt

dG(S)

= rt[SHt(G)]

Where SHt(G) is the Steiner harary index of G.

Theorem 2.The Steiner reciprocal degree distance index

of path Pp of order p is

SRDDt(Pn)= 2t [SHt(Pp)]+

(

p− 2

t − 2

)

1

p− 1
+

1

l − 1

(

l− 2

t − 2

)

(9)
where 2 ≤ t ≤ p− 2, t − 1 ≤ l − 1 ≤ p− 1 and SHt(Pp) is

the Steiner harary index of the path Pp

Proof.Let V = {v1,v2, ...,vp} be the vertices of Pn where
v1 and vp are pendent vertices. Let S ⊆ V (Pp) and |S|= t

we have v1 & vp /∈ S v1 or vp ∈ S and v1 & vp ∈ S then

∑
v∈S,|S|=t

degPp(v) =











2t − 1 v1 or vp ∈ S

2t − 2 v1 & vp ∈ S

2t v1 & vp /∈ S

SRDDt(Pp)

= ∑
S⊆V (Pp)

v1∈S or vp ∈ S,
|S|=t

∑v∈S degPp
(w)

dPp
(S)

+ ∑
S⊆V (Pp)

v1 & vn∈S, |S|=t

∑v∈S degPp
(w)

dPp
(S)

+ ∑
S⊆V (Pp)

v1&v2 /∈S, |S|=t

∑v∈S degPp
(w)

dPp
(S)

= ∑
S⊆V (Pp)

v1∈S or vp∈S

|S|=t

2t −1

dPp
(S)

+ ∑
S⊆V (Pp)

v1&vp∈S, |S|=t

2t −2

dPp
(S)

+ ∑
S⊆V (Pp)

v1&v2 /∈S, |S|=t

2t

dPp
(S)

= 2t

















∑
S⊆V (Pp)

v1∈Sorvp ∈ S
|S|=t

1

dPp
(S)

+ ∑
S⊆V (Pp)

v1 & vp∈S, |S|=t

1

dPp
(S)

+ ∑
S⊆V (Pp)

v1,v2 /∈S,|S|=t

1

dPp
(S)









− ∑
S⊆V (Pp)

{v1, vp}∈S, |S|=t

1

dPp
(S)

− ∑
S⊆V (Pp)

v1∈S or vp ∈ S
|S|=t,

2

dPp
(S)

= 2t ∑
s∈V(G)

1

d(s)
− ∑

S⊆V (Pp)
{v1,vp}∈S, |S|=t

1

dPp
(S)

− ∑
S⊆V (Pp)

v1∈Sorvp ∈ S
|S|=t

2

dPp
(S)
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for symmetry of v1 ∈ S and vp ∈ S and view of equation
(5)

2t
[

SHt(Pp)
]

−2

















∑
S⊆V (Pp)

v1vp∈S, |S|=t

1

dPp
(S)

+ ∑
S⊆V (Pp)

v1∈S or vp ∈ S
|S|=t

1

dPp
(S)

















Let M = ∑ S⊆V (Pp)

v1∈S or vp ∈ S
|S|=t

1
dPp (S)

since {v1 vp} ∈ S and

without loss of generality S = {u1,ui2 ,ui3 , ...,uik−1
,up}

where 1 ≤ i2 ≤ ... ≤ it−2 ≤ n hence dG(S) = p − 1 and

there are
(

p−2
t−2

)

ways to compute {u1,ui2,ui3, ...,ui(t−1)}

hence M =
(

p−2
t−2

)

1
p−1

.

Now let N = ∑ S⊆V (Pp)
{v1, vp}∈S, |S|=t

1
dPp(S)

. Choose S ⊆ V (G)

and |S| = t. without loss of generality let
S = {u1,ui2,ui3, ...,uit − 1,up} where
1 ≤ i2 ≤ ... ≤ it−2 ≤ n, then t ≤ it ≤ p. Let
dG(u1,uin) = l − 1. t − 1 ≤ l − 1 ≤ p − 1. Since

dG(u1,uip) = l − 1 for each vertex uit we have
(

l−2
t−2

)

ways

to choose {u1,ui2 ,ui3 , ...,uit−1
}. Hence N = 1

l−1

(

l−2
t−2

)

Theorem 3.Let G be the Km,n complete bipartite graph of

order m+ n, for an integer t such that 2 ≤ t ≤ m+ n− 2,

m,n ≥ 2 then

SRDDt(m,n) =






































x(m−n)−t(1−m)−1

(t−1) [
(

m
t

)

+
(

n
t

)

]+
(n−m)x+at

t−1

(

m+n
t

)

if 1 ≤ t ≤ m
m
t

(

n
t

)

+ 1
t−1

[

∑
m
x=1

(

m
x

)(

n
t−x

)

nx+ a(t− x)
]

if m < t ≤ n
(mx+nt−mx)

t−1

(

m+n
t

)

if m < t ≤ m+ n.

Proof.Let Km,n = G and let V1 = u1,u2,u3, ...,ua and
V2 = w1,w2,w3, ...,wb are the partition of V (G).
Case I: 1 ≤ t ≤ a. For any S ⊂ V (G) and |S| = t, the
following subcases S∩V1 = /0 or S∩V2 = /0 or S∩V1 6= /0
and S∩V2 6= /0. If S∩V1 = /0. Then S ⊆ V2 and without
loss of generality let S = {w1,w2, ...,wt} then the tree
induced by the edges is {u1w1,u2w2, ...,u1wt} which is a
Steiner tree containing S implying dG(S) ≤ t. Any tree
containing t vertices must use at least t edges therefore
dG(S) = t and ∑ v∈S

|S|=t
degS(v) = mt. Similarly S∪V2 = /0

then d(S) = t and ∑ v∈S
|S|=t

degS(v) = mt. Suppose

S∩V1 6= /0 and S∩V2 6= /0 and without loss of generality
suppose S = {u1,u2, ...,ux,w1,w2, ...,wt−x} then the tree
induced by the edges
{w1u1,u1w2, ...,u1wt−x,w1u1,w1u2, ...,w1ux} is a Steiner
tree containing S that must use at least t − 1 edges and

hence d(S) ≤ t − 1 and ∑ v∈S
|S|=t

degS(v) = nx + m(t − x).

Thus

SRDDt(Km,n)

= ∑
S⊆V (Km,n)

S∩V1= /0

∑v∈S degKm,n(v)

dKm,n(S)
+ ∑

S⊆V(Km,n)
S∩V2= /0

∑v∈S degKm,n(v)

dKm,n(S)

+ ∑
S⊆V (Km,n)

S∩V1 6= /0, V2 6= /0

∑v∈S degKm,n(v)

dKm,n(S)

=
1

t

[(

m

t

)

tn+

(

n

t

)

mt

]

+
(nx+m(t − x))

t − 1

m

∑
x=1

(

m

x

)(

n

t − x

)

=
1

t

[(

m

t

)

tn+

(

n

t

)

mt

]

+
(m+ n)x+mt

t − 1

[(

m+ n

t

)

−

(

n

t

)

−

(

n

t

)]

=
x(m− n)− t(1−m)− 1

(t − 1)

[(

m

t

)

+

(

n

t

)]

+
(n−m)x+ at

t − 1

(

m+ n

t

)

Case II: m < t ≤ n. For any S ⊆ V (G) and |S| = t, we
have S∩V1 = /0 and S∩V1 6= /0. If S∩V1 6= /0 then S ⊆ V2

and without loss of generality let S = {w1,w2, ...,wt} then
the tree T induced by the edges {u1w1,u1w2, ...,u1wt} is a
Steiner tree containing S implying dG(S)≤ r and any tree
containing S vertices must use at least r edges and hence
d(S) ≥ t edges therefore d(S) = t and

∑v∈S,|S|=t degS(v) = tm. If S∩V1 6= /0 and without loss of

generality, suppose S = {u1, u2, ..., ux, w1, w2, ...,
w(r−x)}(1 ≤ x ≤ a) therefore the tree induced by the

edges {w1u1,u1w2, ...,u1w(t − x)} is a Steiner tree
containing S must use at least t − 1 edges that is
dG(S) ≥ k and hence d(S) = t − 1 and

∑v∈S,|S|=t degS(v) = mx+ n(t − x). Thus

SGtKm,n

= ∑
S⊆V (Km,n)

S∩V1= /0

∑v∈S degKm,n(v)

dKm,n(S)
+ ∑

S⊆V(Km,n)
S∩V2 6= /0

∑v∈S degKm,n(v)

dKm,n(S)

=
m

t

(

n

t

)

+
nx+m(t− x)

t − 1

[

m

∑
x=1

(

m

x

)(

b

t − x

)

]

Case III: we consider the remaining case b < t ≤ m+ n.
For any S ⊆ V (G) and |S| = t, we have S ∩V1 6= /0, and
|S| = t and S ∩V2 6= /0 and without loss generality let
S = {u1,u2, ...,ux,w1,w2, ...,wr−x} . Therefore the tree
induced by the edges
{w1u1,w1u2, ...,w1ux,u1w2,u1w3, ...,u1w(r−x)} is a

Steiner tree connecting S which implies dG(S) ≤ t − 1.
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Since |S| = t, it follows that any tree connecting S must
use at least t − 1 edges and hence dG(S) = t − 1 Thus

SGt(G) = ∑
S⊆V (G)

∑v∈S degKm,n(v)

dKm,n

+
(nx+mt − nx)

t − 1

(

m+ n

t

)

Corollary 1.Let G be the connected graph of order p and

size q.

Then SRDDp(G) = 2q
p−1

Theorem 4.Let G be a connected graph with p vertices

and q edges if

κ(G)≥ 2 then

SRDDp−1(G) =
2q(p− 1)

p− 2

and if κ(G) = 1 then,

SRDDp−1(G) =
2pq

p− 2
−

1

p2 − 3p+ 2
[

2lq− 2q(p+ 1)+
l

∑
i=1

degu(xi)

]

where xi (1 ≤ i ≤ l) are the cut vertices of G

Proof.Since κ(G) ≥ 2, therefore dG(S) which consists of
p− 1 vertices is p− 2, hence

SRDDp−1(G) =
1

p− 2
∑

S⊆V (G)
|S|=p−1

∑
v∈S

deg(v)

For each v ∈ V (G) and |S|= p− 1 we have p− 1 subsets
of V (G) such that each edge of v contributes exactly by
p− 1degG(v) to SRDDp−1(G). Hence

SRDDp−1(G) = 2q(p−1)
p−2

Case(ii) Suppose κ(G) = 1
since each vertices of G is one connected therefore each
edge is cut edges. For any S ⊆ V (G) and |S| = p− 1 and
S = {x1,x2, ...,xl} If V (G)\S = xi, then dG(S) = p− 1. If

V (G)\S 6= {xi}, 1 ≤ i ≤ p− 1 then dG(S) = p− 2,

SRDDp−1(G)

=
1

p− 2
∑

S⊆V (G),
V (G)\S 6={xi}

[

∑
v∈S

degG(v)

]

+
1

p− 2
∑

S⊆V (G),
V (G)\S 6={xi}

[

∑
v∈S

degG(v)

]

=
1

p− 2

[

2(p− l)q−
p

∑
i=l+1

degG(wi)

]

+
1

p− 1
[2(ql)−

l

∑
i=1

degG(xi)]

=
2pq

p− 2
−

1

p2 − 3p+ 2

[

2pq− 2q(p+ 1)+
l

∑
i=1

degG(xi)

]

Theorem 5.Let T be a tree with p vertices, possessing l

pendent vertices Thus

SRDDp−1(T ) =
2p3−8p2+2pl+10p−3l−4

(n−2)(n−1)

Proof.Since t = p − 1 vertices therefore each subset S

contains p− 1 vertices of T . Let vi be a pendent vertices
such that vi ∈ V (G)\S is pendent, Therefore vi ∈ S

produce a tree of order p − 1. Therefore dT (S) = p − 2
and ∑v∈S degT (v) = 2q− 1. Suppose there are l subsets
with p− 1 in V (G)\S. If V (G)\S is non-pendent in S and
let wi be the non-pendent vertices of the graph G then
v ∈ S alone does not produce a tree. Therefore the steiner
tree must have all p vertices of T . Therefore
dT (S) = p− 1 and ∑v∈S degT (v) = 2q− degT (wi), where
wi ∈V (G)\S. There are p− l such subsets. Hence

SRDDt(T )

= ∑
S⊆V (T )

vi∈V (G)\S

∑v∈S degSp(v)

dSp(S)
+ ∑

S⊆V (Sp)
vi /∈S,|S|=t

∑v∈S degSp(v)

dSp(S)

=
l(2q− 1)

(p− 2)
+

p− l

p− 1
[2q]−

1

p− 1
degT (wi)

=
l(2p− 3)

(p− 2)
+

p− l

p− 1
[2(p− 1)]−

1

p− 1
∑

degT≥2

degT (wi)

=
l(2p− 3)

(p− 2)
+

p− l

p− 1
[2(p− 1)]−

1

p− 1
[2p− 1− l]

=
2p3 − 8p2 + 2pl+ 10p− 3l− 4

(n− 2)(n− 1)

3 Some Bounds for Steiner Reciprocal

Degree Distance index

Let Γ be a connected Graph and denote ∆(Γ ) and δ (Γ ) to
be the maximum and minimum degree of vertices of Γ .
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Theorem 6.For a connected Graph Γ with p vertices.

Then

tδ (Γ )SHt(Γ )≤ SRDDt(Γ ))≤ t∆(Γ )SHt(Γ ) (10)

holds for all r, 2 ≤ t ≤ n with equality holding iff G is

regular graph.

Proof.From the definition of SRDDt(Γ ) we have

SRDDt(Γ ) = ∑
S⊆V (Γ )

(

∑u∈S deg(S)

d(S)

)

≤ ∑
S⊆V (Γ )

t∆(Γ )

dΓ (S)
= t∆(Γ )SHt(Γ )

and

SRDDt(Γ ) = ∑
S⊆V (Γ )

(

∑deg(S)

d(S)

)

≥ ∑
S⊆V (Γ )

rδ (Γ )

dΓ (S)
= tδ (Γ )SHΓ (G)

For r regular graph ∆(Γ ) = δ (Γ ) = r and SRDDt(Γ ) =
ktSWk(Γ ) = rtSHt(Γ )

Theorem 7.For a connected graph Γ of order p with size

q then

2q

p− 1

(

p− 1

t − 1

)

≤ SRDDt(G)≤
2q

r− 1

(

p− 1

t − 1

)

Proof.Let S ⊂ V (G) and |S| = t, then Steiner distance
ranges t − 1 ≤ dΓ (S)≤ p− 1 therefore

1

p− 1
∑

S⊆V (T)
|S|=t

∑
v∈S

degΓ (v)≤ SRDDt(Γ )

≤
1

t − 1
∑

S⊆V (T )
|S|=t

∑
v∈S

degΓ (v)

for any vertex v ∈V (Γ ) we have
(

p−1
t−1

)

subsets S of V (G)

with |S|= t which contains the vertex v. Hence

∑
S⊆V (Γ )
|S|=t

∑
v∈S

degΓ (v) =

(

p− 1

t − 1

)

∑
v∈S

degΓ (v) = 2q

(

p− 1

t − 1

)

4 Polynomial in Steiner distance

In [6], Haruo Hosoya introduced Hosoya polynomial to
generate distance distributions for graphs which are
defined as

H(G,z) = ∑
t≥1

d(Γ , t)zt

the first derivative of the Hosoya polynomial implies the
wiener index of the graph[10]. Later Schultz polynomial
was introduced by H.P. Schultz in 1989 for the molecular
graph and modified Schultz index was defined by S.
Klavzar and I. Gutman in 1997[5]. The Schultz
polynomial of the graph G is defined as

Sc(G,z) = ∑
S⊆V (Γ )

(degx + degy)x
dΓ (x,y) (11)

Also the modified Schultz polynomial of Γ is defined as

Sc∗(G,z) = ∑
{x,y}⊂V (Γ )

(degx × degy)z
dΓ (x,y) (12)

The distance generalization of the wiener polynomial
defined as the stiener wiener polynomial which is denoted
as

SWt(Γ ,z) = ∑
S⊂V (Γ )

zdΓ (S) (13)

where dΓ (S) is the steiner distance of the graph. Similarly
one can generalize the Schultz polynomial and molecular
graph and modified Schultz polynomial. The Steiner
degree distance polynomial is the generalization of the
Schultz polynomial which is defined by

SDDt(Γ ,z) = ∑
S⊆V (Γ )

(

∑
v∈S

degΓ (u)

)

zdΓ (S) (14)

the Steiner Gutman polynomial is the generalization of the
Schultz polynomial which is defined by

SGutt(Γ ,z) = ∑
S⊆V (Γ )

(

∏
v∈S

degΓ (u)

)

zdΓ (S) (15)

Further it is noted that

∂ (SDDt(Γ ,z))

∂ z
|z=1 = SDDt(Γ )

∂ (SGutt(Γ ,z))

∂ z
|z=1 = SGutt(Γ )

and
∂ (SRDDt(Γ ,z))

∂ z
|z=1 = SRDDt(Γ )

Example 1.Let Sn, Pn Kn be the star, path, complete graph
then their Steiner Gutman polynomial is given as follows

SDDt(Sp,z) = (p+ t− 2)

(

p− 1

t − 1

)

zt−1 +

(

p− 1

t

)

zt

SDDt(Kp,z) = t(p− 1)

(

p

t

)

zt−1
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Example 2.Let Sp, Pp, Kp be the star, path and complete
graph then their Steiner Gutman polynomial is given as
follows

SGutt(Sp,z) = (p− 1)

(

p− 1

t − 1

)

zt−1 +

(

p− 1

t

)

zt

SGutt(Kp,z) = (p− 1)t

(

p

t

)

zt−1

SGutr(Pp,z) = 2t

(

p

t + 1

)

zt−1 + 2t

(

n− 2

t − 2

)

xp−1

Example 3.Let Sp, Pp Kp be the star, path, complete graph
then their Steiner reciprocal degree distance polynomial is
given as follows

SRDDt(Sp,z) =
1

t2

(

p− 1

t

)

zt +
1

(t − 1)2

t − 1

t − 1
zt − 1

SRDDt(kp,z) =
t(p− 1)

(t − 1)2

(

p

t

)

SRDDt(Pp,z) = (2tqSHt(Pp,z))+
1

(p− 1)2

(

p− 2

t − 2

)

zp−1

+
1

(l − 1)2

(

l − 2

t − 2

)

zl−1

Observation 1Let G be the graph with p vertices then

SWt(Γ ,z, i)≤ SRDDt(Γ ,z, i)≤ SDDt(Γ ,z, i)≤Gutt(Γ ,z, i)
(16)

where (Γ ,z, i) is the coefficient of the ith power of the

equation.

5 Conclusion

The Steiner reciprocal degree distance index introduced
in this paper has application in the study of QSAR and
QSPR study since it is a combination of Steiner distance
and reciprocal degree distance. It is easy to find the
Steiner Gutman index of wheel graph, windmill graph,
caterpillar, and cartesian product of standard graphs.
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