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Abstract: The present paper illustrates how to analyze and design the accelerated life testing (ALTg) plans for the improvement of the

quality and reliability of the product. We focus on estimating the costs of maintenance service policy because it plays a very important

role in manufacturing organization and providing cost-effective equipment and maintenance.. When the lifetime of units follows power

function distribution, the partially step-stress accelerated life test is assumed. The maximum likelihood estimates (MLEs) are obtained

under the progressive Type-II censoring. Using the Fisher Information matrix, the asymptotic variance and covariance matrix are

obtained. The confidence intervals (CIs) of the estimators are also constructed. Furthermor, a simulation study is conducted to check

the results accuracy.
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1 Introduction

To develop new and high-quality products/items, the manufacturer, faces more pressure and challenge while upgrading
productivity, product field lifetime, and many other qualities of the current market situation in the present time. It is more
challenging to identify failure information under normal situation under continuous improvement in the quality and
reliability of items. Thus, the accelerated life test (ALT) is one of the best and most common ways that fulfill such
demands. Accelerated life testing (ALTg) is attained through exposing the test units to conditions that are more severe
than the normal ones, such as voltage, temperature, cycling rate, pressure, vibration, etc. Several methods can be adopted
to apply stress under accelerated condition. The methods are progressive stress, constant stress, step stress, cyclic stress,
random stress, or combinations of them. According to Nelson [1], stress can be applied in many ways. The Step-stress
partially accelerated life test (SS-PALT) is widely used to get information on the lifetime of the product/item with high
reliability, especially when the mathematical model related to testing conditions of mean lifetime of the product is
unknown and cannot be assumed. The step stress arrangement applies stress to test units in the form that stress will be
changed at a pre-specified time. Accordingly,, in SS-PALT, the test unit is first to run at normal use condition, and if it
does not fail for a specified number of failures or time. Next, the test unit is run at accelerated use condition until failure
occurs or the observation is censored. When the exact failure time of any item or product is unknown, observation is
censored.

In this paper, we consider only partially accelerated life testing (PALTg) with the use of two stress levels. Many pieces
of literature related to SS-PALT are available. For example, Ali Ismail [2] designed step-stress partially accelerated life
tests for Weibull distribution with Type-II censored data. He estimated maximum likelihood estimates of model parameters
under step-stress partially accelerated life tests using the Type-II censoring scheme. Rahman et al.[3] tackled step-stress
partially accelerated life tests using the Type-I censoring for the Mukherjee-Islam failure model. Kamal et al.[4] presented
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step-stress accelerated life tests for two-parameter Pareto distribution. Ismail and Aly [5] proposed optimum plans for
failure-step stress partially accelerated life tests under Type-II censoring for Weibull distribution. Amal and Abeer [6]
handed the optimal design of failure step-stress partially accelerated life tests for Inverse Weibull distribution with Type-
II censored data. They presented the optimum simple failure step stress partially accelerated life tests and statistical
inferences for the distribution parameters and acceleration factor in which items are run at both use and accelerated
conditions. Srivastava and Mittal [7] explored optimum step-stress partially accelerated life tests with censored data. They
provided the optimal design of step-stress partially accelerated life tests in which items run at both accelerated and use
conditions under censored data, and the lifetime of the items follows truncated logistic distribution. Abdallah et al. [8]
covered estimation in step-stress partially accelerated life tests with Type-I censored data for Burr Type XII distribution.
Amal [9] addressed the optimal design of failure step-stress accelerated life tests with Type-I censored data when the
lifetime of units follows exponential inverted Weibull distribution.

The lifetime data is censored when the exact failure time of any item or product is unknown. There are many types
of censoring, such as left, right, interval, Type-I, Type-II, hybrid, progressive, progressive Type-I, and progressive Type-
II censoring, etc. Here we consider only the progressive Type-II censoring scheme. The Type-I and Type-II censoring
schemes are the most common and popular schemes in reliability theory. The only difficulty in both Type-I and Type-II
censoring schemes is that we cannot withdraw live items during the test. But in the progressive Type-II scheme, it is
possible to withdraw live items during the experiment. It is a generalization of the classical Type-II censoring scheme.
For literature, see the book by Balakrishnan and Aggrawalla [10], and an article by Balakrishnan [11]. The progressive
Type-II censoring is described as follows

Let X1,X2...,Xn be the lifetimes of units, which are put on the life testing experiment and also suppose that Xi, i =
1,2, ...,n are independent and identically distributed with cumulative distribution function (cdf), F(x) and probability
distribution function (pdf), f (x) . Before the life testing experiment, an integer m(m < n) is resolved, and the progressive
Type-II censoring scheme (R1,R2, ...,Rn) and n = m+∑m

i=1 Ri is specified. Now, ith failure is observed, and after the
failure, Ri functioning items are randomly removed from the test during the lifetime testing experiment. Xi:m:n, i= 1,2, ...,n
and m are the totally observed lifetimes, which are observed samples for the progressively Type-II censoring scheme.
x1:m:n < x2:m:n < ... < xm:m:n are the observed values of the progressively Type-II right censored samples.

Now, we present brief literature on SSPALT and progressive Type-II censoring related to our study. Ahmed A.
Soliman [12] handled step-stress partially accelerated life tests for Inverse Weibull distribution with the progressive
Type-II censoring scheme. M. M. Mohie El-Din et al. [13] considered a simple step-stress accelerated life test under the
progressive Type-II censoring scheme for the extension of Exponential distribution. They analyzed a real data set to
illustrate the proposed procedures. Rahman et al. [14] designed step-stress partially accelerated life tests for the
Exponentiated Exponential distribution under the progressive Type-II censoring scheme. El-Din et al. [15] presented
estimation in step-stress accelerated life tests using the progressive first failure censoring for Weibull distribution. Shi et
al. [16] proposed a Bayesian inference for step-stress accelerated competing failure model. They estimated the maximum
likelihood estimates of model parameters under step-stress partially accelerated life tests for Weibull distribution using
the Type-II progressive censoring scheme. El-Din et al. [17] presented step-stress accelerated life testing using the
progressive first-failure censoring scheme for Lindely distribution. They obtained point estimation and interval
estimation for Lindely distribution parameter as well as the acceleration factor using progressive first failure samples
under step-stress accelerated life test. In this paper, we present SS-PALT for the Power Function distribution based on
Progressive Type-II censoring and estimating costs of maintenance service policy.

The rest of the paper is organized as follows: Section One involves an introduction of accelerated life testing,
step-stress partially accelerated life testing, and progressive Type-II censoring. Section Two comprises the Model
Description and Test Procedure. In this section, we describe the model and give the test procedure under step-stress
partially accelerated life testing. Section Three is devoted to the Estimation Procedure of Model Parameter, the
likelihood function, asymptotic Fisher Information matrix, and confidence intervals of the parameters. Section Four
presents the estimation costs maintenance service policy for the model. The simulation study for verifying the theoretical
results is considered in section Five. Section Six contains conclusion.

2 Model description and test procedure

2.1 Model description

In 1983, Mukherjee and Islam [18] presented an important and simple finite range lifetime failure distribution called the
Power function failure model. This distribution includes the exponential and rectangular distribution as particular cases.
The model is widely used as a simple lifetime distribution to assess system reliability. It exhibits a better fit for failure
information and provides more appropriate information on hazard rate and other reliability measures. Hence it grabbed

c© 2020 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 9, No. 2, 287-298 (2020) / www.naturalspublishing.com/Journals.asp 289

the attention of numerous the reliability practitioners in the world. This distribution is sometimes preferred to Weibull and
lognormal distribution because of its easiness. Lai and Mukherjee [19] discussed some aging properties of this distribution,
rectified the mistakes and revealed its further interesting properties. Lia et al. [20] stated it in the list of some important
bathtub-shaped failure rate distributions. The applied stress and strength follows the Power function distribution. Saxena
et al. [21] presented the reliability computation and Bayesian estimates of system reliability. Johnson et al. [22] reported
the statistical properties of the distribution. M. Ahsanullah et al. [23] proposed a characterization of Power function
distribution based on the lower record. Okorie et al. [24] proposed modified Power function distribution which is an
extension of one parameter power function distribution. To measure the lifetime of the electrical component, Meniconi
and Barry [25] compared the Power function distribution with Lognormal, Exponential, and Weibull distribution. Eun-
Hyuk Lim and Min-Young Lee [26] provided a characterization of the power function distribution by lower record values.
Tavanger [27] provided some characterization results on the power function distribution based on the properties of dual
generalized order statistics.

The pdf is given as

f (t, p,λ ) =
( p

λ p

)

t p−1 p,λ > 0, 0 < t < λ (1)

The cumulative distribution function (cdf) of the Power function distribution is given as

F(t, p,λ ) =
( t

λ

)p

p,λ > 0, 0 < t < λ (2)

The reliability function of the Power function distribution is given as

R(t) = 1−
( t

λ

)p

(3)

The hazard function of the Power function distribution is given as

H(t) =

(

p
λ p

)

t p−1

1−
(

t
λ

)p (4)

The shape parameter p plays an important role in reliability analysis. If the value of the shape parameter p = 1 , the
distribution becomes rectangular distribution. For the value p > 1, the distribution curve becomes steeper, and for p < 1 ,
the density function diminishes monotonically. At least over the first quarter of its lifetime, the distribution has a decreasing
failure rate. After that, the failure rate increases monotonically.

2.2 Test procedure

Under step stress partially accelerated life testing procedures, it is necessary to test the units under usual operating
conditions. To induce failure from the remaining survived units, the test is switched to a higher stress level at a time yn1

.
This switch aims to divide the remaining lifetime of the unit(s) by the acceleration factor β (> 1). Hence it will shorten
the life of the test item. Accordingly, the lifetime of the test unit in SS-PALT given by DeGroot and Goel [28] is
indicated as follows

Y =

{

T T ≤ yn1

yn1
+β−1(T − yn1

) T > yn1

(5)

T is the life of the unit at usual operating conditions and yn1
is the time when stress is switched to a higher level. β is the

tempering coefficient, which is the ratio of mean life of an experimental unit tested at the usual condition to accelerated
condition, normally β > 1.

Under Progressive Type-II censoring, we got failures as the starting of the test. We remove the Ri units from the
remaining units at the time ith failure’s time. Finally, all the remaining Rm = n−m−∑m−1

i=1 Ri are removed from the test
at the mth failure’s, and the test is terminated.

Let’s assume that the failure-times of the experimental units follow Power function failure distribution with scale
parameter λ and a shape parameter p . Then, the pdf and cdf of the total lifetime Y of experimental units using
transformations in equation (5), are given in the following equations.

The pdf takes the following forms

f (y) =

{

f1(y) 0 < T ≤ yn1

f2(y) T > yn1

(6)
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Where the values of f1(y) and f2(y) take the following forms

f (y) =

{

f1(y) =
p

λ p yp−1 0 < y ≤ yn1

f2(y) =
p

λ p (yn1
+β−1(y− yn1

))p−1 y > yn1

(7)

The cdf takes the following form

F(y) =

{

F1(y) 0 < y ≤ yn1

F2 y > yn1

(8)

Where the values of F1(y) and F2(y) take the following forms

F(y) =







F1(y) =
(

y
λ

)p
0 < y ≤ yn1

F2(y) =

(

yn1
+β−1(y−yn1

)

λ

)p

y > yn1

Thus, the reliability function under SS-PALT takes the following form

S(y) =







S1(y) = 1−
(

y
λ

)p
0 < y ≤ yn1

S2(y) = 1−

(

yn1
+β−1(y−yn1

)

λ

)p

y > yn1

(9)

3 Estimation procedure of the model Parameters

In this section, we use the maximum likelihood method to estimate the model parameters based on progressively Type-II
censoring under SS-PALT because it is simple and gives the estimate of parameters with accurate statistical properties.

Let n independent units are put on test with the corresponding lifetimes Y1,Y2, ...,Yn. These units are independently
and identically distributed as Power function distribution with pdf , which is given in equation (1). The m completely
ordered lifetimes are denoted by

y1:m:n < y2:m:n < ... < yJ:m:n < yn1
< yJ+1:m:n < ... < ym:m:n

Here, the number of failed units at use condition is denoted by J.

Hence, the likelihood function for progressively Type-II censored data under SS-PALT is given as

L(p,λ ,β ) =
J

∏
i=1

f1(yi)[1−F1(yi)]
Ri ×

m

∏
i=J+1

f2(yi)[1−F2(yi)]
Ri

=
J

∏
i=1

p

λ p
y

p−1
i

[

1−
(yi

λ

)p]Ri

×

m

∏
i=J+1

p

λ p

[

yn1
+β−1(yi − yn1

)
]p−1

[

1−

(

yn1
+β−1(yi − yn1

)

λ

)p]Ri

(10)

Where, y1:m:n < y2:m:n < ... < yn1
< yJ+1:m:n < ... < ym:m:n

The log-likelihood function is given as

lnL =mln
( p

λ p

)

+(p− 1)
J

∑
i=1

lnyi +
J

∑
i=1

Riln
(

1−
yi

λ

)p

+(p− 1)
m

∑
i=J+1

ln(yn1
+β−1(yi − yn1

))

+
m

∑
i=J+1

Riln

[

1−

(

yn1
+β−1(yi − yn1

λ

)p]

The Maximum likelihood (ML) estimates of p,λ and β are estimated from the following equations.

∂ lnL

∂ p
= m[p−1

− lnλ ]+
J

∑
i=1

lnyi +
J

∑
i=1

Rp

(

1−
yi

λ

)−1

+
m

∑
i=J+1

(yn1
+β−1(yi − yn1

))+
m

∑
i=J+1

Ri p

(

yn1
+β−1(yi−yn1

)

λ

)p−1

1−
(

yn1
+β−1(yi−yn1

)

λ

)p = 0
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∂ lnL

∂λ
=−m

( p

λ

)

+
J

∑
i=1

pβ−2 +
m

∑
i=J+1

pRiλ
−1

(

yn1
+β−1(yi−yn1

)

λ

)p

1−
(

yn1
+β−1(yi−yn1

)

λ

)p = 0

∂ lnL

∂β
= (p− 1)

m

∑
i=J+1

β−2 (yi − yn1
)

yn1
+β−1(yi − yn1

)
+

m

∑
i=J+1

Ri pβ−2

(

yi−yn1
λ

)

(

yn1
+β−1(yi−yn1

)

λ

)p−1

1−
(

yn1
+β−1(yi−yn1

)

λ

)p = 0

It is impossible to get ML estimates from the above-mentioned three equations, so the Newton-Raphson technique is
applied to obtained these estimetes.

The Fisher Information matrix is given as

I =









−
∂ 2lnL
∂ p2 −

∂ 2lnL
∂ p∂λ −

∂ 2lnL
∂ p∂β

− ∂ 2lnL
∂λ ∂ p

− ∂ 2lnL
∂λ 2 − ∂ 2lnL

∂λ ∂β

− ∂ 2lnL
∂β ∂ p

− ∂ 2lnL
∂β ∂λ − ∂ 2lnL

∂β 2









(11)

The elements of the Fisher Information matrix are obtained by second partial derivatives of log-likelihood function with
respect to parameters p, λ and β . Consequently, the elements are expressed by the following equations.

−
∂ 2lnL

∂ p2
= mp−2 +

J

∑
i=1

Ri

(

1−
yi

λ

)−1

+
m

∑
i=J+1

Ri

[

p−1 + ln

(

yn1
+(yi − yn1

)

λ

)

+
p
(

yn1
+(yi−yn1

)

λ

)p−1

1−
(

yn1
+(yi−yn1

)

λ

)p







−
∂ 2lnL

∂ p∂λ
= mλ−1 +

J

∑
i=1

Ri p
(

1−
yi

λ

)−2

yiλ
−2

−

m

∑
i=J+1

Ri p(yn1
+(yi − yn1

))p−1





(p+ 1)

λ
+

pλ−(p+1)(yn1
+(yi − yn1

))p

1−
(

yn1
+(yi−yn1

)

λ

)p





−
∂ 2lnL

∂ p∂β
=

m

∑
i=J+1

Ri p

λ p−1











(p− 1)(yn1
+β−1(yi − yn1

))p−1

yn1
+β−1(yi − yn1

)
−

pβ−2λ−1(yi − yn1
)

(

yn1
+β−1(yi−yn1

)

λ

)p−1

1−
(

yn1
+β−1(yi−yn1

)

λ

)p











+
m

∑
i=J+1

β−2(yi − yn1
)

yn1
+(yi − yn1

)

−
∂ 2lnL

∂λ ∂ p
=

m

λ
−

J

∑
i=1

yiRiλ
−2
(

1−
yi

λ

)−1

+
m

∑
i=J+1

pλ−1Ri

(

yn1
+β−1(yi−yn1

)

λ

)p

1−
(

yn1
+β−1(yi−yn1

)

λ

)p

[

p−1 + ln

(

yn1
+β−1(yi − yn1

)

λ

)

+p

(

yn1
+β−1(yi−yn1

)

λ

)p−1

(

yn1
+β−1(yi−yn1

)

λ

)p











−
∂ 2lnL

∂λ 2
=−

mp

λ 2
−

m

∑
i=J+1

λ−2Ri

[

(

1−
yi

λ

)−2

yiλ
−1
(

1−
yi

λ

)−1
]

+
m

∑
i=J+1

Ri(yn1
+β−1(yi − yn1

))

×

[

(yn1
+β−1(yi − yn1

))−1

λ 2
+λ−3

(

1−

(

yn1
+β−1(yi − yn1

)

λ

)−1
)]
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−
∂ 2lnL

∂λ ∂β
=

m

∑
i=J+1

pλ−1Ri

(

yn1
+β−1(yi−yn1

)

λ

)p

1−
(

yn1
+β−1(yi−yn1

)

λ

)p











pβ−2
(

yi−yn1
λ

)

yn1
+β−1(yi−yn1

)

λ

+

pβ−2

(

yn1
+β−1(yi−yn1

)

λ

)p−2

1−
(

yn1
+β−1(yi−yn1

)

λ

)p











−
∂ 2lnL

∂β ∂ p
=−

m

∑
i=J+1

β−2(yi − yn1
)

yn1
+β−1(yi − yn1

−

m

∑
i=J+1

Riβ
−2λ−1(yi − yn1

)

(

yn1
+β−1(yi−yn1

)

λ

)p−1

1−
(

yn1
+β−1(yi−yn1

)

λ

)p

×











ln

(

yn1
+β−1(yi − yn1

)

λ

)

+

p

(

yn1
+β−1(yi−yn1

)

λ

)p−1

p
(

yn1
+β−1(yi−yn1

)

λ

)p











−
∂ 2lnL

∂β ∂λ
=−

m

∑
i=J+1

pRiβ
−2(yi − yn1

)

(

1−
yn1

+β−1(yi − yn1
)

λ

)−2(
yn1

+β−1(yi − yn1
)

λ

)

−
∂ 2lnL

∂β 2
=−

m

∑
i=J+1

(p− 1)β−2(yi − yn1
)(yn1

+β−1(yi − yn1
))−1

[

−2

β
−

β−2(yi − yn1
)

yn1
+β−1(yi − yn1

)

]

−

m

∑
i=J+1

(yi − yn1
)Riβ

−2

(

1−
yn1

+β−1(yi − yn1
)

λ

)−1




−2

β
−

β−2λ−1(yi − yn1
)

1−
yn1

+β−1(yi−yn1
)

λ





Now, the variance-covariance matrix is the inverse of the Fisher Information matrix and given as

Σ = I−1

Σ =









− ∂ 2lnL
∂ p2 − ∂ 2lnL

∂ p∂λ − ∂ 2lnL
∂ p∂β

− ∂ 2lnL
∂λ ∂ p

− ∂ 2lnL
∂λ 2 − ∂ 2lnL

∂λ ∂β

−
∂ 2lnL
∂β ∂ p

−
∂ 2lnL
∂β ∂λ −

∂ 2lnL
∂β 2









−1

=





AVar(p̂) ACov(p̂λ̂ ) ACov(p̂β̂ )

ACov(λ̂ p̂) AVar(λ̂) ACov(λ̂ β̂ )

ACov(β̂ p̂) ACov(β̂ λ̂ ) AVar(β̂)





AVar is asymptotic variance and ACov is asymptotic covariance.

In large samples, the maximum likelihood estimates p̂, λ̂ and β̂ are asymptotically normally distributed and consistent.
So, the two-sided approximate 100(1− γ)% confidence limits are obtained respectively in the following way:

L p̂ = p̂− zγ/2σ(p̂) and Up̂ = p̂− zγ/2σ(p̂)

L
λ̂
= λ̂ − zγ/2σ(λ̂ ) and U

λ̂
= λ̂ − zγ/2σ(λ̂ )

L
β̂
= β̂ − zγ/2σ(β̂ ) and U

β̂
= β̂ − zγ/2σ(β̂ )

Where Zγ/2 is the [100(1− γ)/2]th standard normal percentile and σ(∗) is the standard deviation for the maximum

likelihood estimates p̂, λ̂ and β̂ . This standard deviation is calculated by taking the square root of the first diagonal element
of the inverse of the Fisher Information matrix I.

4 Estimating costs of maintenance service policy

Several authors explored the problem of maintenance service policy. For instance, Yiwei et al. [29] studied a cost-driven
predictive maintenance policy for structural airframe maintenance. Maintenance is formally derived based on the trade-
off between probabilities of occurrence of unscheduled and scheduled maintenance. Yiwei et al. [30] proposed predictive
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airframe maintenance strategies using model-based prognostics. In this work, they proposed two predictive maintenance
strategies based on the developed prognostic model and applied to fatigue damage propagation in fuselage panels. A
preventive maintenance policy is also proposed by Lie et al. [31] for the single-unit system failures which have sudden
socks and internal deterioration. The study aimed to minimize the minimization of the expected cost per unit time defining
the help of determining the optimal preventive replacement interval, inspection interval, and the number of inspections.
For designing and optimizing maintenance service policy, a study is presented by Sukhwa et al. [32]. Fabrian and Luis [33]
presented a method to definite maintenance intervals to those of similar systems under development, and this method has
been applied in an aircraft manufacturing company using the current operation database. Michail et al. [34] addressed the
development of an aircraft maintenance planning optimization tool and its application to an aircraft component. Shey-Huei
et al. [35] investigated the optimal preventive maintenance policy for multi-state systems.

The maintenance service policy ends when the arrangement period reaches time (usage level (L)). The system’s
renewal is not involved. The preventive and corrective maintenances are under this policy. At a constant interval of time
(τ), the system should go for periodically preventive maintenance under this policy. At each failure between within
successive preventive maintenances, the system should go for minimally repaired. A complicated repairable system with
a long life is perfect for this type of service arrangement.

The main assumptions of the Maintenance Service Policy are
(i) The successive failures are mutually independent random actions.
(ii) The successive failures are known on the parameters of distributions.
(iii) Whether the repairs were completed in maintenance, only minimal repairs are conducted.
(iv) The Servicing activity restores life to a bit.
(v) The repairs times are minor to compared to the item’s life.
(vi) After each preventive maintenance, the age renovation is stable.
(vii) The unit amount of minimal repairs between the unit amount of preventive maintenances and preventive

maintenances have a constant average.
The expected cost of maintenance service policy is the sum of the total sum of expected costs, all minimal repairs,

and the expected costs of all planned preventive maintenance over the policy’s period. We can get the expected cost of
maintenance service per unit time by dividing the expected total cost by the duration of service policy.

According to Rahman [36], the expected cost of maintenance service policy can be defined in the following steps:
(i) Taking the equal length of the preventive maintenance period (τ), the expected cost of minimal repairs between

preventive maintenances is given as

E(Cmr) =Cmr

[

N−1

∑
k=0

∫ (k+1)τ

kτ
h(t − kτ)dt

]

(12)

(ii) The expected cost of preventive maintenance is given as

E(Cpm) = NCpm (13)

Here, the system is periodically maintained at Nth preventive maintenance The total expected cost per unit time C(τ,N)
is given as

E(C(τ,N)) =
E(Cmr)+E(Cpm)

L
(14)

Where L = N × τ
If the lifetime follows the Power Function distribution, the expected cost of maintenance service policy is

E(Cmr) =
Cmr

p

[

N−1

∑
k=1

log
(λ p − kpτ p)

(λ p − (k+ 1)pτ p)

]

(15)

Finally, the total rate per unit time is given as

E(C(τ,N)) =

Cmr
p

[

∑N−1
k=1 log

(λ p−kpτ p)
(λ p−(k+1)pτ p)

]

+NCpm

L
(16)

5 Simulation study and results

In this section, the simulation technique is implemented to check the performance of MLEs. It is hard to check the
performance of the different censoring schemes or methods, it is a very tough task to check this theoretically. Here,
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a simulation technique is performed to compare different sampling schemes for different parameter values using the
Monte-Carlo simulations method. The steps of the simulation technique are given follows (i) Here, we considered the
following three progressive censoring schemes:

Scheme 1: R1 = . . .Rm−1 = 0 and Rm = n−m, Scheme 2: R1 = n−m and R2 = . . .Rm = 0, Scheme 3: R1 = . . .Rm−1 =
1 and Rm = n− 2m+ 1. Where n is the sample size. The MLEs, biases, and confidence intervals are estimated for above-
censoring schemes 1, 2, and 3 for 1000 replications.
(ii) Choose the values of n and m.
(iii) Also, choose the values for shape and scale parameters (p,λ ) and the acceleration factor β . The chosen values of
parameters are

(p = 2.5,λ = 1.8,β = 1.6)

(p = 2,λ = 1.8,β = 1.8)

(p = 2,λ = 1.5,β = 2)

(iv) All non-linear equations are solved by the Newton-Raphson method.

(v) Generate a random sample of size n (n = 25,50,75) form Power function distribution with the specified values of
p and λ .

(vi) The generation of the random sample is so easy. If U(0,1) is Uniform distribution, by inverse transformation

y = λU1/p is Power function distribution from equation (2).

(vii) To compute the MLEs of unknown parameters, the progressive Type-II censoring scheme is used.

(viii) The average values of biases, MSEs of the parameter, and acceleration factor for all sample sizes are computed.

(ix) For different values of parameters n,m, p,λ and β , steps (v-viii) are replicated 1000 times.

(x) Using equations (12− 16), the expected cost of maintenance service policy is obtained for expected cost rate,
minimal repairs, preventive maintenance, and total costs. The length of maintenance service policy (L) is three years, and
the preventive maintenance every four months τ = 30 at an average cost (Cpm = 1000).

(xi) If there are failures between two successive preventive maintenance, the minimal repairs will be done at average
cost (Cpm = 700). Finally, the expected cost of preventive maintenance is 12000, E(Cpm = 12000).

Table 1: The mean values of MLEs with bias and MSE of parameters (p = 2.5,λ = 1.8,β = 1.6) for different size of samples for the

progressive Type-II censoring scheme

(n,m) Schemes Estimates of p Estimates of λ Estimates of β
MLE Bias MSE MLE Bias MSE MLE Bias MSE

1 0.4521 0.7232 0.6828 0.6001 0.8123 0.5987 0.9087 0.9867 0.7865

(25,10) 2 0.4763 0.7123 0.6809 0.6134 0.8001 0.6012 0.8977 0.9787 0.7765

3 0.5112 0.7012 0.6799 0.6199 0.7981 0.5976 0.8723 0.9098 0.8776

1 0.4876 0.7001 0.6701 0.6245 0.7865 0.5876 0.9123 0.8876 0.6987

(25,15) 2 0.4987 0.6912 0.6654 0.6366 0.7453 0.5342 0.9354 0.8009 0.5987

3 0.5009 0.6876 0.6543 0.6543 0.8154 0.5009 0.9399 0.7432 0.5543

1 0.5134 0.7123 0.6433 0.6765 0.7432 0.4987 0.9412 0.8764 0.5321

(50,25) 2 0.5087 0.6775 0.6512 0.6876 0.7223 0.5656 0.9435 0.8876 0.5476

3 0.4887 0.6643 0.6387 0.6543 0.7008 0.5321 0.9967 0.7123 0.5112

1 0.5376 0.6423 0.5987 0.6987 0.6876 0.5112 0.8765 0.7009 0.5443

(50,30) 2 0.5634 0.6565 0.5867 0.7154 0.6675 0.4876 0.8812 0.6898 0.4998

3 0.6199 0.6123 0.5765 0.7009 0.7332 0.4454 0.9154 0.7654 0.4876

1 0.6009 0.6008 0.5662 0.7543 0.6432 0.4008 0.9645 0.6876 0.5665

(75,35) 2 0.5876 0.6487 0.5223 0.7442 0.5765 0.3987 0.9465 0.5665 0.4554

3 0.5798 0.5987 0.5009 0.7867 0.6543 0.3232 0.9986 0.6753 0.4112

1 0.6169 0.5632 0.4765 0.8007 0.6765 0.4232 0.9676 0.4987 0.3340

(75,40) 2 0.6265 0.5432 0.4654 0.8154 0.5443 0.2987 0.9897 0.4232 0.2987

3 0.5643 0.5321 0.4532 0.7979 0.5008 0.3212 0.9988 0.5432 0.2234
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Table 2: The mean values of MLEs with bias and MSE of parameters (p = 2,λ = 1.8,β = 1.8) for different size of samples for the

progressive Type-II censoring scheme

(n,m) Schemes Estimates of p Estimates of λ Estimates of β

MLE Bias MSE MLE Bias MSE MLE Bias MSE

1 0.9234 0.7991 0.8265 0.9978 0.6882 0.8003 1.2154 0.8432 0.9006

(25,10) 2 0.8786 0.7723 0.8165 1.1265 0.6667 0.7979 1.2987 0.8254 0.8948

3 1.0092 0.7612 0.7987 1.0098 0.6554 0.7881 1.3154 0.8165 0.8876

1 0.8876 0.7443 0.7997 1.2354 0.5987 0.7453 1.4098 0.7987 0.8543

(25,15) 2 0.7998 0.7865 0.8009 0.9001 0.5887 0.6986 1.4132 0.8009 0.8760

3 0.8976 0.7009 0.7776 1.3241 0.5687 0.6886 1.3987 0.7665 0.8575

1 0.7543 0.6987 0.7443 1.2451 0.6198 0.7001 1.2987 0.7335 0.8432

(50,25) 2 0.7987 0.6765 0.7254 1.1109 0.6254 0.6765 1.2765 0.7005 0.8283

3 0.9154 0.7009 0.7654 0.9954 0.5543 0.6432 1.4321 0.6876 0.7709

1 0.6998 0.6543 0.7008 0.9065 0.5243 0.6116 1.4465 0.6776 0.7465

(50,30) 2 0.8215 0.6341 0.6987 1.1098 0.5098 0.5876 1.0092 0.7114 0.7320

3 1.0954 0.6009 0.6798 1.0098 0.4987 0.5776 1.3587 0.6543 0.7089

1 0.9154 0.6152 0.6543 1.1654 0.5165 0.5443 1.2967 0.6117 0.6765

(75,35) 2 0.7243 0.5986 0.7132 1.2365 0.4876 0.5776 1.4325 0.5876 0.6543

3 0.7878 0.5443 0.6443 1.2978 0.4687 0.5321 1.3934 0.6103 0.6987

1 0.9843 0.4987 0.6143 1.1180 0.4224 0.6009 1.2923 0.5438 0.5876

(75,40) 2 0.8975 0.3987 0.57654 1.2009 0.4110 0.5087 1.1198 0.5003 0.5915

3 1.1287 0.3465 0.5540 1.2298 0.3838 0.4987 1.4009 0.5174 0.4776

Table 3: At a confidence level 95%, the confidence intervals of the estimators (p = 2,λ = 1.8,β = 1.6)

(n,m) Schemes Estimates of p Estimates of λ Estimates of β

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound

1 0.4238 1.4532 0.5622 1.5687 0.7765 1.7762

(25,10) 2 0.4453 1.3459 0.5665 1.4887 0.7865 1.6998

3 0.4628 1.2598 0.5880 1.5765 0.7965 1.7999

1 0.4692 1.3643 0.6009 1.4775 0.8009 1.7124

(25,15) 2 0.4798 1.1542 0.6143 1.5987 0.8154 1.6765

3 0.4766 1.0861 0.6223 1.6009 0.8143 1.8987

1 0.4987 1.1981 0.6343 1.4887 0.9154 1.6154

(50,25) 2 0.5098 1.0665 0.6432 1.5243 0.9221 1.8654

3 0.5001 1.1199 0.6545 1.3324 0.9354 1.5987

1 0.5122 1.0094 0.6678 1.3431 0.8976 1.2091

(50,30) 2 0.5365 1.2154 0.6754 1.2776 0.9354 1.3165

3 0.5412 1.1321 0.6832 1.1998 0.9465 1.4453

1 0.5632 1.0032 0.6987 1.2987 0.9587 1.4321

(75,35) 2 0.5765 1.1165 0.7008 1.4231 0.8976 1.6542

3 0.5668 1.0321 0.6987 1.0098 0.9765 1.5321

1 0.6876 1.3123 0.7132 1.4298 0.9987 1.7765

(75,40) 2 0.7987 1.3330 0.7243 1.3154 0.8899 1.4876

3 0.8001 1.3432 0.7454 1.4350 0.9991 1.3987

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


296 I. Alam et al.: Step stress partially accelerated life tests...

Table 4: At a confidence level 95%, the confidence intervals of the estimators (p = 2,λ = 1.8,β = 1.8)

(n,m) Schemes Estimates of p Estimates of λ Estimates of β
Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound

1 0.4432 1.5122 0.6114 1.7117 0.7001 1.9232

(25,10) 2 0.4465 1.4331 0.6176 1.7009 0.7132 1.8404

3 0.4532 1.4509 0.6254 1.7132 0.7432 1.7875

1 0.4588 1.3032 1.6432 1.6453 0.7654 1.7123

(25,15) 2 0.4593 1.2275 0.6588 1.8554 0.6987 1.6765

3 0.4602 1.2994 0.6653 1.7997 0.7865 1.4098

1 0.4798 1.1091 0.7002 1.6187 0.7354 1.5154

(50,25) 2 0.4654 1.2443 0.7112 1.5765 0.8164 1.7098

3 0.4832 1.2996 0.8002 1.5932 0.8254 1.5254

1 0.4876 1.1112 0.8116 1.6998 0.9086 1.5543

(50,30) 2 0.4988 1.1001 0.8276 1.4113 0.9543 1.7454

3 0.5643 1.3223 0.9008 1.4908 0.8864 1.7143

1 0.5776 1.2886 0.8576 1.3256 1.0045 1.5845

(75,35) 2 0.5887 1.2543 0.9409 1.3009 0.9870 1.4065

3 0.5987 1.1776 0.9987 1.3976 1.1324 1.4765

1 0.6008 1.1776 0.9986 1.3976 1.1324 1.5650

(75,40) 2 0.6112 1.0032 1.0101 1.4234 1.1123 1.4002

3 0.6012 1.0887 1.1132 1.5176 0.9987 1.3540

Table 5: Estimation of expected cost rate, total cost,minimal repair time and its confidence level under the maintenence service policy

(n) Minimal repair cost Total rate Cost rate

E(Cmr) Lower Bound Upper Bound E(Ctotal) Lower Bound Upper Bound E(C(τ,N)) Lower Bound Upper Bound

Case-I (p=2.5,λ=1.8,β=1.6)

25 68429.4 22591.3 30432.4 72341.6 32458.0 42678.4 30981.3 6784.5 9981.5

50 64567.8 B26761.4 43154.4 71234.7 28761.4 37897.5 28761.7 7712.7 8786.5

75 62341.4 32761.7 48713.6 68145.8 26543.3 34578.5 27145.6 8903.5 9587.8

Case-II (p=2,λ=1.8,β=1.8)

25 52341.7 15321.7 43781.6 41234.7 28870 32643.6 22654.2 4567.6 6671.6

50 48981.3 18342.6 26578.5 40987.8 28543.4 29986.6 21361.4 4789.9 6098.6

75 47892.1 22651.9 27453.3 39331.4 26543.6 28654.4 20153.5 5312.6 5754.5

Case-III (p=2,λ=1.5,β=2)

25 40981.6 100000.4 15763.4 28453.6 29863.3 33870.6 15631.6 3876.7 4589.5

50 39124.3 12432.9 17880 26543.6 27893.1 31267.6 14321.6 3587.8 3912.6

75 37987.5 13981.5 21775.3 24786.2 24563.2 28967.5 14764.2 2908.6 3562.6

6 Conclusion

(i) This paper has presented the step-stress partially accelerated life tests (SS-PALT) for the Power function distribution
using the progressive Type-II censoring scheme.

(ii) For the two-parameter of Power function distribution and acceleration factor, the maximum likelihood estimators
are obtained using the Newton-Rapshon method.

(iii) Tables (1), (2), (3), and (4) indicate that as the sample size increases, the values of MSEs and bias reduce, and
confidence intervals become narrower. Thus, the MLEs have favorable statistical properties. We can also observe that the
numerical results and theoretical findings support each other, and our assumptions are also fulfilled. Accordingly, It is
asserted that test design is stable and robust. Finally, we can say that the designing of the test is stable and robust.

(iv) Table (5) exhibits that values of the parameters and the cost of maintenance service policy have a direct
relationship, while the cost of maintenance service policy and the sample size have an inverse relationship.
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