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Abstract: In the present paper, a novel and fundamental approach is presented as an extension of existence and uniqueness theorems

of ordinary fractional difference (FDE) which was applied to the reducing Cauchy type problems (CTP). Results present a new

interpretation that helps analyze the fractional calculus which implies an elegant superiority of the suggested derivative.
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1 Introduction

Fractional calculus (FC) is an interesting and important part of science addressing applying integrals and derivatives
of real and complex orders. Three centuries ago, FC was considered in many important researches [1,2]. Nowadays, with
the rapid development of computational softwares, FC has extended and scientists have found that related FC topics can
analyze the various real-world phenomena such as signal processing, hydrology, rheology, acoustics, control, continuum,
damping law, robotics, turbulence, viscoelasticity, thermal engineering, etc [3, 4]. For instance, the oscillation of an
earthquake or the frequency dependence of the damping materials can be described with fractional derivatives very
well [5, 6]. For an interesting background and applications of FC, see [7–16].

Several interpretations for fractional derivatives are expressed. Some of these exegesises include Grunwald-Letnikov,
Riemann-Liouville, Katugampola, Weyl, Hilfer, Marchaud, Caputo, Nishimoto, Riesz, Coimbra and Jumarie’s fractional
operators [17]. Most of the attempts in FC contributed on the existence and uniqueness of solutions for FDE. Recently,
using the property of Mittaga Leffler function, Atangana and Baleanu proposed a new fractional derivative [18]. Their
definitions have all the properties of the Fabrizio and Caputo, Riemanna Liouville and Caputo with a nonlocal and non-
singular kernel respectively.

In this study, using properties of the suggested fractional derivative by Atangana and Baleanu, the existence and
uniqueness of the solution for ordinary FDE based on the CTP are discussed. The present paper is organized, as follows:
Section 2 introduces the essential results, basic definitions and properties of FC. Section 3 is dedicated to equivalence
of the Volterra integral equation and the CTP. Section 4 discusses the existence and uniqueness analysis of the CTP.
Conclusion is presented in Section 5.

2 Basic notations and preliminaries

Definition 1 The Sobolev space H of order one in (t0, tq) is introduced as follows [18]:

H1(t0, tq) = {h,h′ ∈ L2(t0, tq)}. (1)
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Definition 2 Let Ω = [t0, tq](−∞ < t0 < tq < ∞) be a finite interval on R. The Riemann-Liouville integrals of fractional

order α ∈ C,ℜ(α)> 0 (named as I α
t0+

f and I α
tq− f ) are determined by [1]

(I α
t0+

h)(t) =
1

Γ (α)

∫ t

t0

h(x)dx

(t − x)1−α
, Re(α)> 0, t > t0, (2)

and

(I α
tq−h)(t) =

1

Γ (α)

∫ tq

t

h(x)dx

(x− t)1−α
, Re(α)> 0, t < tq. (3)

Definition 3 Let Ω = [t0, tq](−∞ < t0 < tq < ∞) be a finite space on R. Let a function v ∈ H1(t0, tq). For arbitrary

function v with a based point t0, the Atangana-Baleanu fractional derivative in the Caputo sense of order α is defined in

the following form [18]

ABC
t0

Dα
t v(t) =

N(α)

1−α

∫ t

t0

v′(s)Eα [
α

α − 1
(t − s)α ]ds. (4)

Here N(α) is a normalization function such that N(0) = N(1) = 1. Also, Eα is the Mittag-Leffler series presented in the
following form

Eα ,β (z) =
∞

∑
r=0

zr

Γ (αr+β )
, α,β > 0. (5)

For more details regarding the properties of mentioned derivative the reader is advised to see the studies presented in
[19–23].

Assume that the nonlinear FDE of order α (ℜ(α)> 0) on [t0, tq]⊆ R has the following form

ABC
t0

Dα
t v(t) = h(v(t)),ℜ(α) > 0, t > t0, (6)

with initial conditions
ABC
t0

D
(α−r)
t v(t) = er, er ∈C, r = 1,2, · · · ,q, (7)

where
{

q = ℜ(α)+ 1 α /∈ N,
α = q α ∈ N.

Thus, the problem (6)-(7) is called a CTP.

Corollary 1 Let [t0, tq](−∞ < t0 < tq < ∞) be a finite interval and A C [t0, tq] be the space of arbitrary functions f which

are absolutely continuous on [t0, tq]. Consequently

h(t) ∈ A C [t0, tq]⇔ h(t) = c+

∫ t

t0

η(x)dx, η(t) ∈ L(t0, tq),

∀q ∈N, A C
q[t0, tq] =

{

h : [t0, tq]→ C, [(Dq−1h)(t)] ∈ A C [t0, tq]
}

.

Definition 4

d(v1,v2) = ‖v1 − v2‖1 =
∫ t1

t0

|v1(t)− v2(t)|dt. (8)

3 Equivalence of the integral equation of Volterra type and the CTP

In what follows, we prove that the following nonlinear Volterra integral equation and the CTP (6)-(7) are equivalent:

ABC
t0

Dα
t v(t) =

q

∑
j=1

l j

Γ (α − j+ 1)
(t − t0)

α− j +
1

Γ (α)

∫ t

t0

f (v(u))du

(t − u)1−α
, t > t0. (9)

The problem is proven by assuming that a function h[t,v] ∈ L(t0, tq) for any v ∈ G ⊂ C. Now, we consider the following
lemmas and corollaries.
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Lemma 1 ( [1]) The support space A C
q[t0, tq] consists of only those functions h(x) which can be written in the following

form:

h(t) = (I q
t0+

)η(t)+
q−1

∑
k=0

ck(t − t0)
k, (10)

where η(t) ∈ L(t0, tq) and ck are constants, and

(I q
t0+

η)(t) =
1

(q− 1)!

∫ t

t0

(t − x)q−1η(x)dx. (11)

Lemma 2 If R(α)> 0 and h(x) ∈ Lp(t0, tq) (1 ≦ p ≦ ∞), then

∀t ∈ [t0, tq] : (ABC
t0

Dα
t I

α
t0+

h)(t) = (ABC
tq

Dα
t I

α
tq−h)(t) = h(t),(R(α)> 0). (12)

Proof. The proof is similar to that of Lemma 1 in [24].

Lemma 3 Suppose that R> 0, q = [R]+ 1 and hq−α(x) = (I q−α
t0+

h)(x) are the fractional integral (2) of order −α + q

a) If 1 ≦ p ≦ ∞ and h(t) ∈ I α
t0+

(Lp), then

(I α
t0+

ABC
t0

Dα
t h)(t) = h(t). (13)

b) If h(x) ∈ L1(t0, tq) and hq−α(x) ∈ A C
q[t0, tq], then

∀t ∈ [t0, tq] : (I α
t0+

ABC
t0

Dα
t h)(t) = h(t)−

q

∑
j=1

h
(q− j)
q−α (t0)

Γ (α − j+ 1)
(t − t0)

α . (14)

Proof. The proof is similar to that of proof of Lemma 2 in [24].

Corollary 2 The fractional operator ABC
t0

Dα
t (wherein α ∈ C, ℜ(α)> 0) is bounded in L(t0, tq):

‖ABC
t0

Dα
t v(t)‖1 ≦

(tq − t0)
ℜ(α)

ℜ(α)|Γ (α)|
‖v‖1. (15)

Again, consider a CTP (6)-(7) where
ABC
t0

Dα
t v(t) = h(v(t)), α > 0, (16)

ABC
t0

D
(α−p)
t v(t) = er, er ∈ R, r = 1, · · · ,q =−[−α]. (17)

According to the these equations, the results are shown below:

Theorem 1 Let α > 0,q = −[−α]. If G ⊂ R is an open set, also h : (t0, tq]× G → R is an arbitrary function that

∀v ∈ G,v(t) ∈ L(t0, tq) ⇒ h(v(t)) ∈ L(t0, tq). Then, v(t) satisfies the relations (16) and (17) ⇔ v(t) satisfies the integral

equation (9).

Proof. The proof is similar to that of Theorem 1 in [24].

Corollary 3 If v(t) ∈ L(t0, tq), then v(t) satisfies the relations in (17) with er ∈ R (r = 1, · · · ,q) ⇔ v(t) satisfies the

following equation

v(t)∼=
q

∑
j=1

(t − t0)
q− j

(q− j)!
+

1

(q− 1)!

∫ t

t0

(t − x)q−1h(v(t))dx. (18)

4 On existence and uniqueness analysis of the CTP

Hereunder, the existence of a unique solution to CTP (6)-(7) is demonstrated.

Theorem 2 Let α > 0, q = −[−α]. If G ⊂ R is an open set and h : [t0, tq]×G → R is an arbitrary function that ∀v ∈
G h[t,v] ∈ L(a,b) and the following condition

∀t ∈ (t0, tq],∀v1,v2 ∈ G ⊂ C, | f (v1)− f (v2)|≦ A|v1 − v2|, A > 0, (19)

where A does not depend on t ∈ [t0, tq], is satisfied. Consequently, there has to be a unique solution v(t) to CTP (16)-(17)

in the space Lα(t0, tq).
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Proof. See [24].

Theorem 3 Assume that α ∈ C, q− 1 < ℜ(α) < q. If G is an open set in C and h : (t0, tq]×G −→ C is an arbitrary

function that h(v(t)) ∈ L(t0, tq) for any v ∈ G and the condition (7) holds. Then, there has to be a unique solution v(t) to

CTP (6)-(7) in the space Lα(t0, tq). Specially , if 0 < ℜ(α)< 1, then there has to be a unique solution v(t) to the following

type equation
ABC
t0

Dα
t v(t) = h(v(t)), 0 < ℜ(α)< 1, (20)

in the space Lα(t0, tq).

Proof. The proof is similar to that of Theorem 3 in [24], if we benefit from the inequality

A
(t1 − t0)

ℜ(α)

ℜ(α)|Γ (α)|
< limsup

t

∥

∥Eα ,β (z)
∥

∥

∞
(tq − t0), (21)

instead of the one in (4) and only choose the upper bound (v(t)− v0)
B(α)
1−α M(tmax) where M := sup

∥

∥Eα ,β (z)
∥

∥

∞
.

5 Conclusion

In the current work, a new approach for existence and uniqueness of ordinary FDE based on the reducing CTP ( [25];
pp. 135-219) and Atangana-Baleanu derivative in fractional Caputo sense thoroughly investigated. The suggested scheme
was based mainly upon the reduction to Volterra integral equations. The results showed that, the suggested derivative has
many useful advantages for analyzing the CTP. Furthermore, [24] can be considered a special case of our strategy, so the
proofs are shorter and easier.
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