%NSP} 1

Applied Mathematics & Information Sciences
An International Journal

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019)

http://dx.doi.org/10.18576/amis/13S101

Sequential Pattern Mining using RadixTreeMiner
Algorithm and Neural Network-Based Classification

K. Poongodi* and A. K. Sheik Manzoor

Department of Management Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India

Received: 2 Mar. 2019, Revised: 2 May 2019, Accepted: 11 May 2019
Published online: 1 Aug. 2019

Abstract: Handling large amount of data arriving from internet-based applications is one of the challenging tasks. Recently, more
contributions were made to the data mining algorithms, such as clustering and classification. One of the most commonly-used
data mining schemes is Sequential Pattern Mining (SPM). Here, statistically significant and relevant sequential patterns are used
for classification purpose, but the complexity grows for the increasing data sizes. This paper introduces a novel approach, namely
RadixTreeMiner, for mining sequential patterns from the sequence database, and to classify the data efficiently based on maximal
sequential patterns. The proposed RadixTreeMiner algorithm constructs the radix tree from the sequences available in the input
database, and then identifies the maximal sequences. Further, the Neural Network (NN) approach is employed in this work for the
classification of database based on the maximal sequential patterns. Experimentation of the proposed RadixTreeMiner algorithm uses
two standard gene-sequence databases and its performance is evaluated based on the metric Classification Accuracy (CA). From the
achieved results, it is evident that the proposed algorithm has better performance with values of 0.9038 and 0.8628 as classification

accuracy for both the datasets.

Keywords: Data mining, sequential patterns, radix tree, maximal sequences, neural network, classification accuracy

1 Introduction

Rapid development of web-based technologies has
greatly contributed towards the increase in data growth.
Also, digitization in every field has forced users to store
data in large volumes [1]. In web-based applications, data
is generated in huge volumes for different domains, and
hence, developing mining-based algorithms for data
mining is necessary. Data mining algorithms process the
available data in the stored database, and they allow
decision making. Data mining algorithms perform two
major tasks in a database, which are clustering and
classification. Pattern mining algorithms have gained
more popularity, as these algorithms identify the
interesting, useful and unexpected patterns from the
database. Pattern mining algorithms identify the relation
between data and thus retrieve interesting and novel
patterns. Literature has introduced various forms of
pattern mining algorithms, such as itemset mining,
sequential pattern mining, correlated pattern mining and
behavior mining.

Pattern mining algorithms do not consider the
sequential order of events prevailing in the database. So,

while using pattern mining algorithms for the database
with sequential ordering information, it may lead to
information loss. Ignoring sequential information during
mining process results in loss of significant information.
Some studies have made use of support-based approaches
for mining the database with sequential information. It is
important to consider sequential patterns for the
experimentation, since it may contain significant
information. Several domains use sequential information
for the analysis. Using support-based approaches for
considering sequential patterns may fail in some domain,
as it depends on combinatorial search space [2].

For tackling issues related to data mining, SPM was
introduced. For evaluating sequential data in large
volume, SPM is more compact as it constructs a
transaction database from sequences present in the
database. Several streams such as web mining [3],
classification [4], finding copy-paste bugs in large-scale
software code [5] and mining motifs from biological
sequences [6] use SPM-based techniques for data mining.
The database provided as input to SPM contains data
sequences, and each data sequence is represented as

* Corresponding author e-mail: poongodik79 @ gmail.com

© 2019 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/13S101

K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

ordered list of transactions. The transaction, also called
itemset, has a set of literals. Ordering sequence as
transaction details depends on time-stamp association.
Besides, order also depends on non-time related items.
SPM algorithm aims to identify suitable sequential
patterns satisfying the user-defined minimum support.
The minimum support defines the percentage of
sequences in the database having the pattern as required
by the user [7]. Even though SPM provided good
performance on the database with sequential patterns, it
faces over-fitting issues. SPM failed to recognize minor
patterns and thus, this resulted in incorrect class label
predictions [1]. Several applications, such as protein
classification [8], text classification [9], speech
recognition [10] and image identification [11] belong to
this domain [1].

Sequence classification task is one of the
commonly-used tasks in SPM, which allows classification
of sequences through training of data samples. While
classifying the tasks in the sequence database, it is
necessary to assign the class labels to the sequences by
gathering necessary knowledge from the domain. Also,
knowledge gathering can be done efficiently through the
training. In the literature, several pattern mining
techniques related to the classification have been

developed, and it can be enlisted as
Classify-By-Association rules (CBA) [12], sequential
pattern-based sequence classifier [13],
Classify-By-Sequence (CBS) algorithm [14] and

pattern-based sequence classification [15]. These
compound sequence classification techniques combine
several data mining techniques for improving the
classification accuracy. Among various techniques, SPM
provides improved classification accuracy, and it provides
improved performance in complex environments. In
SPM-based classification, pattern mining and
classification are done in two stages. In the first stage,
frequent sequential patterns are extracted from the
database. These frequent patterns are then used for
building the classification model in the second stage.

Using iterative characteristics for training can
significantly —improve the mining process, and
subsequently enhance the classification accuracy

[1,15].

The primary intention of this research is to design and
develop an algorithm, called RadixTreeMiner, for
sequential pattern mining. RadixTreeMiner mines the
sequential patterns from the sequence database using
three important steps. In the first step, a sequence
database is recursively projected into a set of smaller
radix trees, which is the alternate representation of the
projected database utilized in the PrefixSpan algorithm. In
the second step, sequential patterns are extracted from the
smaller radix trees. In the third step, the maximal patterns
are identified from the mined sequential patterns. To
prove the maximal sequence is better for classification,
the mined maximal sequences are applied to training data
for sample selection. Here, the sequences matching with

the maximal sequence are given for training the neural
network, and finally, data classification is done.

The major contribution of this paper is the design of a
RadixTreeMiner algorithm. The proposed
RadixTreeMiner algorithm develops the radix tree for the
itemsets present in the sequences and thus, mines the
sequential patterns from the database. The mined
sequential patterns are then used for data classification.

The organization of the paper structure is defined as
follows: Section 2 surveys eight literary studies dealing
with pattern mining, further challenges prevailing in these
techniques are also discussed. Section 3 describes
proposed RadixTreeMiner algorithm for classifying the
database, and its results are discussed in Section 4.
Finally, the conclusion to this research work is presented
in Section 5.

2 Related work

This section presents various literary work dealing with
pattern mining to classify a large amount of data.

2.1 Literature survey

Bao Huynh et al. [16] presented the parallel Dynamic Bit
Vector Frequent Closed Sequential Patterns
(pDBV-FCSP) scheme for parallel mining of data. This
approach overcomes the common issues in parallel
mining, such as overhead of communication,
synchronization and data replication. This approach could
not use other architectures to improve the efficiency of the
mining process. Dmitriy Fradkin et al. [17] presented the
direct sequential pattern mining approach and
Bidirectional Extension-Discriminative Class (BIDE-DC)
method for sequential mining of patterns. This method
provides an efficient solution with good classification
performance. BIDE-DC has few match patterns during
mining and it also provides worse performance. The cost
of accuracy can be high. Chieh-Yuan Tsai et al. [1]
proposed two-stage SPM-based sequence classification
scheme for classifying the sequential patterns. The
algorithms achieved improved classification accuracy, but
they do not handle time-series sequence datasets
containing numerical values. Ana Palacios et al. [18]
presented the sequence mining algorithm for Engine
Health Monitoring (EHM). This pattern mining concept
achieved improved results for the database containing
sequences of alphabets with small length. If the length of
the sequence increases, the algorithm resulted in
information loss during mining.

Fabio Fumarola et al. [7] proposed Closed FAST
(CloFAST) sequential pattern mining algorithm based on
sparse id-lists for pattern mining. The proposed CloFAST
model compensated the memory and time required for
mining the long length sequences by improving the speed

© 2019 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019) / www.naturalspublishing.com/Journals.asp

of mining. Besides its improved speed, the CloFAST
returns constraints of fixed memory for some decisive
datasets. Akiz Uddin Ahmed et al. [2] proposed the
Weighted Uncertain Interesting Pattern Mining (WUIPM)
scheme for mining interesting patterns from a sequence
database. The WUIPM model had improved speed and
efficiency and also eliminated the number of false positive
patterns in the database. Tung Kieu et al. [19] have
proposed various mining schemes, namely Naive
Approach Mining (NAM) algorithm, Vertical Approach
Mining (VAM), and Vertical with Index Approach Mining
(VIAM) algorithm for pattern mining. It had improved
execution time and scalability while processing larger
database. Besides its advantages, it failed to handle
sequential processing during real-time analysis. Hwa
Kyung Lim et al. [20] proposed an approach,
BaggedLeast Absolute Shrinkage and Selection Operator
method (B-LASSO) for pattern mining. This scheme used
logistic regression scheme for pattern mining and hence,
it had improved prediction accuracy. The scheme
partitions the database before processing, and this
requires large computation time.

2.2 Challenges

Challenges prevailing in data mining while using pattern
mining techniques are discussed as follows:

e During sequential pattern mining, a large number of
candidates is generated during the early stage of
mining. Also, mining the sequential patterns from a
huge database with a small value of minimum support
increases memory requirement [1].

e Complexity issues prevail in the pattern mining
environments while using distributed and multi-core
processors. Also, pDBV-FCSP approach proposed by
Bao Huynh et al. [16] fails to mine the sequences
from complex databases by using hybrid environment.

e In several studies, the pattern mining concentrates on
a particular application. For example, WUIPM
suggested by Akiz Uddin Ahmed et al. [2] cannot be
used to mine the database containing sequential
itemsets, closed frequent itemsets, etc.

e The optimization-based schemes, such as NAM, and
VAM discussed in [19], do not adapt to structures, like
Tree and Lattices.

e The main drawback of the SPM is that the task of
finding all frequent sequences in a huge database is
more challenging as the search space is large. The
information of a pattern is not just related to a single
item, but the itemsets and the number of itemsets in a
pattern and the number of items in the itemset are
unknown prior to mining.

3 Proposed RadixTreeMiner algorithm for
data mining

This section presents the description of the proposed
RadixTreeMiner algorithm developed for data mining. As
depicted in Fig. 1, sequences present in the database are
subjected to the mining process using the proposed
RadixTreeMiner algorithm. The proposed algorithm
evaluates each sequence in the database and identifies the
sequential patterns by fixing a threshold value for the
minimum support computed. Sequential patterns
identified by the proposed RadixTreeMiner algorithm are
used for the identification of maximal sequential patterns.
By matching the maximal sequential patterns with the
training sample, the dimension of the database is reduced
to make it suitable for classification. Finally, NN is
employed for the data classification using the reduced
database.

3.1 Constructing sequential patterns:
RadixTreeMiner algorithm

This work introduces RadixTreeMiner algorithm for
sequential pattern mining. The proposed RadixTreeMiner
algorithm is inspired by PrefixSpan algorithm. In the
existing PrefixSpan mining algorithm, interesting
sequences are identified from sequence database by fixing
user-defined minimum support. Here,
sequences-providing values less than the minimum
support is neglected for further mining process. The
process continues until the maximal sequence is obtained
for the sequence database. The complexity of the existing
PrefixSpan mining algorithm is higher, as it constructs the
transaction database for every change in the sequence.
Also, while constructing the database, the PrefixSpan
algorithm needs to check the minimal support for all the
sequences within the database, which again increases the
complexity. Thus, it is suitable only for small-sequence
database.

Hence, for overcoming the challenges prevailing in
the PrefixSpan algorithm, RadixTreeMiner algorithm is
introduced in this work. In the proposed RadixTreeMiner
algorithm, small-sized radix trees are constructed from
the sequences in the sequence database. The minimum
support is defined for constructing the sequential patterns
from the radix tree, and this tree is formed as a base for
pattern mining. Less complexity is one of the major
advantages of the proposed RadixTreeMiner algorithm.
The RadixTreeMiner algorithm reduces the time
complexity while mining, even though the length of the
sequences increases. Hence, the proposed
RadixTreeMiner algorithm is suitable even for the
database with large length sequences.

© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

RadixTreeMiner algorithm

Maximal

Sequential database

Radix tree construction

sequential patterns

Sequential patterns

Neural
network

Input database

’J

Selected training
data samples

Fig. 1: Block diagram of the proposed RadixTreeMiner algorithm

3.2 Mining of 1-length sequence

The initial step in the proposed RadixTreeMiner
algorithm is mining I-length sequences from the
sequence database. Consider a database D with N
sequences, and the proposed RadixTreeMiner algorithm
identifies 1-length sequences from the database. The
1-length sequence identified from the database forms the
node for the radix tree.

The proposed RadixTreeMiner algorithm is
implemented in gene database, which has large length
sequences. The term ‘length’ of the sequence refers to the
number of items within the sequence. Table 1 presents a
representation of the sequence database used for
constructing the radix tree. The sequences in the database
have two parts and they are referred to as
< sequence-id, sequence >. Also, the sequences in the
database have many subsequences each having length
one.

Table 1: Sample sequence database

Sequence_id | Sequence
10 < atcag >
20 < atgat >
30 < tagca >
40 < taat >

In table 1, the database used for example has four
sequences each of different length. Here, support z,, is
calculated for identifying 1-length sequence from each
sequence. The 1-length sequence is defined as unique
items in the database, and it is identified by declaring
minimum support Z set by the user. In table 1, there are
four unique items in the database, namely < a >, <t >,
< ¢ >, and < g >. The proposed RadixTreeMiner
algorithm calculates the support of unique itemsets, and
the itemset having support z,, greater than minimum
support Z is declared to be a 1-length sequence.

3.3 Projected radix tree formation

The sequences present in the database are provided to
RadixTreeMiner algorithm. The proposed
RadixTreeMiner algorithm identifies the maximal
sequence from a sequence database. Similar to the
PrefixSpan algorithm, the proposed algorithm utilizes a
minimum support value for identifying the maximal
sequences. Besides, the proposed RadixTreeMiner
algorithm constructs small-sized radix tree for each
itemset to identify the maximal sequence. Identifying the
maximal sequence from the sequence database through
the proposed algorithm is explained as follows:

i) Initially, the sample sequence database A is
provided as input to the proposed RadixTreeMiner
algorithm. The proposed algorithm mines the sequential

© 2019 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019) / www.naturalspublishing.com/Journals.asp

patterns from the database based on the frequency of
occurrence of itemset. Thus, the term support, referred to
as gz, 1is defined in the proposed RadixTreeMiner
algorithm and is defined as the frequency of occurrence of
the itemset in each sequence. Thus, when the database
arrives, RadixTreeMiner algorithm calculates the support
of each item available in the sequence. Then, based on the
requirements of the user, minimum support Z is defined
and itemset obtaining support less than the minimum
support is removed.

ii) Then, the support z,, of each itemset is found in the
database. For sequential pattern mining, the sequences
having support z,, higher than the minimum support Z are
considered to be a 1-length sequence, and hence, they are
mined. Thus, itemset satisfying the condition z,, > Z is
considered to be unique items/nodes and is applicable for
tree construction.

iii) In the next step, the radix tree is constructed by
using the nodes obtained from the previous step. Consider
the itemset H{sy,s2,...,8,...,5g } in the sequence that
has support greater than minimum support, which is
appended to radix tree.

iv) After the initial-stage construction of radix tree,
itemsets in sequence Aj to Ay are appended to each node

{81,825+ +ySw,...,sg} of radix tree. Here, the first
sequence acts as the first branch/subtree of the node
{81,825+ ,Sw,...,sm }. For radix tree construction of node

s1, itemsets in sequences A to Ay are compared with the
node s;, and the itemset following next to node s; in
sequence A to Ay are appended to the node s; as child
nodes. Each sequence attached to node s; acts as branch
or subtree. To construct the radix tree for the node sy, the
node s; is searched from the sequences A; to Ay in the
database. After identifying the sequences with the node
s1, the items following node s; are appended as child
node to 7.

v) Step (iv) is repeated until all the unique items
identified in step (iii) get its child nodes from the
database. In each stage of construction of radix tree,
another subtree is formed for child node. If same child
nodes arrive in the sequence, the sequences are appended
as next child nodes. Thus, if the child node is appended
with further two child nodes, then it is given a weight 2.

vi) In the next step, the support z,, of itemset
appended as a child node in radix tree corresponding to
the node s,, is calculated. Now, the child nodes satisfying
the condition z,, > Z are appended with the node s,, to
form a sequential pattern and they are subjected to further
sub radix tree construction.

vii) The iteration continues until all the nodes in radix
tree cannot be further subdivided. Finally, the sequential
patterns are identified from each node of radix tree
structure, and it is represented as {K;,K>,...,K:,...,Kp}.

The following steps illustrate the running example to
signify the proposed RadixTreeMiner algorithm.

Step 1: Consider the sequence database of Table 1 with
four 1-length sequences for the experimentation. As the
subsequence present in the database has one itemset, it is
referred to as a 1-length sequence. Initially, the frequency
of itemset in each sequence is identified, and the support
of each itemset is identified. For the considered database,
there are four itemsets < a >, <t >, <c¢>,and < g > in
all sequences. Then, the support of each sequence is
calculated based on the frequency of occurrence of each
itemset in the database. The frequency of occurrence of
various itemsets is referred to as z,,. The itemset < a >
occurs in all four sequences and hence, the support for
< a > is declared to be z,, = 4. Similarly, other itemsets
<t >, <c>,and < g > have the support z,, value of 4,
2, and 3 respectively.

Step 2: In the next step, minimum support is fixed based
on the user requirement, and the items achieving support
less than the minimum support are neglected from further
steps. The minimum support value Z is chosen as 3 for
this database, i.e. Z = 3. To identify the node for tree
construction, itemset having support z,, greater than Z is
chosen. As shown in the table below, itemsets < a >,
<t >, and < g > have support z,, greater than minimum
support Z = 3 and hence, it is taken as unique items. As
the item < ¢ > has z,, = 2, it is neglected from forming
the radix tree.

Thus, the initially-constructed radix tree with the unique
items < a >, <t >, and < g > is depicted below:

[RadixTreeMiner algorithm j

Step 3: In the next step, the sequences present in the
database are appended to the nodes of radix tree. For
constructing the radix tree for node < a >, the sequences
< atcag >, < atgat >, < tagca >, and < taat > are
compared with the node < a >. The itemset arriving after
the node < a > in each sequence is appended to the node
as child node. Thus, the first subtree of < a > has the
child nodes <t >, < c¢ >, <a >, and < g >. The next
sequence < atgat > is appended to < a > and since both
the sequences < atcag > and < atgat > have their first
child node as < ¢ >, the sequence < atrgat > is appended

© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

to the child node of < ¢ >. Also, the weight of child node
<t > present in the first subtree of < a > is assigned to
be 2, as it has two subtrees. Similar to node < a >,
sequences in the database are appended as the child node
to other nodes < t > and < g >. The radix tree
constructed for each node < a >, <t >, and < g > is
depicted below.

[RadixTreeMiner algorithm j

Step 4: In the next level, support of each itemset in
individual tree is calculated. For simplification, the tree
constructed under itemset < ¢ > is considered. Here,
support z,, of child nodes attached to node < t > is
calculated. The child node occurs in all four branches and
hence the support of child node < a > in radix tree
corresponding to < ¢ > is calculated as 4. The frequency
count estimation is simplified by declaring weights. As
shown in step 3, child node < a > in radix tree
constructed through < ¢ > has weight of 2 in one of its
subtree. Hence, the algorithm doesn’t need to check the
fourth branch to search for availability of child node
< a >. Thus, the RadixTreeMiner algorithm has less
complexity compared to PrefixSpan algorithm. Similarly,
support z,, of other child nodes in radix tree based on
<t > node is identified, and the frequency of child nodes
appended under node < ¢ > is given below.

a t c g
4 2 2 3

As the minimum support Z is chosen to be 3, itemsets
< a > and < g > will be retained considering subtrees ‘#’
and ‘g’. Thus, the child nodes < a > and < g > are
appended with the node < ¢ > for further processing.

Step 5: The sequential patterns < ta > and < tg >
identified from radix tree < t > is subjected for further
processing. Again, the sequences in the database
sequences < atcag >, < atgat >, < tagca >, and
< taat > are compared with the sequential pattern
< ta >, and appended to node < ta > forming a sub radix

tree. As shown in the tree below, the first branch of
subtree has only one child node < g >. Here, the child
nodes other than the sequential pattern < ta > are
appended as the sub radix tree of < ta >. Similarly, the
other itemsets in sequences of the database are appended
as child node of < ra >.

The above tree indicates the sub radix tree formed from
itemset < fa >. Similarly, the sequences from the
database sequences < atcag >, < atgat >, < tagca >
and < taat > are compared with the sequential pattern
< tg >, and appended to node < tg > forming a sub radix

tree as shown below.

Step 6: In the next step, the support of child nodes in
subtree < ta > is identified, and it is expressed in the
following table.

As specified in the above table, no itemset in the sequence
< ta > provides necessary support value for further
processing. Hence, the sequence < ta > cannot be further
simplified, and it is taken as one of the sequential patterns
of the radix tree. Similarly, the support of child nodes in
subtree < tg > is identified and it is represented below.

t c g
2 1 1 0

As shown in the table above, no itemset in the sequence

© 2019 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019) / www.naturalspublishing.com/Journals.asp

< tg > provides necessary support value for further
processing. Thus the sequence < tg > cannot be further
simplified and it is considered as another sequential
pattern of the radix tree. Hence < ta > and < tg > are the
sequential patterns.

Step 7: Similarly, sequential patterns are identified for
nodes < a > and < g > present in the radix tree. The
iteration is continued until the radix tree cannot be further
subdivided into subtree for all nodes. Finally, the
sequential patterns for the database are mined through
RadixTreeMiner algorithm.

3.4 Termination

Radix tree formed through RadixTreeMiner algorithm
terminates when the subtree cannot be further divided.
When the algorithm is terminated, sequences that cannot
be further formed as a tree are declared to be sequential
patterns. At the end of the iteration, the maximal
sequences are obtained for the sequential database.
Finally, the procedure of RadixTreeMiner is followed to
automatically identify the sequential patterns from the
given sequence database.

Algorithm 1: RadixTreeMiner algorithm

1) Input: Sequence database A

2) Output: Sequential patterns K

3) Parameters: Minimum support Z, support of item z,,
4) Begin

5) For each item ‘w’ in the sequence database
6) Find the support z,,
) Declare the number of nodes ‘H’ for
radix tree construction
8) For VH
9) If radix tree has itemset ‘w’
10) Compute support z,, of itemset
11) If (zy > Z)
12) Append the itemset ‘w’ with K
13) End if
14) Else
15) Remove the itemset ‘w’ from
tree formation
16) End if
17) Construct radix tree for all ‘H’ nodes
18) For each itemset ‘w’ in subtree
19) Compute support z,, of itemset
20) If (z > 2)
21) Append the item ‘w’ with
sequential pattern K
22) Else
23) Remove the item ‘w’ from
tree formation
24) End if
25) Construct subtree of radix tree

for each node

26) End For

27) End For

28) End For

29) Terminate

30) Return Sequential pattern K
31) End

3.5 Maximal sequential patterns

Maximal sequential patterns are identified from the
sequential patterns obtained through the RadixTreeMiner
algorithm. Using the proposed RadixTreeMiner
algorithm, Q sequential patterns are identified, and they
are represented as {Ki,Ks,...,K,,...,Kp}. From Q
sequential patterns obtained, the maximal sequential
patterns are selected. A sequential pattern K, can be
called as the maximal sequence if there is no other
sequential pattern, such that K}, is considered to be a super
pattern of the sequential pattern K, [21]. The itemset
present in maximal sequential patterns varies for the
database, as it is constructed based on minimum support
defined by the user.

3.6 Classifying the database by employing
Neural Network

Maximal sequential patterns mined from the database are
used for selecting the training samples for classification.
The primary aim of this work is to select the training
samples from the input database based on the identified
maximal sequential patterns. This work employs NN for
the classification task and backpropagation algorithm for
the training process. Before classifying the database, the
classification task is simplified by selecting few
sequences related to the maximal sequence designated
from the proposed RadixTreeMiner algorithm. Then,
selected training sample is given as input to NN for
training, and finally, the database is classified into
different classes.

The training data sample subjected to classification is
classified into a number of classes. NN is trained with the
help of backpropagation algorithm and is comprised of
three layers, namely input layer, hidden layer, and output
layer. Each layer in NN constitutes neurons for
performing the classification task, and also, several
weight elements are included for refining the output.

Consider the NN with input layer having X number of
neurons, and it is specified below as

R={R|,R,...,R;,...,Rx} (1)
where R; indicates the i neuron in the input layer, and i
ranges between 1 and X. The hidden layer in NN has Y

© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

neurons and it is expressed as
SZ{Sl,Sz,...,Sj,...,Sy})

where S; indicates the 7" neuron in hidden layer with the
limit 1 < j <Y. The sequences in the training sample are
provided as input to the input layer, and it is multiplied by
the weights, w = {wy,wp,...,wi,...,w;}. The weight
vector w has a number of weights, which is equivalent to
the total neurons in input and hidden layer, i.e. J =X +7Y.
The expression for the output of the hidden layer is
specified as follows:

1 X
Sj=— Y wixR; 3)
X3

where w; refers to the weight between the input and the
hidden layers of NN. Finally, the output layer neurons are
computed by multiplying the weights with the hidden
neurons and it is expressed as

Y
0o =) wj*5; “4)
j=1

where O,, indicates the o' neuron in the output layer and
w; indicates the weight between the hidden and the output
layers. The output layer is comprised of G neurons as
expressed below:

02{01,02,...,00,...,0(;} 5)

The steps for training the NN with backpropagation
algorithm are given as follows:

(1) Random initialization of weights: To classify the
sequences in the database, selection of weights is a
necessity. In the initialization step, the weights are
randomly assigned.

(2) Calculation of output and error value: In the next step,
based on the randomly-initialized weights, the output
values are computed as given in the following function:

0,(t) = NN(w",R) (6)
where w’ indicates the transpose of weight vector and R

specifies the elements in the input layer. The error is then
estimated for computed output and it is expressed as

G
E(t) =Y (0o(t) —1Mo) (7)
o=1

where 7, indicates the ground truth value for the o
output neuron.

(3) Weight update based on backpropagation algorithm:
In this step, the randomly-initialized weights are updated

based on the backpropagation algorithm. The expression
for the weight update is specified below:

wt+1)=w(t)+Aw (8)

where Aw indicates the adaptive weight vector and it is
expressed as

JE
Aw=—p=— ©)
aw
where p indicates the learning rate of NN and it has a
value of 0.1.

(4) Recalculation of output value with updated weight: In
this step, based on the updated weight value, the output of
NN is calculated and the error value is updated.

(5) Updating learning rate: The learning rate of NN gets
updated based on the chosen delay value. Expression for
updating the learning rate is specified as below:

plt+1)=p(t) d (10)

where d indicates the delay value and it is chosen to be
0.1.

(6) Termination: The algorithm refines the output value
until the end of the iteration. At the end of iteration,
denoted as 7,4y, the output with minimum error value is
taken as the classified output.

3.7 Sample selection using maximal sequential
patterns

Maximal sequential patterns constructed from the
previous section pave the way for selecting the training
database. Consider the input database I having a number
of sequences of size a x b. The size of the database
depends on the number of sequences in the database. For
reducing the complexity of training process, it is more
compact to reduce the number of sequences for training.
Hence the maximal sequences are compared with each
sequence in the input database 1. Finally, the sequences
related to maximal sequences are selected as the training
sample database and thus the size of the data is reduced.
After sample selection, the training sample of size U x V
is provided for training the NN. Thus, for the training
purpose, the database I of size a x b is reduced to U x V.
Here, the values of U and V is less than a and b. Fig. 2
presents the NN model for classifying the database I.

4 Results and discussion

Simulation results of the proposed RadixTreeMiner
algorithm are evaluated in this section. Here,
experimentation is done by evaluating the gene sequences
available in two standard databases and evaluated with the
metric classification accuracy.

© 2019 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019) / www.naturalspublishing.com/Journals.asp

Input database

Maximal
sequences

Hidden layer

Output layer

Data classes

Fig. 2: Classifying the sequential database with NN model

4.1 Experimental setup

Experimentation of the proposed RadixTreeMiner
algorithm is implemented in JAVA tool. The personal
computer used for the experimentation purpose requires
configurations such as Windows 10 OS, 4 GB RAM, and
Intel I3 processor.

4.2 Database description

Experimentation of the proposed RadixTreeMiner
algorithm uses two standard datasets, namely Molecular
Biology (splice-junction gene sequences) [22] and
Molecular Biology (promoter gene sequences) [23].
These datasets provide gene sequences for data mining.
The splice-junction gene sequences have a total of 3190
instances with 61 attributes, whereas the promoter gene
sequences has a total of 106 instances under 58 attributes.

4.3 Performance metrics

For the evaluation, this work wuses the metric
Classification Accuracy (CA), which is defined as given

below:

Classification Accuracy: It defines the number of
patterns correctly classified, and hence, it measures the
closeness to the actual response. Classification accuracy
can be expressed as follows:

_ TP+TN
 TP+TN+FP+FN

CA (1)

where TP, TN, FP, and FN indicate the true positive, true
negative, false positive, and false negative respectively.

4.4 Comparative models

The simulation results achieved by the proposed
RadixTreeMiner algorithm are compared with various
existing models, such as PrefixSpan [24], CloSpan [25],
and Top-k mining [19]. Description of these comparative
techniques is given below:

PrefixSpan: The PrefixSpan algorithm mines the
sequential patterns from the sequence database by

© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

constructing the projected database. For each change in
sequence, it constructs the projected database and hence,
requires more memory.

CloSpan: In the existing CloSpan technique, only a
closed group of sequences are analyzed for pattern
mining.

Top-k mining: The Top-k mining process uses the Naive
Approach Mining (NAV) to identify the top-ranked
patterns, and to mine the sequential patterns accordingly.

4.5 Comparative analysis

Here, the performance of the proposed RadixTreeMiner
and the existing algorithms is evaluated by fixing various
values for minimum support Z. The performance of the
proposed RadixTreeMiner algorithm against various
existing techniques is presented below:

4.6 Comparative analysis for splice-junction
gene sequences for minimum support Z = 50

Fig. 3 presents the analysis of comparative techniques for
splice-junction database with minimum support Z = 50.
Fig. 3(a) shows the analysis based on the number of
patterns mined for splice-junction database by varying the
training percentages. While using 90% of the database,
the existing CloSpan algorithm mines 1193 patterns while
Top-k mining and PrefixSpan techniques achieve a high
value of 701. Similar to Top-k mining and PrefixSpan, the
proposed RadixTreeMiner algorithm also has the number
of patterns mined as 701. The analysis is done based on
CA using splice-junction database with minimum support
Z = 50, as shown in Fig. 3(b), which depicts that the
existing CloSpan, Top-k mining and PrefixSpan
algorithms achieve CA values of 0.7899, 0.8666 and
0.8756 respectively, for 50% of data. The proposed
RadixTreeMiner algorithm achieves a high value of
0.8834 for 50% of data. Fig. 3(c) shows the analysis
based on the computational time for splice-junction
database with the training percentages varying from 50%
to 90%. While using 90% of the database, the existing
CloSpan, Top-k mining and PrefixSpan algorithms have
the computational time of 2207475 milliseconds (ms),
1483670 ms and 709170 ms respectively. The proposed
method has the computational time of 579548 ms for 90%
of data.

4.7 Comparative analysis for splice-junction
gene sequences for minimum support Z = 60

Fig. 4 presents the analysis of comparative techniques for
splice-junction database with minimum support Z = 60.

1400
81200
€
« 1000
H
§ 800 - = CloSpan
‘6 600 - = Top-k
] = PrefixSpan
2 400 B I "
5 RadixTreeMiner
Z 200 =
O ,
50 60 70 80 90
% of data
(a)
0.9
B = CloSpan
m Top-k
w PrefixSpan
B RadixTreeMiner
50 60 70 80 90
% of data
(b)
2500000
o
g 2000000
=
€ 1500000
o = CloSpan
= Top-k

1000000+

= PrefixSpan

Computat

500000 - RadixTreeMiner

0 H
50 60 70 80 90
% of data

©)

Fig. 3: Comparative analysis using splice-junction gene
sequences with Z = 50 based on (a) Number of patterns mined,
(b) Classification accuracy and (c) Computational time

Fig. 4(a) shows the analysis based on the number of
patterns mined for splice-junction database by varying the
training percentages from 50% to 90%. When using 90%
of the database, the existing CloSpan algorithm has the
number of patterns mined as 849, while Top-k mining,
PrefixSpan and the proposed algorithm have achieved a
high value of 643. Analysis is done based on CA using
splice-junction database with minimum support Z = 60,
as shown in Fig. 4(b), which depicts that the existing
CloSpan, Top-k mining and PrefixSpan algorithms
achieve classification accuracy values of 0.7999, 0.8666
and 0.8762 respectively, for 50% of data. The proposed
RadixTreeMiner algorithm achieves better performance

© 2019 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019) / www.naturalspublishing.com/Journals.asp

= = T

than the existing techniques with the value of 0.8934 for
50% of data. Fig. 4(c) shows the analysis based on the
computational time for splice-junction database with the
training percentages varying from 50% to 90%. The
existing CloSpan, Top-k mining and PrefixSpan
algorithms have the computational time of 1096151 ms,
1062805 ms and 239522 ms respectively, for 90% of data.
The proposed method has the computational time of
162965 ms for 90% of data.

u CloSpan
= Top-k
= PrefixSpan
RadixTreeMiner
50 60 70 80 90
% of data
(a)
0.92
E 0.9
§ 0.88 |
€ 0.86 - |
_5 0.84 + — mCloSpan
Fo82 e Topk
E 0.8 | — mPrefixSpan
So7s- = RadixTreeMiner
0.76 + -
0.74 +
50 60 70 80 90
% of data
(b)
2000000
1800000
ﬂE> 1600000
* 1400000
g 1200000 | < Clospan
% 1000000
3 = Top-k
2 800000 -
5 600000 - = PrefixSpan
° 400000 - RadixTreeMiner
200000 -+
0 ,
50 60 70 80 90
% of data

(©

Fig. 4: Comparative analysis using splice-junction gene
sequences with Z = 60 based on (a) Number of patterns mined,
(b) Classification accuracy and (c) Computational time

4.8 Comparative analysis for splice-junction
gene sequences for minimum support Z =70

Fig. 5 presents the analysis of comparative techniques for
splice-junction database with minimum support Z = 70.
Fig. 5(a) shows the analysis based on the number of
patterns mined for splice-junction database with the
training percentages varying from 50% to 90%. While
using 90% of the database, the existing CloSpan
algorithm achieve the number of patterns mined as 675,
while the proposed algorithm has 642 patterns mined.
Analysis is done based on CA using splice-junction
database with minimum support Z = 70 is shown in Fig.
5(b), which depicts that the existing CloSpan, Top-k
mining and PrefixSpan algorithms have achieved CA
values of 0.8104, 0.8664 and 0.8932 respectively, for 50%
of data. The proposed RadixTreeMiner algorithm
achieves a high value of 0.9032 for 50% of data. Fig. 5(c)
shows the analysis based on the computational time for
splice-junction database with the training percentages
varying from 50% to 90%. While using 90% of the
database, the existing CloSpan, Top-k mining and
PrefixSpan algorithms have the computational time of
415557 ms, 121379 ms and 122095 ms respectively. The
proposed method has the computational time of 79562 ms
for 90% of data.

4.9 Comparative analysis for promoter gene
sequences for minimum support Z = 50

Fig. 6 presents the analysis of comparative techniques for
promoter gene sequence database with minimum support
Z =50. Fig. 6(a) shows the analysis based on the number
of patterns mined for promoter gene sequence database.
While 90% of the database is used, the existing CloSpan
algorithm mined 36658 patterns, while Top-k mining,
PrefixSpan and the proposed RadixTreeMiner algorithm
have a value of 35628. Analysis is done based on CA
using promoter gene sequence database with minimum
support z = 50, as shown in Fig. 6(b), which demonstrates
that the existing CloSpan, Top-k mining and PrefixSpan
algorithms achieve CA values of 0.6358, 0.6642 and
0.7971 respectively, for 90% of data. Meanwhile, the
proposed RadixTreeMiner algorithm achieves a high
value of 0.8071 for 90% of data. Fig. 6(c) shows the
analysis based on the computational time for promoter
gene sequence database with the training percentages
varying from 50% to 90%. While using 90% of the
database, the existing CloSpan, Top-k mining and
PrefixSpan algorithms have the computational time of
2036541 ms, 2391846 ms and 1415537 ms respectively.
The proposed method has the computational time of
1025695 ms for 90% of data.

© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

12

K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

760
B 740
£
€ 720 4
£ 700 -
g
E 680 - = CloSpan
%5 660 | u Top-k
E 640 - — mPrefixSpan
E 620 =
600 -
580 -

RadixTreeMiner

50 60 70 80 90
% of data

(@)

0.92

154
©
[

0.88
0.86

tion accuracy

m CloSpan
u Top-k

= PrefixSpan

o o
o &

O o ®
© N &

Classifica

RadixTreeMiner
0.78

0.76 +

50 60 70 80 90
% of data

(b)

600000

500000

ime

400000

= CloSpan

w

o

o

o

o

o
N

uTop-k

200000 - = PrefixSpan

Computational t

RadixTreeMiner
100000

0 i
50 60 70 80 90
% of data

(©)

Fig. 5: Comparative analysis using splice-junction gene
sequences with Z = 70 based on (a) Number of patterns mined,
(b) Classification accuracy and (c) Computational time

4.10 Comparative analysis for promoter gene
sequences for minimum support Z = 60

Fig. 7 presents the analysis of comparative techniques for
promoter gene sequence database with minimum support
Z = 60. Fig. 7(a) shows the analysis based on the number
of patterns mined for promoter database. While using
90% of the database, the existing CloSpan algorithm
achieve the number of patterns mined as 36658, while the
number of patterns mined by the proposed
RadixTreeMiner algorithm is 35628. Analysis is done
based on CA for promoter gene sequence database with
minimum support Z = 60, as pictured out in Fig. 7(b),
which shows that the existing CloSpan, Top-k mining and

36800
2 36600
£
£ 36400 -
[}
:,E, 36200 -
E 36000 - = CloSpan
5 35800 - = Top-k
E 35600 - — = PrefixSpan
E 35400 — »RadixTreeMiner
Z 35200 | =
35000 -
50 60 70 80 90
% of data
(a)
0.9
§ 0.8 -
507
G806
§05- = CloSpan
‘g 0.4 1 = Top-k
'g 0.3 - = PrefixSpan
,-_—'g 0.2 - RadixTreeMiner
0.1+
0 4
50 60 70 80 90
% of data
(b)
3000000
o 2500000
£
E 2000000
o u CloSpan
® 1500000 -
.g = Top-k
g 1000000 — mPrefixSpan
© RadixTreeMiner
500000 =
0 4
50 60 70 80 90
% of data
(©

Fig. 6: Comparative analysis using promoter gene sequences
with Z = 50 based on (a) Number of Patterns mined, (b)
Classification accuracy and (c) Computational time

PrefixSpan algorithms achieve CA values of 0.6655,
0.6742 and 0.8076 respectively, for 90% of data.
However, the proposed RadixTreeMiner algorithm
achieves a CA of 0.8171 for 90% of data. Fig. 7(c) shows
the analysis based on the computational time for promoter
gene sequence database with the training percentages
varying from 50% to 90%. The existing CloSpan, Top-k
mining and PrefixSpan algorithms have the computational
time of 2356985 ms, 2572112 ms and 1378238 ms
respectively, for 90% of data. The proposed method has
the computational time of 1365222 ms for 90% of data.

© 2019 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019) / www.naturalspublishing.com/Journals.asp

13

36800
E 36600
£ 36400 -
£ 36200
ﬁ 36000 -
%5 35800 -
8 35600 | -
E 35400 - =
Z 35200 1 =

35000 -

= CloSpan

= Top-k
w PrefixSpan
RadixTreeMiner

% of data

(a)

u CloSpan

m Top-k

= PrefixSpan
RadixTreeMiner

50 60 70 80 90
% of data
(b)
3000000
o 2500000
E
§ 2000000 -
o = CloSpan
& 1500000 -
< u Top-k
g 1000000 - = PrefixSpan
o RadixTreeMiner
500000 -
0 4
50 60 70 80 90
% of data
(©

Fig. 7: Comparative analysis using promoter gene sequences
with Z = 60 based on (a) Number of Patterns mined, (b)
Classification accuracy and (c) Computational time

4.11 Comparative analysis for promoter gene
sequences for minimum support Z =70

Fig. 8 presents the analysis of comparative techniques for
promoter gene sequence database with minimum support
Z =70. Fig. 8(a) shows the analysis based on the number
of patterns mined for promoter gene sequence database.
While using 90% of the database, the number of patterns
mined using existing CloSpan algorithm is 36658, while
that by the proposed RadixTreeMiner, Top-k mining and
PrefixSpan techniques are 35628. Analysis is done based
on CA using promoter gene sequence database with
minimum support Z = 70, as given in Fig. 8(b), which
depicts that the existing CloSpan, Top-k mining and

PrefixSpan algorithms achieve CA values of 0.6758,
0.6842 and 0.7271 respectively, for 90% of data. The
proposed RadixTreeMiner algorithm achieves a high
value of 0.8271 for 90% of data. Fig. 8(c) shows the
analysis based on the computational time for promoter
gene sequence database with the training percentages
varying from 50% to 90%. While using 90% of the
database, the existing CloSpan, Top-k mining and
PrefixSpan algorithms have the computational time of
758156 ms, 844852 ms and 566703 ms respectively. The
proposed method has the computational time of 164406
ms for 90% of data.

36800
E 36600 -
'E 36400 -
£ 36200
Q
£ 36000 -
o
%5 35800 -
35600 |
E 35400 |
Z 35200 |
35000 -

u CloSpan

u Top-k
— mPrefixSpan
— RadixTreeMiner

50 60 70 80 90
% of data

(a)

u CloSpan
= Top-k
= PrefixSpan

002 - RadixTreeMiner

50 60 70 80 90
% of data

(b)

900000

800000
£ 700000
F 600000
S 500000 |
£ 400000 -
Q
E 300000
© 200000 -

100000
0 4

= CloSpan

= Top-k

= PrefixSpan
RadixTreeMiner

50 60 70 80 90
% of data

(©)

Fig. 8: Comparative analysis using promoter gene sequences
with z = 70 based on (a) Number of Patterns mined, (b)
Classification accuracy and (c) Computational time

© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

4.12 Comparative discussion

Table 2 presents the comparative discussion of the
proposed RadixTreeMiner algorithm against other
existing techniques. From the table 2, it is evident that the
proposed RadixTreeMiner algorithm has achieved
improved performance over other models for both the
databases. For the splice-junction database, the number of
patterns mined by the proposed RadixTreeMiner
algorithm is 642 and its CA is 0.9038. Similarly, for the
promoter gene sequence database, the number of patterns
mined by the proposed RadixTreeMiner algorithm is
35628, with the CA of 0.8628. The performance of
databases based on computational time suggests that the
proposed RadixTreeMiner algorithm achieves less
computational time than other existing algorithms. For
the splice-junction database, the RadixTreeMiner
algorithm achieves low computational time of 79562 ms
and for the promoter gene sequence database, it achieves
computational time of 148916 ms.

5 Conclusion

This paper presents a novel approach, namely
RadixTreeMiner, for pattern mining. The proposed
RadixTreeMiner algorithm is constructed for sequential
pattern mining and mines the sequential patterns by
constructing the radix trees. The proposed
RadixTreeMiner algorithm constructs small-sized radix
tree for sequences in the database, and hence, mining
becomes easier even though the length of the sequence is
large. Then, from the sequential patterns, maximal
sequential patterns are identified. Finally, the input
database with a large number of sequences is compared
with the generated maximal sequences, and the possible
training samples are selected for the classification. NN is
employed for classifying the training sample. The
experimentation of the proposed RadixTreeMiner is done
using splice-junction database and promoter gene
sequence database. For the splice-junction database, the
proposed RadixTreeMiner algorithm achieves CA value
of 0.9038. Similarly, for the promoter gene sequence
database, the proposed algorithm obtains a CA value of
0.8628.

Acknowledgement

K. Poongodi gratefully acknowledges the support
provided by Centre for Research, Anna University,
Chennai to carry out this research work by granting Anna
Centenary Research Fellowship (ACRF 2016 - 2018).

References

[1] Chieh-Yuan Tsai and Chih-Jung Chen, A PSO-AB classifier
for solving sequence classification problems, Applied Soft
Computing, 27, 11-27 (2015).

[2] Akiz Uddin Ahmed, Chowdhury Farhan Ahmed,
MdSamiullah, Nahim Adnan and Carson Kai-Sang Leung,
Mining interesting patterns from uncertain databases,
Information Sciences, 354, 60-85 (2016).

[3] Jingjun Zhu, Haiyan Wu and GuozhuGao, An efficient
method of web sequential pattern mining based on session
filter and transaction identification, Journal of Networks, 5,
1017-1024 (2010).

[4] Themis P. Exarchos, Markos G. Tsipouras, Costas
Papaloukas and Dimitrios [. Fotiadis, A two-stage
methodology for sequence classification based on
sequential pattern mining and optimization, Data and
Knowledge Engineering, 66(3), 467-487 (2008).

[5] Zhenmin Li, Shan Lu, SuvdaMyagmar and Yuanyuan Zhou,
CP-miner: finding copy-paste and related bugs in large-scale
software code, IEEE Transactions on Software Engineering,
32(3), 176-192 (2006).

[6] A. Turi, C. Loglisci, E. Salvemini, G. Grillo, D. Malerba
and D. D’Elia, Computational annotation of UTR cis-
regulatory modules through frequent pattern mining, BMC
Bioinformatics, 10(6), (525) (2009).

[7] Fabio Fumarola, Pasqua Fabiana Lanotte, Michelangelo
Ceci and DonatoMalerba, CloFAST: closed sequential
pattern mining using sparse and vertical id-lists, Knowledge
and Information Systems, 48(2), 429-463 (2016).

[8] L.V. Sergienko, B.A. Biletskyy and A.M. Gupal, Predicting
torsion angles in aminoacid protein sequences based on
a Bayesian classification procedure on Markov chains,
Cybernatics System Analysis, 46(5), 684-690 (2010).

[9] Dou Shen, Jian-Tao Sun, Qiang Yang, Hui Zhao and Zheng
Chen, Text classification improved through automatically
extracted sequences, in Proc. of 22" International
Conference on Data Engineering, 121-123 (2006).

[10] Poonam Bansal, AmitaDev and ShailBala Jain, Role of
different order ranges of autocorrelation sequence on the
performance of speech recognition, WSEAS Transaction
System, 9(1), 1-9 (2010).

[11] H.Y. Yang, X.Y. Wang and Z.K. Fu, A new image denoising
scheme using support vector machine classification in
shiftable complex directional pyramid domain, Applied Soft
Computing, 12(2), 872-886 (2012).

[12] Bing Liu, Wynne Hsu and Yiming Ma, Integrating
classification and association rule mining, in Proc. of the
Fourth International Conference on Knowledge Discovery
and Data Mining, 80-86 (1998).

[13] Neal Lesh, Mohammed J. Zaki and Mitsunori Ogihara,
Scalable feature mining for sequential data, IEEE Intelligent
Systems and their Applications, 15(2), 48-56 (2000).

[14] Vincent S. Tseng and Chao-HuiLee, Effective temporal data
classification by integrating sequential pattern mining and
probabilistic induction, Expert Systems with Applications,
36(5), 9524-9532 (2009).

[15] Cheng, Zhou, Boris Cule and Bart Goethals, Pattern based
sequence classification, IEEE Transactions on Knowledge
and Data Engineering, 28(5), 1-14 (2015).

[16] Bao Huynh, Bay Vo and Vaclav Snasel, An efficient parallel
method for mining frequent closed sequential patterns, [IEEE
Access, 5, 17392-17402 (2017).

[17] Dmitriy Fradkin and Fabian Morchen, Mining sequential
patterns for classification, Knowledge and Information
Systems, 45(3), 731-749 (2015).

© 2019 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 13, No. S1, 1-16 (2019) / www.naturalspublishing.com/Journals.asp

15

Table 2: Comparative discussion

Comparative techniques
Database Evaluation metric Top-k | PrefixSpan Proposed
CloSpan
mining | algorithm | RadixTreeMiner

Number of patterns mined 675 642 641 642
Splice-junction Gene Sequences | Classification accuracy 0.8133 | 0.8672 0.8938 0.9038
Computational time (ms) 415557 121379 90753 79562
Number of patterns mined 36658 35628 35628 35628
Promoter Gene Sequences Classification accuracy 0.6758 | 0.6842 0.8465 0.8628
Computational time (ms) 356954 | 407090 315100 148916

[18] Ana Palacios, Alvaro Martinez, Luciano Sanchez and
Ines Couso, Sequential pattern mining applied to
aeroengine condition monitoring with uncertain health
data, Engineering Applications of Artificial Intelligence,
44, 10-24 (2015).

[19] Tung Kieu, Bay Vo, Tuong Le, Zhi-Hong Deng and Bac Le,
Mining top-k co-occurrence items with sequential pattern,
Expert Systems with Applications, 85, 123-133 (2017).

[20] Hwa Kyung Lim, Yongdai Kim and Min-Kyoon Kim,
Failure prediction using sequential pattern mining in the
wire bonding process, IEEE Transactions on Semiconductor
Manufacturing, 30(3), 285-292 (2017).

[21] Philippe Fournier-Viger, Cheng-Wei Wu, Antonio Gomariz
and Vincent S. Tseng, VMSP: Efficient vertical mining
of maximal sequential patterns, in Proc. of Canadian
Conference on Artificial Intelligence, Springer, Cham, 83-
94 (2014).

[22] Molecular Biology (Splice-junction Gene Sequences)
Dataset from,
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology
+(Splice-junction+Gene+Sequences).

[23] Molecular Biology (Promoter Gene Sequences) Dataset
from,
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology
+(Promoter+Gene+Sequences).

[24] Jian Pei, Jiawei Han, BehzadMortazavi-Asl, Jianyong
Wang, Helen Pinto, Qiming Chen, UmeshwarDayal and
Mei-Chun Hsu, Mining Sequential Patterns by Pattern-
Growth: The PrefixSpan Approach, IEEE Transactions
on Knowledge and Data Engineering, 16(11), 1424-1440
(2004).

[25] Xifeng Yan, Jiawei Han and Ramin Afshar, CloSpan:
mining closed sequential patterns in large datasets, in Proc.
of the 2003 SIAM International Conference on Data Mining,
166-177 (2003).

K. Poongodi received the
MCA degree with distinction
from Bharathiar University,
Coimbatore in 2003.
She was awarded M.E degree
in Computer Science and
Engineering with distinction
from Anna University,
Chennai in 2014. Currently,
she is a Ph.D. scholar in the
Faculty of Information and Communication Engineering,
Anna University, CEG Campus, Chennai, Tamil Nadu,
India. She has nine years of teaching experience and
received 39" University Rank in her M.E. degree. She
received best teacher award in Coimbatore District in
2012 from Akshaya Institute of Management Studies,
Coimbatore. Her research interests include Data Mining,
Big Data and Database Management System.

© 2019 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

16 o K. Poongodi, A. K. Sheik Manzoor: Sequential pattern mining using radixtreeminer...

A. K. Sheik Manzoor
is currently working
as Associate Professor
in the Department of
Management Studies, Anna
University, CEG Campus,
Chennai, Tamil Nadu,
India. He received his B.E.
degree in Computer Science
and Engineering from
Manonmaniam Sundaranar University in 1999, M.E. in
Systems Engineering and Operations Research from
Anna University, Chennai in 2016, MBA in Management
Studies from Madurai Kamaraj University in 2001 and
Ph.D. in the Faculty of Management Sciences from Anna
University, Chennai in 2013. He has 16 years of teaching
experience and his current research interests include Data
Mining, Information Systems and Databases. His other
areas of specialization are Medical Tourism and
Enterprise Resource Planning. He has published several
papers in reputed National and International Journals.

© 2019 NSP
Natural Sciences Publishing Cor.

	Introduction
	Related work
	Proposed RadixTreeMiner algorithm for data mining
	Results and discussion
	Conclusion

