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Abstract: The support vector machine (SVM) is widely used for machine learning and artificial intelligence. Traditional support

vector machine has been extended to multicategory case for multicategory classification problem. However, it does not provide an

established Bayesian Framework for Multicategory Support Vector Machine. Corresponding to this, we propose Bayesian methods for

multi-class support vector machine. Extensive numerical studies were conducted to evaluate the performance of the proposed method.

The numerical study suggests that the proposed Bayesian framework provides good results for practical situations. In addition, an

illustrative example using MIT Genome data is presented.
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1 Introduction

The support vector machine(SVM) is a very popular method within the machine learning literature. Recently, it has
grabbed statisticians’ attention as well. The traditional SVM, designed for the binary classification problem, has a nice
geometrical interpretation of discriminating one class from another by a hyperplane with the maximum margin. In SVM,
the separation is achieved by hyperplane which has the largest distance to the data of the two groups.

Bayesian approach, which has been rapidly developed throughout the past thirty years, plays a very important role
in statistics. Nicholas G and Steven L [1] applied it to SVM classification problem. In their paper, they developed a
latent variable representation of original SVM, which helps EM or MCMC algorithms to do parameter estimation. In
their method,data augmentation methods can be formulated in terms of complete data sufficient statistics, which is a
considerable advantage when working with large data sets. Most of the computational expense results from repeated
iterating over the data. Methods based on complete data sufficient statistics need only compute those statistics once per
iteration. (Nicholas G and Steven L [1]).

Recently, it has been shown that the support vector machine (SVM) [2] admits a Bayesian interpretation through the
technique of data augmentation. However, existing inference methods for the Bayesian support vector machine [3] can
only handle two-category classification problem under Bayesian framework. Based on stochastic variational inference
[4] and inducing points [5], we develop a Bayesian support vector machine for multicategory classification problem in
this paper. The proposed Bayesian multicategory SVM not only inherits the advantage of robustness against outliers,
advanced accuracy [6], and guaranteed error rate [7] from the frequentist formulation of the SVM, but like all Bayesian
methods, it also has the advantage of modeling with high flexibility, automatic parameter tuning, and providing estimates
of uncertainty in predictions.

We propose to extend the SVM to the multicategory case under the Bayesian framework. We will first generalize the
hinge loss function and show that the formulation of the generalized multicategory SVM encompasses that of the two-
category SVM, as well as maintains the good properties of the binary SVM. We introduce the multicategory SVM for
the standard case as well as some modifications for the nonstandard case. Finally, we derive the dual formulation which
enables us to obtain the solution, and show how to tune the model-controlling parameters in MSVM.

The paper is organized as follows: Section Two addresses the loss function and Bayesian models for multi-SVM.
Section Three handles the Point estimation by EM and other related algorithms. Section Four presents the MCMC for
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SVM. Sections Five covers the simulations study. Section Six illustrates the proposed methods through applying it to MIT
genome data. Sections Seven and Eight comprise discussion and concluding remarks.

2 Multicategory Support Vector Machines

Let’s first consider a binary outcome yi ∈ {−1,1} based on a vector of predictors xi = (1,x1, · · · ,xk−1) for i = 1, · · · ,n.
The objective of the Lα -norm regularized support vector classifier is to estimate the coefficients βββ through minimizing
the following penalty likelihood function

dα(βββ ,ν) =
n

∑
i=1

(1− yix
T
i βββ )++ν−α

k

∑
j=1

∣

∣

∣

β j

σ j

∣

∣

∣

α
(1)

where σ j is the standard deviation of the j′element of x and ν is a tuning parameter.

2.1 Model and Notations

Now we extend this model to the multicategory case assuming that all of the classification costs are equal and no sampling
bias exists in the training dataset. In addition, the k-category classification problem has to be considered. To ensure the
symmetry of class label representation, we define the following vector-valued class codes, denoted by yi. For notational
convenience, we define v j for j=1,...,k as a k-dimensional vector with 1 in the jth coordinate and -1/(k-1) elsewhere. Then
yi is coded as v j if example i belongs to class j. For instance, if example i falls into class 1, yi = v1 = (1,−1/(k−1), ...−
1/(k−1)). Accordingly, we define a k-tuple of separating functions f(x) = ( f1(x), ..., fk(x)) with constraint ∑k

j=1 f j(x) =

0, for any x ∈ R
d . We also define p j(x), j = 1, ...,k to be the conditional probabilities of k classes and constrained by

∑k
j=1 p j(x) = 1. We justify the utility of the sum-to-0 constraint later as we illuminate properties of the proposed method.

Analogous to the two-category case, we consider f(x) = ( f1(x), ..., fk(x)) ∈ ∏k
j=1({1}+HK j

), the product space of k

RKHS’s HK j
for j=1,...,k, we assume that they are the same RKHS denoted by HK . Define Q as the k × k matrix with 0

on the diagonal and 1 elsewhere. This represents the cost matrix when all of the misclassification costs are equal. Let L(·)
be a function that maps a class label yi to the jth row of the matrix Q if yi indicates class j.

We propose that to find f(x) = ( f1(x), ..., fk(x)) ∈ ∏k
1({1}+ HK) with the sum-to-0 constraint, minimizing the

following quantity is a natrual extension of SVM methodology:

1

n

n

∑
i=1

L(yi)·(f(xi)− yi)++
1

2
λ

k

∑
j=1

‖h j‖2
HK

, where (f(xi) − yi)+ is defined as [( f1(xi) − yi1)+, ...,( fk(xi) − yik)+] by taking the truncate function “(·)”+
componentwise.

As the binary case, the proposed loss function has an analogous relation to the misclassification loss. That is, if f(xi)
itself is one of the class codes, L(yi)·(f(xi)− yi)+ is k/(k− 1) times the misclassification loss.

We show that the generalized hinge loss function reduces to the binary hinge loss function

1

n

n

∑
i=1

(1− yi f (xi))++λ
k

∑
j=1

‖h‖2
HK

when k=2. Under the binary case, yi = (1,−1)(1 in the binary SVM notation), then L(yi) ·(f(xi)−yi)+ = (0,1) · [( f1(xi)−
1)+,( f2(xi) + 1)+] = ( f2(xi)+ 1)+ = (1− f1(xi))+. Similarly, if yi = (−1,1)(-1 in the binary SVM notation), L(yi) ·
(f(xi)−yi)+ =(1− f2(xi))+. Also, note that (λ/2)∑i=1 2‖h j‖2

HK
= (λ/2)×(‖h1‖2

HK
+‖−h1‖2

HK
) = λ‖h1‖2

HK
, by the fact

that h1(x)+h2(x) = 0 for any x, discussed later. Therefore, the binary SVM formulation is a special case of Multicategory
SVM formulation when k=2.
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2.2 Conditional distribution

According to the above-mentioned computations, especially equations (7) and (9), the support vector machine pseudo-
posterior distribution can be expressed as the marginal of the complete data pseudo-posterior distribution as follows

p(β ,λ ,ω |y,ν,α) ∝
n

∏
i=1

k

∏
r=1

[

λ−0.5
ir exp

(

− (xxxT
i βr − yir +λir)

2

2λir

)]I(ci 6=r)

×
k

∏
r=1

p

∏
j=1

ω−0.5
r j exp

(

−
β 2

r j

2ν2ωr jσ
2
j

)

p(ωr j|α)

(2)

Define θ−r , {i : ci 6= r} as the set of all subjects that do not fall in class r. We could rewrite the complete data
pseudo-posterior distribution as

p(β ,λ ,ω |y,ν,α) ∝
k

∏
r=1

∏
i∈Θ−r

λ−0.5
ir exp

(

− (xxxT
i βr − yir +λir)

2

2λir

)

×
k

∏
r=1

p

∏
j=1

ω−0.5
r j exp

(

−
β 2

r j

2ν2ωr jσ
2
j

)

p(ωr j |α)

(3)

The full conditional distribution of β given λ ,ω ,y
According to equation (10), we can get the full conditional distribution of βr for any r=1,...,k

p(βr|ν,λr,ωr,y) ∝ ∏
i∈Θ−r

p

∏
j=1

exp

(

− (xxxT
i βr − yir +λir)

2

2λir

)

× exp

(

−
β 2

r j

2ν2ωr jσ2
j

)

(4)

Define the matrices Λr = diag(λλλ r),Ωr = diag(ωr), where the diagram elements of Λr and Ωr are the elements of λλλ r

and ωωωr, respectively. And σ = diag(σ2
1 , ...,σ

2
p). Also let XXX r denote a matrix with row i equal to, xxxT

i , the predictor vector
of the i’th subject in Θ−r.

We can write this model in hierarchical form [8]

yyyr −λλλ r =XXX rβββ r +Λ
1
2

r ελr

βββ r =
1

ν
Ω

1
2

r Σ
1
2 εβr

where εβr and ελr are vectors of iid standard normal deviates with dimensions matching βββ r and λλλ rrr.
Thus, for βββ rrr has a conditional normal posterior distribution given by

p(βr|ν,λr,ωr,y)∼ N (br,Br) (5)

where

B−1
r = ν−2σ−1ω−1

r +XXXT
r Λ−1

r XXX r and br = BrXXX
T
r (yyyr ×λλλ

−1
r − 111) (6)

The full conditional distribution for λir and ωr j given β ,ν,y We want the conditional distribution of λir for r=1,..,k and
i ∈Θ−r. Note that from the complete pseudo-posterior distribution we can get

p(λir|βr,yir) ∝
1√

2πλir

exp

{

−1

2

(

(xxxT
i βr − yir)

2

λir

+λir

)}

∼ G I G

{

1

2
,1,(xxxT

i βr − yir)
2

} (12)

This implies that

(λ−1
ir |βr,yir)∼ I G (|xxxT

i βr − yir|−1,1) (7)

For the full conditional distribution of ωr j, we know that it is proportional to the integrand in equation (9). This is
complicated because its prior density p(ωr j|α) is generally unavailable. However, for the two special cases of α = 1 and
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α = 2, the closed-form solutions are available. When α = 2, p(ωr j|βr j) is a point mass at 1. For α = 1, the full conditional
distribution of ωr j is

p(ωr j|βr j,ν) ∝
1

√

2πωr j

exp

{

−1

2

(

β 2
r j/ν2σ2

j

ωr j
+ωr j

)}

∼ G I G

(

1

2
,1,

β 2
r j

ν2σ2
j

)

)

Similarly, we know that

(ω−1
r j |βr j,ν)∼ I G (νσ j/|βr j|,1) (8)

Later we will use these distributions to develop learning algorithms.

3 Point estimation by EM and other related algorithms

In this section, we use the distributions obtained in Section Two to construct EM-style algorithms to estimate the
coefficients. First, we will develop an EM algorithm for learning β with a fixed value of the tuning parameter ν . Then we
develop an ECME algorithm to learn β and ν simultaneously.

3.1 Learning β with fixed ν

With the augmented data λ and ω , the EM algorithm is an iterative method for finding posterior modes or MLEs. From
equation (12), we know that the posterior distributions of the βr’s for r=1,...,k are independent. Thus, we can estimate
them separately using the EM algorithm. For βr, the E-step and M-step are defined by

E-step Q(βββ r|βββ
(g)
r ) =

∫

log p(βββ r|ν,λλλ r,ωωωr,y)p(λλλ r,ωωωr|βββ (g)
r ,v,y)dλλλ rdωωωr

M-step βββ
(g+1)
r = argmax

βββ r

Q(βββ r|βββ
(g)
r )

(9)

Note that any term in log p(βββ r|ν,λλλ r,ωωωr,y) that is free of βββ r can be absorbed to the constant. This leaves us only the

linear function of λir and ωr j. Thus, we only need to replace them with their conditional expectations λ̂
−1(g)
ir and ω̂

−1(g)
r j

for the calculation of function Q(βββ r|βββ (g)
r ), given βββ r and the observed data.

As discussed before, the result for ωr j would depend on the value of α . Here, we still focus on the case where α = 1.
According to equation(16), we can obtain that

ω
−1(g)
r j = νσ j|βr j|−1

Recall that the conditional posterior of βR follows a multivariate normal distribution. [9] Thus, the posterior mode will
be the same as the posterior mean. Using equations (13) and (14), we can get the following algorithm:

Algorithm: EM-SVM

Repeat the following until convergence

E-Step: Given a current estimate βββ r = βββ (g)
r ,compute

λ̂
−1(g)
ir = |xxxT

i βββ r − yir|−1,

Λ̂
−1(g)
r = diag

(

λ̂λλ
−1(g)

r

)

,

Ω̂
−1(g)
r = diag

(

ω̂ωω−1(g)
r

)

,

M-Step: Compute βββ
(g+1)
r as

βββ
(g+1)
r =

(

ν−2Σ−1Ω̂
−1(g)
r +XXXT

r Λ̂
−1(g)
r XXX r

)−1

XXXT
r (yyyr × λ̂λλ

−1(g)

r − 111)
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3.2 Stability

The EM algorithm gets unstable when some elements of λλλ
−1

or www−1 equals ∞. However, they provide the following ways
to restore the unstable problem.

When w−1
j = ∞, then β j = 0, we may simply omit column j from X and β j from βββ .

When λ−1
i = ∞, then observation i is a support vector satisfying the constraint yiβββ

T
xi = 1. Following Lee and Cui

[10], the numerical instability can be solved by separating the support vectors from the rest of the data as follows:

–Let Xs denote the matrix obtained by stacking the linearly independent support vector row wise, i.e., each row of Xs

is a support vector.
–Let X−s denote X with the support vector rows deleted.

–Let λλλ
−1
−s denote the finite elements of λλλ , and let ΛΛΛ−1

−s = diag(λλλ−1
−s ).

–Then a stable version of the M-step can be given by the following ”restricted least squares”,
(

βββ
ψψψ

)

=

(

B−s XT
s

Xs 0

)−1(

XT
−s(1+λλλ

−1
−s )

1

)

=

(

B−s(I+XT
−sFXsB−s) −B−sX

T
s F

−FXsB−s F

)(

XT
−s(1+λλλ

−1
−s )

1

)

(10)

where B−s = ν−2ΣΣΣ−1ΩΩΩ−1 +XT
−sΛΛΛ

−1
−s X−s and F =−(XsB−sX

T
s )

−1. ψψψ is a vector of Lagrange multipliers.

3.3 Learning β and ν simultaneously

In order to learn β and γ together, we use the generalized expectation-conditional maximization algorithm(ECME), where
the last“E” represents the conditional maximization of either function. To implement the ECME algorithm, we assume an
inverse gamma prior distribution for να [12]

p(ν−α) ∝ (ν−α)αν−1 exp(−bνν−α)

Combining this prior with equation (8), we can find the conditional posterior density of ν given β and α

p(ν−α |β ,α) ∝ (ν−α)
pk
α +αν−1 exp

{

−ν−α

[

bν +
k

∑
r=1

p

∑
k=1

∣

∣

∣

∣

βr j

σ j

∣

∣

∣

∣

α
]}

The following algorithm can be obtained with minor modification of the EM-SVM algorithm.

Algorithm:ECME-SVM

E-StepIdentical to the E-step of EM-SVM with ν = ν(g).

CM-stepIdentical to the M-step of EM-SVM with ν = ν(g).
CME-StepSet

(

να
)(g+1)

=
bν +∑k

r=1 ∑
p

k=1 |β
(g)
r j /σ j|α

pk/α + aν − 1

4 Fully Bayesian Multicategory Support Vector Machines

In the MSVM framework of Lee et al. [11], following Zhang and Jordan [12], we can find f(.) by minimizing the following
penalized function when α = 1,

d(βββ ,ν) =
n

∑
i=1

L(yi) · (f(xi)− yi)++ν−1
k

∑
r=1

p

∑
j=1

∣

∣

∣

βr j

σ j

∣

∣

∣ (11)

or equivalently,

d(βββ ,ν) =
k

∑
r=1

∑
i∈⊖−r

( fr(xi)+
1

k− 1
)++ν−1

k

∑
r=1

p

∑
j=1

∣

∣

∣

βr j

σ j

∣

∣

∣
(12)

with constraints ∑k
r=1 fr(xi) = 0 for i = 1, · · · ,n.

where σ j is the standard deviation of the j′element of x, ν is a tuning parameter and ⊖−r = {i : ci 6= r}, ci is the
classification number of observation i.
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4.1 Bayesian inference

The minimization problem (12) can be viewed to find the mode of pseudo-posterior distribution from the Bayesian
perspective. That is

p(βββ |ν,y) ∝ exp(−d(βββ ,ν)) ∝ C(ν)L(y|βββ )p(βββ |ν) (13)

where C(ν) is a normalization constant. According to the form of the objective function, we can adopt the following
likelihood function for the data and assume an exponential power prior for βββ as follows:

L(y|βββ ) =
n

∏
i=1

Li(yi|βββ ) = exp

{

−2
n

∑
i=1

L(yi) · (f(xi)− yi)+

}

(14)

p(βββ |ν) =
k

∏
r=1

p

∏
j=1

p(βr j|ν) =
(

k

∏
r=1

p

∏
j=1

1

2νσ j

)

exp

(

−
k

∑
r=1

p

∑
j=1

|βr j|
νσ j

)

(15)

where [βr j|ν] follows the Laplace distribution.

Now,following Polson & Scott [1], we assume a gamma prior on ν−1, i.e.

p(ν−1) ∝ (ν−1)aν−1 exp(−bνν−1) (16)

with hyper-parameters (aν ,bν). Then we use the independent Jeffreys noninformative prior, i.e. the invariance prior, on
σ j,

p(σ j) ∝
1

σ j

(17)

for j = 1, · · · , p.

Theorem 1.Under the penalized function (12) as well as the priors (16) and (17), following the data augmentation

approach proposed by Polson and Scott [1], we have the following full conditional posterior distributions

[βββ r|ν,λλλ r,wwwr,y] ∼ N (br,Br) (18)

[λ−1
ir |βββ r,yir] ∼ I G (|xT

i βββ r − yir|−1,1), (19)

[w−1
r j |βr j,ν,σ j] ∼ I G (νσ j/|βr j|,1) (20)

[ν−1|βββ ,σ j] ∼ Gamma(pk+ aν − 1,bν +
k

∑
r=1

p

∑
j=1

|βr j|
σ j

) (21)

[σ j|ν,βββ ] ∼ Inv. Gamma(k,
1

ν

k

∑
r=1

|βr j|) (22)

for i ∈ ⊖−r;r = 1, · · · ,k and j = 1, · · · , p. Where B−1
r = ν−2ΣΣΣ−1ΩΩΩ−1

r +XT
r ΛΛΛ−1

r Xr and br = BrXT
r ΛΛΛ−1

r (yr − λλλ r). And

yr = {yir}i∈⊖−r ,λλλ r = {λir}i∈⊖−r ,ΛΛΛ r = diag(λλλ r), ΩΩΩ r = diag({wr j}p
j=1), ΣΣΣ = diag({σ2

j }
p
j=1), 1 is the vector of 1’s. Xr is

a matrix with row i is xi, i ∈⊖−r.

Then we can develop the MCMC algorithm from Theorem 1.

Algorithm: MCMC-MSVM

Step 1Draw βββ
(g+1)
r from N (b

(g)
r ,B

(g)
r ) for r = 1, · · · ,k;

Step 2Draw λ
−1(g+1)
ir from I G (|xT

i βββ
(g+1)
r − yir|−1,1) independently, for r = 1, · · · ,k; i ∈⊖−r;

Step 3Draw w
−1(g+1)
r j from I G (ν(g)σ

(g)
j /|β (g+1)

r j |,1) independently, for r = 1, · · · ,k and j = 1, · · · , p;

Step 4Draw ν−1(g+1) from Gamma(pk+ aν − 1,bν +∑k
r=1 ∑

p
j=1

|β (g+1)
r j |
σ
(g)
j

);

Step 5Draw σ
(g+1)
j from Inv. Gamma(k, 1

ν(g+1) ∑k
r=1 |β

(g+1)
r j |) for j = 1, · · · , p.
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4.2 Simulation Example

We consider a simple three class example on the unit interval [0, 1] with p1(x) = 0.97exp(−3x), p3(x) = exp(−2.5(x−
1.2)2), and p2(x) = 1− p1(x)− p3(x). Class 1 is most likely for small x, whereas class 3 is most likely for large x. The
in-between interval is competing zone for three classes, although class 2 is slight dominant. In simulation, 60 data points
are generated and considered as training data. Figure 1 shows the classification of training data, y-axis is another variable
with uniform (0,1) distribution associated with X .

Fig. 1: Classification Result of Simulated Training Data Points with 3 Classes (Red, Green and Blue)

We generate 100 data points and classify through MSVM. In this example, error rate is 0.48, which is not relative large
to our expectation. Figure 2 shows the predicted probability function for MSVM. All estimation and plots are obtained
from ”MSVMPATH” in R.

5 Application

We applied our multi-category classification method to MIT genome data. The data is available at
http://www.genome.wi.mit.edu. The data is the gene expression levels of two different types of acute Leukemia: acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The ALL can be further divided into two different
classes: B-cell ALL and T-cell ALL. There are 56 cases of Leukemia in total, 32 cases of B-cell ALL, 12 cases of T-cell
ALL and 28 cases of AML. In each case, the gene expression levels of p = 8,468 human genes are measured using
Asymmetric high-density oligonucleotide arrays.

Two different types of genes are ruled out. The first type is the genes with too large or too small gene expression level.
The second type is the genes varied too much over cases. After these two types of genes are ruled out, 4137 genes are left.
Then, a base 10 logarithmic transformations were taken. But p = 4137 genes are too many to compute, since we have to
calculate the inverse of a p by p matrix. Hence we select 40 genes with the largest BSS/WSS ratios. BSS and WSS denote
between-group sum of square and within-group sum of square respectively. In our method, there is an intercept term in
the parameter. Consequently, there are p = 59 dimensions in each of the 3 groups.

We first applied EM-SVM algorithm with fixed ν to the data. Figure 3 is the iteration histories of β s. It involves three
plots, each of them shows the β s in a group and there are 41 β s in each group. We did 500 iterations. Moreover, it reveals
that the iteration is stable before 400 iterations, but it is very unstable when the iteration is near 500 times. The 41 β s in
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Fig. 2: Estimate of the predicted probability function f(x) for MSVM

Fig. 3: EM-SVM Iteration Path of β ’s
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group 1 are almost zero, except 3 of them. In group 2, the β s vary in a small range. But in group 3, the β s fluctuate a lot.
Figure 4 is the sample variances of every β in each group. In group 1, only the variances of three β s are obviously larger
than the other β s, which is consistent with the iteration plot in figure 1. The variances of β s in group 2 is relatively small
compared with those in group 3.

We also applied ECME-SVM to the data. The results are presented in figure 3. It illustrates that after 300 iterations,
the iteration becomes very unstable. The iteration ends after 350 times because of NA is produced. With ν estimated
simultaneously, the β s in group 2 and 3 fluctuate much less, but β s in group 1 fluctuate more.

Fig. 4: Variances of β ’s in EM-SVM

6 Discussion

In the MSVM framework, we need to use the truncated multivariate normal distribution to satisfy the sum to zero constraint
on f(.),i.e. ∑k

r=1 fr(xi) = 0 for i = 1, · · · ,n, but it sacrifices the efficiency of the computation. In our ca suppose

fr(xi) = xiβββ r (23)

If we let

X =











xT
1

xT
2
...

xT
n











,D =









β11 β21 · · · βk1

β12 β21 · · · βk2

...
... · · ·

...
β1p β21 · · · βkp









(24)

,the sum-to-zero constraint is equivalent to X∑k
r=1 βββ r = 0n. If the design matrix X is of full rank, ∑k

r=1 βββ r = 0p or D1k = 0p

can guarantee the constraint.
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Fig. 5: ECME-SVM Iteration Path of β ’s

Following Zhang and Jordan [11], one possible solution could be taken the reparameterization procedure below

D = BH (25)

where H = Ik − 1
k
1k1T

k . However, since the matrix H is singular, it is impossible to get the density distribution for the
parameters B from the distribution of D using the density transformation formula. One possible solution for this issue
could be solved by looking for a kernel function corresponding to the L1-normal penalty in (11).

7 Conclusion

In this paper, we extended the multi-class support vector machine under the Bayesian framework, which can be used to
solve multivariate classification problem. To minimize the loss function used here, we first developed the pseudo posterior
density for the model coefficients. To maximize the the pseudo posterior density is the same as minimizing the loss
function. We have developed an EM algorithm for locating point estimates of multivariate support vector machine and an
MCMC algorithm for exploring the full pseudo-posterior distribution. Moreover, we developed the posterior predictive
probabilities to classify for the observed data.
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