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Abstract: The use of many-core architectures improves the performance of most of the data-intensive applications. One of the

challenging tasks for modern many-core architectures is to handle the irregular memory access effectively. Unlike regular memory

access applications, an increase in the size of the problem in an irregular memory access application leads to a reduction in overall

performance. A mapping between on-chip and off-chip memory through the heterogeneous communication channel also poses

significant challenges. In this paper, a k-exchange algorithm with ant colony optimization is proposed to improve the performance

of irregular memory access applications such as Multi-dimensional Knapsack Problem (MKP) and Traveling Salesman Problem (TSP)

on the Graphics Processing Units (GPU). A different set of instances of OR library and TSPLIB are considered for experiments. The

obtained results show an improvement in terms of optimal solution and speedup for the MKP and TSP instances.
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1 Introduction

Data-intensive applications are mapped to multi- and
many-core architectures, because of the scope for massive
parallelism. Graphics Processing Units (GPUs) and Many
Integrated Core (MIC) are widely used to implement
parallel applications using programming languages such
as Compute Unified Device Architecture (CUDA),
OpenMP and OpenCL [1–3]. These architectures face
different challenges like mapping workload to different
cores effectively, numerical stability, non-uniform access
which may result in load imbalance, reuse of data and
optimizing data locality [4].

With the adequate processing elements, many-core
architectures perform better for the applications which
involve regular memory access pattern. Mapping and
optimizing irregular memory access applications on
GPUs require more effort than working on regular
memory access applications. Irregularity in memory
access and different capacity of heterogeneous
communication channels demand more attention
especially deep learning architectures such as
Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN). The sparse connection between
the layers of the networks exhibits irregular memory
access [5, 6]. Mapping and optimizing these deep learning

models on many-core architectures are difficult since
many challenges such as schedulability and dependency
checking are involved. It is difficult to analyze the nature
of memory access of all applications during design time
itself. Therefore the challenges of enhancing performance
and handling on-chip memory and off-chip memory
bandwidth bottleneck are still open [7–9]. Many irregular
applications have been mapped to GPUs for analysis and
performance enhancement. Metrics like control flow
irregularity and memory access irregularity are also
considered for characterizing irregular applications for
many-core architectures [10]. However, effective
utilization of on-chip and off-chip memory bandwidth
remains a challenge for the data-intensive irregular deep
learning applications. Most of the deep learning-related
studies have focused on the application level to report the
improvements in accuracy by trading-off the architecture
level performance. In this paper, ant colony optimization
with k-exchange algorithm is proposed to address
multichoice multidimensional knapsack problem and
traveling salesman problem considering an irregular
memory access application. The paper is organized as
follows. Section 2 gives the related work of
multidimensional knapsack problem, traveling salesman
problem and its variants. Section 3 proposes an ant colony
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optimization with k-exchange algorithm. Section 4
provides experimental results and finally, section 5 gives
the conclusion with future aspects of the work.

2 Motivation and Related Work

Multidimensional Knapsack (MKP): For a given set of
n items with weight wi and value vi, the maximum weight
capacity being W,

maximize ∑n
i=0 vixi

subject to ∑n
i=0 wixi ≤W , where xi ∈ {0,1}

where xi represents the number of items in the
knapsack. The objective is to yield maximum profit with
the minimal use of xi. It is a NP-hard problem used to
optimize and yield better results. It has been implemented
with particle swarm optimization, association rule mining
and space management problem. Many solutions have
been proposed for 0/1 MKP because of its use in real-time
applications like financial derivatives and network
planning. Knapsack problem finds the sum of different
sized objects collected in such a way that the solution is
less than the capacity of knapsack. This condition is
followed in the basic knapsack problem whereas MKP
follows more than one condition. Solving a Knapsack
problem can be considered as allocating the problem into
an irregular mesh graph [11]. 0/1 MKP is a variant of
knapsack problem in which 0 represents an item that’s not
selected and 1 for selected item. Knapsack and its variants
have already been mapped to multicore architectures.
Extensive studies on MKP optimization problem have
been carried out and it has been resolved with different
approaches like metaheuristic algorithms and genetic
algorithm. Combinations of different algorithms are used
for further improvement in the optimization problem [12].

Variations of MKP algorithm have been dealt with
limited benchmark instances which are almost of similar
type. It is essential that these algorithms have to be
implemented with different types of instances by
considering profits and weights as key parameters.
Instances can be generated by correlating profits with
weights in different dimensions [13]. A scheduling
algorithm has been proposed to solve knapsack problem
on hypercube while considering its vertices as processors
and the memory access as irregular access [11]. Different
heuristic methods have also been adopted for solving
knapsack problems and its variants [14]. Travelling
Salesman Problem (TSP) with Max-Min Ant System
(MMAS) has been used to report the performance benefit
of GPU using Cg(C for graphics) in the last decade.
CUDA implementations of MMAS are also used for
solving other problems like satisfiability and parallel
search algorithm. Various studies have reported a speedup
range from 2x to 32x by using the hybrid ant system
along with other algorithms [15–18].

For TSP, ant systems with roulette wheel
selection-based methods are used in the tour construction

phase to reduce execution time. TSP has been considered
as an important NP-hard problem and the implementation
of hybrid TSP and ant colony optimization solves many
real-time problems [19–21]. There are studies that report
improvised speedup by allocating the group of instances
to thread blocks in edge-detection algorithm for image
processing [22].

Many hybrid algorithms are used for real-time
computational problems that incorporate Ant Colony
Optimization(ACO) to provide an optimized
solution [23]. Different methods such as graph-based
model and multi-objective model are also used with ACO
for further improvement of results. Automatic design
method for ACO has also been proposed and compared
for some specified conditions [24, 25]. ACO has been
implemented on a variety of architectures for different
applications. Parallel ant programming for classification
problems gives a remarkable performance when mapped
to GPUs for larger data set like UCI [26, 27].

3 MKP Optimization using k-exchange

algorithm

In this paper, modifications have been proposed to
optimize multidimensional knapsack problem considering
it as resource allocation problem particularly for effective
memory bandwidth utilization. In the transformation step,
four local optimization cases with neighborhoods that
involve changing up to k components of the solution are
introduced. The k components are referred to as k-opt.

Algorithm 1 MKP Optimization Algorithm

1: Read the solution and remaining capacity of all dimensions

2: Create two subsets of objects Ob junsel and Ob jsel

3: Select an object from the two subsets

4: while No duplicate pair do

5: if Ob junsel ≥ Ob jsel and constraintsmax ∈ Z
d then

6: Identify pair of objects

7: end if

8: end while

9: Discard all pairs except the best solution

10: Update the results

The local optimization of this procedure finds the best
pattern that can be considered for effective bandwidth
utilization of memory hierarchy of modern architectures.
The proposed MKP optimization algorithm is given in
Algorithm 1. The algorithm takes initial knapsack
solution and the remaining capacity of all dimensions
obtained by a heuristic-based ACO and proceeds as
follows. It separates the solution from the list of objects
into two subsets, one for selected objects and other for
unselected objects. It identifies the pair of objects one
from selected and one from unselected that should satisfy
all of the maximum constraints in all dimensions along
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with remaining capacity from the previous solution in
order for the exchange to take place. The value of an
unselected object should be greater than or equal to the
value of the selected object. The duplicates can be
avoided, by checking the repetition of objects in more
than one identified pair. If an object is present in more
than one pair, all pairs are discarded except one which
offers the best solution. The existing solution and the
remaining capacity with the new results are updated. The
four local search algorithms 1-opt, 1.5-opt1, 1.5-opt2 and
2-opt based on k-exchange are proposed to improve the
solution. The configuration of four algorithms is given in
Table 1. These algorithms are based on local optimization
with neighborhoods that involve changing up to k
components of the solution which is often referred to as
k-opt.

Table 1: Different Local Search Methods

S.No.

Local

Search

Methods

No. of

object(s)

from

selected list

No. of

object(s)

from

unselected

list

1 1-opt 1 1

2 1.5-opt1 2 1

3 1.5-opt2 1 2

4 2-opt 2 2

3.1 CUDA Implementation

The followings are four auxiliary kernels which are
common for all proposed algorithms:

init var <<< 1,1 >>>

(d sol len,d len sel,d len unsel);

launching 1 block with 1 thread, which initializes the
device memory variables.

sort list <<< 1,hn >>> (d best ant so f ar,

d ob j list1,d ob j list2,d len sel,

d len unsel,h n);

launching 1 block with n threads (equal to n objects),
which separates the solution into two sub sets as
mentioned in section 3.2 point 2.

sort result <<< 1,h sol len >>>

(d sol,d sol new,d sol len);

launching 1 block with threads equal to the size of the
pairs generated, which internally sorts the pairs based on
its value using parallel bitonic sort.

Bitonic Sort Kernel <<< 1,N >>> (d sol new, j,k);

launching 1 block with threads equal to the size of the list
to be sorted in parallel.

3.1.1 1-Opt

The following four kernels are specific for 1-opt local
search.

create sol one opt <<< l1, l2 >>>

(d sol,d sol len,d ob j list1,d ob j list2,d pp,

d rr,d best ant so f ar,h m);

launching blocks equal to the size of selected object list
with threads equal to the size of unselected object list. It
identifies the object pairs as mentioned in section 3.2 point
3.

avoid duplicates one opt <<< h sol len− 1,

h sol len− 1 >>> (d sol);

launching blocks equal to the size of solution generated
by the above kernel call with equal number of threads. It
avoids the duplicates as mentioned in section 3.2 point 4.

update best ant one opt f irst

<<< 1,h m >>> (d best ant so f ar,

d sol new,d rr,h m);

update best ant one opt rest

<<< 1,h m,sizeo f (unsignedint)∗ h m >>>

(d best ant so f ar,

d sol new[i],d rr,h m);

launching 1 block with threads equal to the number of
constraints. It updates the actual solution based on the
new results obtained by the local search.

3.1.2 1.5-Opt1

The following four kernels are specific for 1.5-opt1 local
search:

dim3block dim(l1− 1, l1− 1,1);

create sol one f ive opt1 <<< block dim, l2 >>>

(d sol,d sol len,d ob j list1,d ob j list2,

d pp,d rr,d best ant so f ar,h m);

launching blocks in two dimensions (both dimensions
equal to the size of selected object list) with threads equal
to the size of unselected object list. It identifies the object
pairs as mentioned in section 3.2.

avoid duplicates one f ive opt1

<<< h sol len− 1,h sol len− 1 >>> (d sol);
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launching blocks equal to the size of solution generated by
above kernel call with equal number of threads. It avoids
the duplicates as mentioned in section 3.2 point 4.

update best ant one f ive opt1 f irst <<< 1,

h m >>> (d best ant so f ar,d sol new,d rr,h m);

update best ant one f ive opt1 rest

<<< 1,h m,sizeo f (unsignedint)∗ h m >>>

(d best ant so f ar,d sol new[i],d rr,h m);

launching 1 block with threads equal to the number of
constraints. It updates the actual solution based on the
new results obtained by the local search.

3.2 1.5-Opt2

The following four kernels are specific for 1.5-opt2 local
search.

dim3block dim(l2− 1, l2− 1,1);

create sol one f ive opt2 <<< block dim, l1 >>>

(d sol,d sol len,d ob j list1,d ob j list2,

d pp,d rr,d best ant so f ar,h m);

launching blocks in two dimensions (both dimensions
equal to the size of unselected object list) with threads
equal to the size of selected object list. It identifies the
object pairs as mentioned in section 3.6.2.

avoid duplicates one f ive opt2

<<< h sol len− 1,h sol len− 1 >>> (d sol);

launching blocks equal to the size of solution generated by
above kernel call with equal number of threads. It avoids
the duplicates as mentioned in section 3.2 point 4.

update best ant one f ive opt2 f irst

<<< 1,h m >>> (d best ant so f ar,

d sol new,d rr,h m);

update best ant one f ive opt2 rest

<<< 1,h m,sizeo f (unsignedint)∗ h m >>>

(d best ant so f ar,

d sol new[i],d rr,h m);

launching 1 block with threads equal to the number of
constraints. It updates the actual solution based on the
new results obtained by the local search.

3.2.1 2-Opt

The following four kernels are specific for 2-opt local
search:

dim3block dim(l1− 1, l2− 1, l2− 1);

dim3thread dim(l1− 1,1,1);

create sol two opt <<< block dim, thread dim >>>

(d sol,d sol len,d ob j list1,d ob j list2,

d pp,d rr,d best ant so f ar,h m);

launching blocks in three dimensional (size of x
dimension equal to the size of selected object list and y, z
dimensions equal to the size of unselected object list)
with threads equal to the size of selected object list. It
identifies the object pairs as mentioned in section 3.6.3.

avoid duplicates two opt <<< h sol len− 1,

h sol len− 1 >>> (d sol);

launching blocks equal to the size of solution generated by
above kernel call with equal number of threads. It avoids
the duplicates as mentioned in section 3.2 point 4.

update best ant two f irst <<< 1,

h m >>> (d best ant so f ar,

d sol new,d rr,h m);

update best ant two rest

<<< 1,h m,sizeo f (unsignedint)∗ h m >>>

(d best ant so f ar,d sol new[i],d rr,h m);

launching 1 block with threads equal to the number of
constraints. It updates the actual solution based on the
new results obtained by the local search.

4 Experimental Results

The experiments are implemented on Intel Xeon E3-1270
v3 CPU and Quadro K2000 GPU. CUDA 5.5 Toolkit was
used for all the experiments. The procedure for MKP uses
a set of input parameters to find an optimal solution for
the heterogeneous environment. A parser module is
developed to input the configuration parameters to the
program. The input parameters that can be configured are
the initial solution, capacity and weight, number of
iterations, threshold and learning rate. Several
configurations are tested and are shown in the results. For
k-exchange algorithms, the configuration is used for
finding the optimal solution possible and measuring the
speedup with parallelization is shown in Table 2. All the
values are plotted in graphs using GraphPad Prism. The
gap in the Fig. 2, 3, 4, 6, and 7 graphs is used to reveal
the accuracy of the solution value in the specific range.

4.1 Datasets

The MKP instances used are from the OR library, a
collection of integer programming problems that contain
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MKP instances, among others [28]. There are two MKP
problem sets in the OR library, the first contains instances
of seven problems. For the second set, the number of
dimensions m is 5, 10 and 30, and the number of objects n
is 100, 250, and 500. For each combination thirty
instances are generated, ten for each tightness factor. The
tightness factor of an instance determines the number of
objects in the optimal knapsack. The smaller the tightness
factor, the less is the number of objects in the optimal
knapsack.

4.1.1 Dataset 1

There are seven problems available in dataset 1 from OR
library. All seven problems are executed for different
combinations of local search algorithms. Since the
optimal solution is available for all of the problems in
dataset1, it has been used for comparing the quality of the
solution generated by the heuristic-based approaches and
proposed k-exchange algorithms. Considering the
problems in data set 1, the optimal solution values
generated for the associated algorithms are represented
graphically against the eight configurations of the
problem execution shown in Table 2. It has been observed
that heuristic-based algorithm itself solves the optimal
solution for the problem 1 and problem 5 (Fig. 1 and
Fig. 5) only, suggesting a scope for improvement using
the k-exchange algorithm. For Problem 2, 1-opt algorithm
finds the optimal solution, by improving the solution
obtained by the heuristic algorithm. For problem 3 and
problem 4, local search 1.5-opt1 finds the optimal
solution. In case of problem 6 and problem 7, a
significant improvement is observed in the solution with
different configurations of local search.

4.1.2 Dataset 2

There are 270 problems available in dataset 2 from OR
library. All 270 problems are executed on CPU(serial) as
well as on GPU (parallel). Dataset 2 is used for measuring
the execution times and speedup of the heuristic and
proposed k-exchange algorithms. The configuration list is
shown in Table 3. For all of the problems in dataset 2,
both serial and parallel execution times of heuristic and
four proposed algorithms are measured. The maximum
speedup observed for the problem size of 100, 250 and
500 objects is shown in (Fig. 8).

It is shown that the algorithm 2-opt for 500 objects
achieves 8.17x speedup for computation whereas
algorithm 1.5-opt1 achieves 3.25x speedup. In case of
ACO, 1-opt and 1.5-opt1, the speedup is inversely
proportional to the increase in the number of objects
whereas in 2-opt the speedup is directly proportional to
the number of objects. The 1.5-opt2 performance with
respect to speedup exhibits unique values and does not
fall in the above category. Based on the observations, it is

explicitly revealed that GPU speedup is better when 2-opt
is considered for 250 and 500 objects whereas the
traditional ACO algorithm works well for 100 objects.

Table 2: Configuration for dataset 1

S.No. Configuration

Configuration

Representation in

Graph

1
ACO with no local

Search
C1

2 ACO with 1-opt C2

3 ACO with 1.5-opt1 C3

4 ACO with 1.5-opt2 C4

5 ACO with 2-opt C5

6
ACO with 1-opt

then 1.5-opt1
C6

7

ACO with 1-opt,

1.5-opt1 and 1.5-

opt2

C7

8

ACO with 1-opt,

1.5opt1, 1.5-opt2

and 2-opt

C8

9
1-opt, 1.5opt1, 1.5-

opt2 and 2-opt
C9

Table 3: Configuration for dataset 2

S.No. Configuration

1 ACO with no local Search

2 Local search 1-opt

3 Local search 1.5-opt1

4 Local search 1.5-opt2

5 Local search 2-opt

Table 4: GPU execution time & optimized solution for
TSPLIB instances

Problem
GPU Exec. Time(µ s) Optimized Solution

[29] Proposed [29] Proposed

kroE100 82 76 23025 22382

ch130 82 78 7041 6827

ch150 84 80 7120 6924

kroA200 85 81 31685 30645

ts225 85 82 128513 127659

pr299 87 84 54895 52887

pr439 93 87 115490 110862

pr2392 363 332 412085 390241

pcb3038 547 514 147690 142563

fnl4461 815 772 194746 190492

4.1.3 Dataset 3

TSPLIB library has instances for Symmetric Traveling
Salesman Problem (TSP) and Asymmetry Traveling
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Fig. 1: Solution graph for problem1 (objects - 6 and
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Problem 2

Optimization Methods

S
o

lu
ti

o
n

 V
a
lu

e

C1 C2 C3 C4 C5 C6 C7 C8 C9
0

2000

4000

6000

8000

8200

8400

8600

8800

Fig. 2: problem2 (objects - 10 and constraints - 10)
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Fig. 3: problem3 (objects - 15 and constraints - 10)
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Fig. 4: problem4 (objects - 20 and constraints - 10)
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Fig. 5: problem5 (objects-28 and constraints - 10)
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Fig. 6: problem6 (objects - 39 and constraints - 5)
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Fig. 7: problem7 (objects - 50 and constraints - 5)

Salesman Problem(ATSP). A set of instances from TSP is
used to show the performance [30]. For the opt-2
exchange, there is a significant improvement in terms of
GPU execution time and optimal solution as shown in
Table 4.

5 Conclusion

Multidimensional knapsack problem and traveling
salesman problem instances exhibit irregular memory
access pattern. Many data-intensive applications cause
memory bandwidth bottleneck on modern many-core
architectures due to irregular memory access. To address
this issue, we have considered four k-exchange
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Fig. 8: Maximum speedup observed for problem size of
100, 250 & 500 objects on GPU

algorithms in the transformation step to improve the
performance. The optimal solution for most of the
problems is obtained by the proposed algorithms. The
results show that the proposed k-exchange algorithms
execute much faster than the heuristic-based algorithm for
the problem size of 250 and above. The proposed
procedure for finding an optimal solution can be used for
the analysis of communication channel utilization in
heterogeneous many-core architectures. A maximum
speedup of 8.17x with the k-exchange algorithms has
been achieved for MKP instances and significant
improvement in TSP instances in terms of GPU execution
time and optimal solution. Further, it is important to
consider the impact of mixed regular and irregular
memory access. Bottleneck analysis of mixed regular and
irregular applications on multi-GPUs is still open for
future work.
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