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Abstract: In this paper, we consider partially step-stress ALT model when the lifetime of units under normal condition follows the

generalized half-logistic lifetime distribution based on Type-1 censored scheme. The likelihood functions of the parameters are derived

and solved to present the Maximum Likelihood Estimators (MLEs) of the model parameters. The approximate confidence intervals are

also proposed. Bayesian point and credible intervals are developed and results are discussed through two numerical examples.
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1 Introduction

The one shape parameter generalized half-logistic
distribution is presented as a special case of shape and
scale parameters generalized half-logistic with
distribution presented by

F(x)=1− 2α
(

1+ exp
{ x

λ

})−α
, (1)

with λ = 1. The random variable X is called generalized
half-logistic distributed random variable with shape
parameter α , if X has the probability density function
(pdf) presented by

f (x) = α2α exp{x}(1+ exp{x})−(α+1)
, x > 0, α > 0.

(2)
And the cumulative distribution function (cdf), survival
function S(t) and hazard rate function h(t), are
respectively given by

F(x)=1− 2α (1+ exp{x})−α
, (3)

S(t) = 2α (1+ exp{t})−α
, (4)

and
h(t) = α exp{t}(1+ exp{t})−1

. (5)

The half logistic distribution is considered by
Balakrishnan [1] of the absolute standard logistic variate.
For more detail about generalized half-logistic
distribution see Balakrishnan and Hossain [2],
Ramakrishnan [3] and Arora et al. [4]. Bayesian
viewpoint of generalized half-logistic distribution is
discussed in Kim et al. [5]. The reliability functions of the
reliability functions generalized half-logistic distribution
is discussed recently by Chaturvedi et all [6] and
Awodutire et al. [7].

Accelerate Life Tests (ALTs) is applied in different
area in life testing experiments with different type of
acceleration according to [?]. The type in which stress is
kept in a constant stress level is called constant stress
ALTs but the type in which stress is keep in increasing
form in time as given in [13] called progressive stress
ALTs. In the final one, stress is changed for a given
specified prior time or number of failures, called step
stress ALTs. Different work is presented in the literature
of ALTs see [14,15] and recently see [16]. In several
applications of ALTs, partially ALTs is more common in
the life test experiments, in which the test is run at normal
and stress conditions. The common partially ALTs is
called partially constant-stress ALTs, the experiment runs
simultaneously at normal and stress condition. Also, for
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partially step-stress ALTs, the experiment is run at normal
condition and stress change at a prefixed time or number
through the experiment.

Censoring in the life test experiments, is more
common because of reducing the time and cost of the
experiment. The simple and famous ones in life testing
experiments are Type-I and Type-II censoring schemes. In
Type-I censoring terminate the experiment is at a prior
pre-fixed time point, but in Type-II censoring is at a prior
pre-fixed number of failures. The general censoring
scheme which allows to remove the units at any point of
the test, is called progressive Type-II right censoring, for
important reviews of the literature on progressive
censoring, see Balakrishnan and Aggarwala [17].

Our objective in this paper is to estimate the
generalized half-logistic distribution under partially
step-stress ALTs in the presence of type-I censoring
scheme. The model parameter and accelerated factor are
estimated by the maximum likelihood and Bayes
methods. Also, interval estimations are obtained with the
two methods. Our results are illustrative through
discussing the two numerical examples.

This paper is organized as follows, the model
described is exposed in Section 2. The point and
approximate interval maximum likelihood estimation are
discussed in Section 3. Bayes point and credible intervals
are developed in Section 4. Numerical studies of two
numerical examples are presented in Section 5. Finally,
some comments are exposed in Section 6.

2 Model description

Let n independent items are tested under normal condition
and the prefixed times, τ∗ and τ are given, where τ < τ∗.
The test switches to the higher stress level at prefixed time
τ , but τ∗ is the final time of the test. Thus the lifetime of
a test item W , exposed to different two stages, includes
normal and accelerated conditions. Then, in partially step-
stress ALTs the lifetime of the items is presented by

W =

{

T, T < τ
τ +ρ−1(T − τ), T > τ,

(6)

where the lifetime T of the items is computed at normal
condition and ρ is the accelerated factor. The pdf under
partially step-stress ALTs of random variable W is
presented by

f (w) =







0, w < 0,

f1(w), 0 < w ≤ τ
f2(w), w > τ .

(7)

Under consideration, the one-shape parameter for
generalized half-logistic, the pdf f1(w) is presented by (2)
and f2(w) is defined by

f2(w) = αρ2α exp{τ +ρ(w− τ)}
× (1+ exp{τ +ρ(w− τ)})−(α+1),(8)

The cdf, S2(w), and hazard rate function h2(w), is
given by

F2(w)=1− 2α (1+ exp{τ +ρ(w− τ)})−α
, (9)

S2(w) = 2α (1+ exp{τ +ρ(w− τ)})−α
, (10)

and

h2(w) = αρ
exp{τ +ρ(w− τ)}

1+ exp{τ +ρ(w− τ)} . (11)

Under Type-I censoring scheme and partially step-stress
ALTs, the experiment is terminated at Wn when Wn < τ∗

and terminated at τ∗ when Wn > τ∗. Hence, the random
sample of the total lifetime W is defined as, W1 < W2 <
... < WJ < τ < WJ+1 < ... < Wr where J is the number
of items failed under normal stress level and r is the total
number failed at all test.

The likelihood function of observed values W1 <W2 <
... < WJ < τ <WJ+1 < ... < Wr in the case of τ∗ <Wn, is
described as

L(ε|w) =C
J

∏
i=1

f1(wi)
r

∏
i=J+1

f2(wi)(S2(τ
∗))n−r, (12)

where C = n!
(n−r)! , ε is the model parameters vector (α, ρ).

3 Estimations with Maximum Likelihood

Method

3.1 Point estimation

From the likelihood function in (12) and lifetime data
W1 < W2 < ... < WJ < τ < WJ+1 < ... < Wr from
generalized half-logistic distributions (2) and (8), the
likelihood function L(α,ρ |w) without normalized
constant is then given by

L(α,ρ |w) = αrρ r−J exp

{

nα log2+
J

∑
i=1

wi − (α + 1)

×
J

∑
i=1

log(1+ exp{wi})+
r

∑
i=J+1

(τ +ρ(wi − τ))

− α(n− r) log(1+ exp{τ +ρ(τ∗− τ)})

− (α + 1)
r

∑
i=J+1

log(1+ exp{τ +ρ(wi − τ)})
}

.

(13)
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Hence the log-likelihood function ℓ(α,ρ |w) = log
L(α,ρ |w) is presented by

ℓ(α,ρ |w) = r logα +(r− J) logρ + nα log2

+
J

∑
i=1

wi − (α + 1)
J

∑
i=1

log(1+ exp{wi})

+
r

∑
i=J+1

(τ +ρ(wi − τ))− (α + 1)

×
r

∑
i=J+1

log(1+ exp{τ +ρ(wi − τ)})

− α(n− r) log(1+ exp{τ +ρ(τ∗− τ)}) .
(14)

Then the likelihood equations of parameters α and ρ can
be presented after taking the first partial derivatives of
equation (14) and equating each to zero, as follows

∂ℓ(α,ρ |w)
∂α

=
r

α
+ n log2−

J

∑
i=1

log(1+ exp{wi})

−
r

∑
i=J+1

log(1+ exp{τ +ρ(wi − τ)})

− (n− r) log(1+ exp{τ +ρ(τ∗− τ)}) = 0

(15)

Then

α(ρ) = r

[

−n log2+
J

∑
i=1

log [1+ exp{wi}]

+ (n− r) log [1+ exp{τ +ρ(τ∗− τ)}]

+
r

∑
i=J+1

log [1+ exp{τ +ρ(wi − τ)}]
]−1

,(16)

As well as

∂ℓ(α,ρ |w)
∂ρ

=
(r− J)

ρ
+

r

∑
i=J+1

(wi − τ)− (α + 1)

×
r

∑
i=J+1

(wi − τ)exp{τ +ρ(wi − τ)}
1+ exp{τ +ρ(wi − τ)}

− α(n− r)(τ∗− τ)exp{τ +ρ(τ∗− τ)}
1+ exp{τ +ρ(τ∗− τ)} .

(17)

Which is reduced to

(r− J)

ρ
+

r

∑
i=J+1

(wi − τ)

− (α + 1)
r

∑
i=J+1

(wi − τ)exp{τ +ρ(wi − τ)}
1+ exp{τ +ρ(wi − τ)}

− α(n− r)(τ∗− τ)exp{τ +ρ(τ∗− τ)}
1+ exp{τ +ρ(τ∗− τ)} = 0. (18)

The profile log-likelihood function can be obtained from
(14) by replaced the parameter α with the value presented
by (16) to obtain

h(ρ) = ℓ(α(ρ),ρ |w), (19)

then the initial value of parameters ρ is obtained to
present the maximum likelihood estimates ρ̂ of ρ with
any iteration method such as fixed-point method or
quasi-Newton Raphson. The maximum likelihood
estimates α̂ of α is obtained from (16) after replace ρ
with ρ̂ .

3.2 Interval estimation

The Fisher information matrix ω(α,ρ) is the negative
expectation of second derivatives of log the likelihood
function. Practice, ω−1 (α,ρ) is estimated by ω−1 (α̂ , ρ̂) .
Hence, the normal approximation is used as follows

(α̂, ρ̂)→ N
(

(α,ρ),ω−1
0 (α̂, ρ̂)

)

, (20)

where ω−1
0 (α,ρ) is observed information matrix,

presented by the second partial derivatives of (14) with
respect to α and ρ presented by

∂ 2ℓ(α,ρ |w)
∂α2

=
−r

α2
, (21)

∂ 2ℓ(α,ρ |w)
∂α∂ρ

=
∂ 2ℓ(α,ρ |w)

∂ρ∂α
=

−
r

∑
i=J+1

(wi − τ)exp{τ +ρ(wi− τ)}
1+ exp{τ +ρ(wi − τ)}

− (n− r)(τ∗− τ)exp{τ +ρ(τ∗− τ)}
1+ exp{τ +ρ(τ∗− τ)} .(22)

∂ 2ℓ(α,ρ |w)
∂ρ2

=
−(r− J)

ρ2
− (α + 1)

×
r

∑
i=J+1

(wi − τ)2 exp{τ +ρ(wi − τ)}
(1+ exp{τ +ρ(wi − τ)})2

− α(n− r)(τ∗− τ)2 exp{τ +ρ(τ∗− τ)}
(1+ exp{τ +ρ(τ∗− τ)})2

.

(23)

Then observed information matrix is presented by

ω−1 (α̂, ρ̂) =





− ∂ 2ℓ(α ,ρ |w)
∂α2 − ∂ 2ℓ(α ,ρ |w)

∂α∂ρ

− ∂ 2ℓ(α ,ρ |w)
∂ρ∂α − ∂ 2ℓ(α ,ρ |w)

∂ρ2





−1

α̂ ,ρ̂

. (24)

From the normal distribution of (α̂ , ρ̂). Hence, the
100(1-2θ )% approximate confidence intervals of α and ρ
is presented by

(

α̂ ∓ zθ

√
V11

)

and
(

ρ̂ ∓ zθ

√
V22

)

. (25)

Where V11 and V22 are the elements of the diagonal of
ω−1 (α̂, ρ̂) and zθ is the percentile right-tail with
probable of θ standard normal distribution.
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4 Estimations with Bayes Method

The Bayesian estimation of model parameters considers
the assumption of independent gamma prior distributions
of the model parameters α and ρ with prior densities
functions as follows

π∗
1 (α) ∝ αa−1 exp{−bα} , (a, b > 0) (26)

and

π∗
2 (ρ) ∝ ρc−1 exp{−dρ} , (c, d > 0). (27)

Hence the joint prior density π∗
1 (α,ρ) of parameters α and

ρ can be written as

π∗
1 (α,ρ) ∝ αa−1ρc−1 exp{−bα − dρ} . (28)

From the likelihood function (13) and the joint prior
density π∗(α,ρ), the joint posterior density given the data
π(α,ρ |w), can be written as

π(α,ρ |w) ∝ αr+a−1ρ r+c−J−1 exp

{

J

∑
i=1

wi

− (α + 1)
J

∑
i=1

log(1+ exp{wi})−α (b− n log2)

− dρ −α(n− r) log(1+ exp{τ +ρ(τ∗− τ)})

+
r

∑
i=J+1

(τ +ρ(wi − τ))

− (α + 1)
r

∑
i=J+1

log(1+ exp{τ +ρ(wi − τ)})
}

.

(29)

Different loss function can be applied, but we consider
squared error loss function to present Bayes estimate of
any function of parameters g(α,ρ), as follows

ĝB(α,ρ)=E(g(α,ρ))=
∫

α

∫

ρ
g(α,ρ)×π(α,ρ |w)dαdρ .

(30)

MCMC Approach

Integral (30) can not be obtained in a closed form, but
different approximate methods can be used. In this paper,
we adopt the important one, called the MCMC method as
follows. The Bayes point and interval estimation of the
model parameters with the help of MCMC method is
considered for different classes of MCMC method. The
Gibbs with Metropolis algorithms is more general
technique called by Metropolis within-Gibbs is applied
here, for more detail, see Soliman et all [18] and
Abd-Elmougod et al [19].

From the joint posterior density function in (29), the
conditional posterior pdf’s of parameter α is Gamma(A,B)

distribution with A=r+ a and B, presented by

B = (b− n log2)+
J

∑
i=1

log(1+ exp{wi})

+
r

∑
i=J+1

log(1+ exp{τ +ρ(wi − τ)})

+ (n− r) log(1+ exp{τ +ρ(τ∗− τ)}) (31)

and the pdf’s of parameter ρ is given

π1(ρ |α,w) ∝ ρ r+c−J−1 exp

{

ρ
r

∑
i=J+1

(wi − τ)

− dρ −α(n− r) log(1+ exp{τ +ρ(τ∗− τ)})

− (α + 1)
r

∑
i=J+1

log(1+ exp{τ +ρ(wi − τ)})
}

(32)

The plots of (32) show that the similarity of normal
distribution that is used to generate from these
distributions, the MH method is used, see Metropolis et
al. [20] with normal proposal distribution as the following
algorithm.
MCMC algorithm (MH under Gibbs sampling):

1: With initial vector (α0,ρ0) = (α̂, ρ̂), set k = 1.
2: Generate αk from Gamma(A,B).
3: Generate ρk from (32) with MH under the
N(ρk−1,σ) proposed distribution, where σ is
obtained from variances-covariances matrix.

4: After obtaining the parameters vector (αk,ρk), set
k = k+ 1.

5: Steps from 2 to 4 is repeated N times.
6: The Bayes estimate of α under the MCMC methods
is given by

α̂B = E(α|w) = 1

N −M

N

∑
i=M+1

α i (33)

where M is the number of iterations, we need to get
into stationary distribution. The posterior variance of
α is given by

V (α|w) = 1

N −M

N

∑
i=M+1

(

α i − α̂B

)2
. (34)

Also, the credible intervals of α , by ordering the value

αM+1, αM+2,. . . ,αN as α(1), α(2),. . . ,α(N−M). Then
the 100(1− 2θ )% symmetric credible interval is

(

αθ(N−M), α(1−θ)(N−M)
)

. (35)

7: The Bayes estimate of ρ under the MCMC methods
is given by

ρ̂B = E(ρ |w) = 1

N −M

N

∑
i=M+1

ρ i, (36)
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and the posterior variance of ρ is given by

V (ρ |w) = 1

N −M

N

∑
i=M+1

(

ρ i − ρ̂B

)2
. (37)

Also, the 100(1−2θ )% symmetric credible interval is
(

ρθ(N−M), ρ (1−θ)(N−M)
)

(38)

4.1 Numerical Computations

The theoretical results presented in this paper are
discussed and illustrated in this section through the two
numerical examples. The quality measure of estimation
method can be discussed as follows.

4.2 Example 1

An estimation procedure discussed in this paper is
illustrated through the numerical example as follows. The
simulated data sample is generated from generalized
half-logistic distribution with parameters (α,ρ)= (0.2,
2), n = 30 and independent two time (τ , τ∗)=(3, 6). The
simulated data is presented in Table 1 below. The point
maximum likelihood estimates and related Bayes MCMC
estimates are presented in Table 2. Also, the 95%
approximate confidence intervals as well as credible
intervals are presented in Table 2. The plan of MCMC
method is described by running the chain for 11, 000
times and discarding the first 1000 values as burn-in. Fig.
(1-4) show simulation number of α and ρ generated by
MCMC method and the corresponding histogram. We
observe that the credible intervals are narrower than the
approximate intervals and always include the population
parameter values.

4.3 Example 2

The simulated data sample is generated from generalized
half-logistic distribution with parameters
(α,ρ)= (1.5, ,1.5), n = 30 and independent two time (τ ,
τ∗)=(1.0, 1.5). The simulated data are presented in Table
3 below. The results as the last example is presented in
Table 4. Also, Fig. (5-8) show simulation number of α
and ρ generated by MCMC method and the
corresponding histogram.

5 Perspective

In this section, we give some comments observed from
the two discussed examples about the type-I censoring
generalized half-logistic data under the step-stress ALTs
model. The MLEs and asymptotic confidence intervals
are compared with the Bayes estimators and credible
intervals.

Fig. 1: Simulation number of α obtained by MCMC method.

Fig. 2: Histogram of α obtained by MCMC method.

Fig. 3: Simulation number of ρ obtained by MCMC method.

Fig. 4: Histogram of ρ obtained by MCMC method.

Fig. 5: Simulation number of α obtained by MCMC method.
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Table 1: The simulated samples (Example 1).

0.2475 0.3226 0.3538 0.4732 0.6495 1.0717 1.6324

2.8161 2.8343 2.9326 3.03 3.2768 3.2804 3.6353

3.7106 3.8711, 4.1109 4.2032 4.2514 4.2693 4.8369

4.938 5.039 5.5608

Table 2: MLEs and Bayes estimate with 95% approximate and credibale confidence intervales

Pa.s (.)ML (.)Baye 95% MLE Length 95%Bayes Length

α = 0.176401 0.3118 (0.0672038, ,0.285598) 0.2184 (0.1652, 0.5330) 0.3678

ρ= 2.35727 2.1211 (0.464876, ,4.24966) 3.7848 (1.1366, 3.7244) 2.5878

Table 3: The simulated samples (Example 2).

0.0183 0.0222 0.0474 0.1524 0.1567 0.1924 0.3399

0.3652 0.3740 0.4085 0.4675 0.4943 0.5752 0.5941

0.7097 0.7416 0.9177 0.9595 1.0667 1.0863 1.2491

1.2719 1.3197 1.327 1.3389

Table 4: MLEs and Bayes estimate with 95% approximate and credibale confidence intervales

Pa.s (.)ML (.)Baye 95% MLE Length 95%Bayes Length

α = 1.5245 2.1366 (0.818694, 2.23046) 1.4118 (1.1164, 3.7669) 2.6505

ρ= 1.4201 2.1048 (0.248406, 2.59174) 2.3433 (1.1161, 3.6782) 2.5621

Fig. 6: Histogram of α obtained by MCMC method.

Fig. 7: Simulation number of ρ obtained by MCMC method.

1. The credible intervals are narrower than the
approximate intervals and always include the
population parameter values.

2. For different sample sizes, different schemes and
different censoring parameters (τ , τ∗) results are more
acceptable .

Fig. 8: Histogram of ρ obtained by MCMC method.

3. Different figures in the approximation with the help of
MCMC method are expressed the normal distribution
of the simulated estimates around the mean estimate
shows the convergence in estimations procedure .
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